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Topics to be covered 

Introduction - QCD factorization and Discovery of high energy CT

Search for CT at intermediate energies  - bane of space -time evolution

Future directions for Jlab  at 6 and 12 GeV

Jlab SRC workshop Oct.26, 2007
Based on studies together principally with  Farrar,  Frankfurt,  Miller, Sargsian, Zhalov



Color transparency phenomenon plays  several different roles:

             ✠   probe of the high energy dynamics of strong interaction 

             ✠   probe of minimal small size  components of the hadrons 
                    

at intermediate energies also a unique probe of the space time evolution of wave packages

Important for probing SRC as  we need to take into account FSIs

Important for determining in what range of Q one can probe GPDs in exclusive 
processes - generalized CT = QCD factorization



CT at intermediate energies requires three conditions: small 
configurations, small cross section and suppression of expansion

CT at high  energies requires two  conditions: small configurations, 
small cross section. However the small cross section condition is 
more difficult to satisfy (large gluon density at small x)

where S is sea quark distribution  for quarks making up the dipole

Warning - at low energies where gluons play relatively small role, small 
dipole cross section does not go to zero:

3

σ(d, x) =
π2

3
αs(Q2

eff )d2
[
xNGN (x,Q2

eff ) + 2/3xNSN (xN , Q2
eff )

]



Main challenge: |qqq> ( |qq>) is not an eigenstate of the QCD Hamiltonian.  
So even if we find an elementary process in which interaction is dominated by 
small size configurations - they are not frozen. They evolve with time - expand 
after interaction to average configurations and contract before interaction  from 
average configurations (FFLS88)
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are those which contain minimal number of constituents. They determine asymptotic 

behavior of various exclusive hard processes such as electromagnetic form factors. One 

can expect that at very large momentum transfers point-like (small size components) 

(PLC) of the hadron wave function should dominate in the scattering. To check this 

assumption it was suggested by Brodsky [3] and Mueller [4] to study quasi-exclusive hard 

reactions I(h) + A --+ l(h) + p + (A - 1)*. If the energies and momentum transfers are 

large enough one expects that projectile and ejected nucleon travel through the nucleus 

in point-like (small size) configurations, resulting in a cross section proportional to A. 

In accessing the range of applicability of this approximation one has to address two 

questions: (i) Can PLC be treated as a frozen during the passage of the nucleus, (ii) At 

what momentum transfer PLC's dominate in the elementary amplitude. 

2.1. Expansion effect 

The current color transparency experiments are performed in the kinematics where 

expansion of the produced small system is very important (essential longitudinal distances 

are not large enough) and strongly suppresses color transparency effect [5,7]. 

The maximal longitudinal distance for which coherence effects are still present is de- 

termined by the minimal characteristic internal excitation energies of the hadron h. The 

estimates [5,7] show that for the case of a nucleon ejectile coherence is completely lost at 

the distances/~ ,,~ (0.3 + 0.5) • Ph fm, where Ph is measured in GeV/c. 

To describe the effect of the loss of coherence two complementary languages were sug- 

gested. In Ref. [5] based on the quark-gluon representation of PLC wave function it was 

argued that the main effect is quantum diffusion of the wave packet so that 

= (,~,,o~d + ~ [ , ,  - ,~ho~d])O(~c --  Z )  + ~ O ( Z  - ~c). (1) (TPLC ( z ) 

This equation is justified for hard stage of time development in the leading logarithmic 

approximation when perturbative QCD can be applied [5,6,9,8]. One can expect that 

Eq.(1) smoothly interpolates between the hard and soft regimes. A sudden change of 

a P i c  would be inconsistent with the observation of an early (relatively low Q2) Bjorken 

scaling [9]. Eq.(1) implicitly incorporates the geometric scaling for the PLC-nucleon 

interactions which for the discussed energy range include nonperturbative effects. However 

the discussed approximation for the expansion effects is oversimplified, see discussion in 

section 2.3. 

The time development of the P L C  can also be obtained by modeling the ejectile-nucleus 

interaction using a baryonic basis for the wave function of PLC: 

I~PLC(t))  -= Ei=laiexp(~Ei t  ) IqJi) = e x p ( i E ,  t )E~=,aiexp \ 2P  ] I~i),  (2) 

where I~i) are the Hamiltonian eigenstates with masses mi, and P is the momentum of 

PLC which satisfies P >> e l .  As soon as the relative phases of the different hadronic 

components become large (of the order of one) the coherence is likely to be lost. It was 

however suggested by B.Pire and J.Ralston that coherence may be sustained over much 

larger distances, see contribution of B.Pire [10] and references therein. One rather special 

example when coherence is sustained indefinitely is the harmonic oscillator - in this case 

coherence is sustained due to the equidistance of the energy levels. 

p

p

p

pA→ pp (A-1) at large t and 
intermediate energies

lcoh~ 0.3 fm pN[GeV]

lcoh
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Quantum 
Diffusion model 

of expansion

Note - one can use multihadron basis with build in CT (Miller and Jennings) or diffusion 
model - numerical results for σPLC are very similar. 

actually incoherence length

MC at RHIC assume 
much larger lcoh
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=⇒ Need to trigger on small size configurations at high energies.

