

... for a brighter future

Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Inclusive studies at 6 & 12 GeV: x-, Q^2- , and isotope-dependence

6 GeV proposal:

Verify x-, Q²-dependence of ratios in 2N, 3N plateau regions

E02-109 results:

³He/²H and ⁴He/²H ratios for 1.5<x<2

Isospin dependence in 3N region: ³He/³H ratios at x>2 3-body breakup for ³He, ³H

Other options? Needs?

John Arrington Physics Division, Argonne National Lab SRC2007, Newport News, VA, Oct 26, 2007

SLAC A/D ratios

2/Α σ _{Fe} (x,Q ²)/σ _D (x,Q ²)	<q<sup>2> = 0.9</q<sup>	<q<sup>2> = 1.2</q<sup>	Global analysis of SLAC measurements on ² H and A>2 Frankfurt,Strikman,Day,Sargsian, PRC 48,2451 (1993)
	<q<sup>2> = 1.8</q<sup>	<q<sup>2> = 2.3</q<sup>	 σ decomposed into 1N, 2N, 3N, components, predicts ratio for 1.5<x<2 by<br="" dominated="">2N-SRC for all nuclei</x<2>
	<q<sup>2> = 2.9</q<sup>	<q<sup>2> = 3.2</q<sup>	Ratios for A=3,4,12,27,56,197 give idea of relative number of 2N-SRCs.
	1 1.5	² 1 1.5 X	 Limitations: Interpolate ²H data to kinematics for other targets. Limited x coverage at high Q²

CLAS A/³He ratios

K. Egiyan, et al., PRC 68, 014313 (2003)
 Better systematic uncertainties (data taken at one time)
 Limited Q² range. No deuterium → rely on SLAC ³He/²H ratios

JLab E89-008

- Inclusive scattering at 4GeV
 - Ratios go to higher Q²
 - All data taken at one time
 - No ³He, ⁴He

SLAC

CLAS

89-008

1

2

3

4

Q²

- Limited x coverage at high Q²

0

 $F_{a}(x)/A [F_{a}(x)/A]$

Jo 2

Ratio 1

CLAS results, $A/^{3}He$, up to x=3

K. Egyian, et al., PRL 96, 082501 (2005)

- Improved ratios in 2N-SRC region
- Extend ratios to 3N-SRC region (first direct measurement for x>2)
- No deuterium data
- Limited statistics to study x, Q² dependence for x>2

Q² dependence of the plateau

- For x<2, have data over range in Q²
- For x>3, very limited Q² range some hint that Q² not high enough

E02-019 preliminary ratios

Absolute cross sections and ratios for A=2,3,4,9,12,...

Higher Q² for x>1.5 and x>2.3

Limited statistics for x>2.3 (mainly limited by ³He)

$$\frac{2}{A}\frac{\boldsymbol{\sigma}_{A}}{\boldsymbol{\sigma}_{D}} = a_{2}(A)$$

$$\frac{3}{A}\frac{\sigma_{A}}{\sigma_{3_{He}}} = a_{3}(A)$$

Isospin dependence?

- Some details discussed in Mark's seminar, other talks during workshop
- What can we learn from inclusive scattering?
- Sample case: 2N SRCs in ³He
 - No correlations: Expect p/n = 2 at for all x (all nucleon momenta)
 - SRCs isospin independent: Each nucleon can be part of a 2N SRC with the other 2 nucleons $\rightarrow p/n = 2$ in the correlation tail.
 - SRCs entirely dominated by n-p pairs: Every high-momentum proton has associated high-momentum neutron \rightarrow p/n=1 in tail
 - Measure of p/n in tail → sensitive to pp vs. pn contributions
 measure in 3H → sensitive to pn vs. nn contributions

3He momentum distribution (Wiringa, et al.)

Current limitations

2N SRCs

- Want single measurement with ratios to deuterium [E02-019]
- Want range in N/Z [E02-019: 3He and 4He, need more?]
- Want detailed measure of Q², x dependence in plateau region (examine onset to scaling, verify x, Q² independence, etc...)

3N SRCs

- Want to verify Q² sufficient for scaling [Plan for PAC33]
- Want better statistics, x-coverage [12 GeV expt. in Hall C]
- Want range of nuclei [Good start with CLAS, more with 12 GeV]
- Want information on isospin dependence
 - All ratios taken relative to ³He. ³H would be best case.
 - Is ⁴⁰Ca vs. ⁴⁸Ca useful for studying neutron excess in denser system? Does it add to ³H/³He? Can it be interpreted well enough?

PAC33: Q² dependence, high statistics, x>2.2

E = 3.6 GeV