Two ideas:

" Select special final states: diffraction of pion into two high transverse
momentum jets - an analog of the positronium inelastic diffraction. Qualitatively
- from the uncertainty relation d ∼ 1/pt(jet)

" " Select a small initial state - diffraction of longitudinally polarized virtual
photon into mesons. Employs the decrease of the transverse separation between
q and q̄ in the wave function of γ∗

L, d ∝ 1/Q.

M.Strikman

Discovery of high energy CT

QCD factorization is valid with proofs based on the CT property of QCD 
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❖ dijets - pQCD analysis - Frankfurt, Miller, MS 93; elaborated arguments 
related to factorization 2003 - FNAL experiment of D.Ashery confirmed our 
predictions

❖ vector meson production at high energies - theory works well for HERA energies

(iv)  the ratio  !L/!T >> 1 at large Q2    for  " and #-meson  production

(v) at Q2 >  5 GeV2 for SU(3) symmetry is restored for #/" - ratio ~ 2/9

! Presence of small size  qq Fock componentss in light mesons is 
unambigously established

!

!

-

At  transverse  separations d ! 0.3 fm pQCD reasonably describes 
“small qq - dipole”- nucleon interaction for 10-4 < x < 10-2-

Color transparency is established for the interaction of small dipoles with 
nucleons and with nuclei (for x ~10-2 )

CT is easier to probe for mesons than for baryons as only two quarks 
have to come close



Intermediate energies

Main issues 

At what Q2 / t  particular processes select PLC  -  for example 
interplay of end point and LT contributions in the e.m. form factors,....

If the PLC is formed - how long it remains  smaller than average configuration

☛

☛

Studies of FS  & Miller and Jennings 

lcoh = (0.3 ÷0.4  fm ) ph [GeV]

and about the same for pions and nucleons due to similarity of the 
Regge slopes for meson and baryon trajectories

7

actually length of incoherence



In dijet production pt ~ 1 GeV/c   corresponding to Q2 ~4 pt2~ 4GeV2

seemed to be enough to squeeze the system (though not yet to reach 
asymptotic  in z distribution)

Hence pion production: γ* +A →π A* , seems promising to look for an early 
onset of CT.  

MS and Gerry Miller - tried to sell this process at the CT workshop at Jlab in 95

Published  calculations together with Larson last year with lcoh = 0.2 -- 0.4  fm  pπ [GeV] 

8

Note - pion  production in exclusive processes is due to quark exchange in t-
channel, the same is true for rho-meson production at Jlab energies. 
Squeezing at large energies seems to start at rather small Q. In case of Jlab - 
support from early decrease of the t-slope. 



GA= Glauber approximation

GA+ CT

Solid and Dashed - Larson Miller, MS

Dot-Dashed and Dotted - Ghent 
group: W. Cosyn and J. Ryckebusch

9

PHYSICAL REVIEW C 74, 018201 (2006)

Pionic color transparency

Arnold Larson and Gerald A. Miller
Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA

M. Strikman
Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA

(Received 8 May 2006; published 28 July 2006)

We use a semiclassical approximation to investigate the effects of color transparency on pion electroproduction
reactions. The resulting reduced nuclear interactions produce significant, but not dominating, differences with the
results of conventional distorted-wave, Glauber-type treatments at kinematics accessible to Jefferson Laboratory.
Nuclear effects that could mimic the influence of color transparency are also discussed.
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Color transparency is the reduction of initial or final state
interactions in high-momentum-transfer coherent processes
that occurs if a projectile or ejectile propagates in the nucleus
as a small color singlet object. (See the reviews: Refs. [1–3]. In
such situations, the effects of emitted gluons are canceled [4–6]
in a manner analogous to the propagation of a small electric
dipole moment through an electrodynamic medium [7] so that
the small color singlet behaves as a point-like configuration
(PLC). The PLC is a component of a hadron and evolves to
its full size in a characteristic hadronic time of the order of
1 fm/c. However, produced at sufficiently high energies, time
dilation effects allow a PLC to propagate through the entire
nucleus before expanding. In that case, the production cross
sections will be larger than those computed using the standard
distorted wave or Glauber treatment.

An electroproduction (e,A, e′πX) experiment at JLAB
[8] attempting to measure pion transparency in nuclei has
completed running and is currently under analysis. The
pion electroproduction cross section is measured for various
values of Q2 and pπ between 1 and 5 GeV and |t | <
0.5 GeV2. The experiment was done at parallel kinematics
so that pπ =

√
Q2 + ν2 − k where k is the magnitude of

the three-momentum imparted to the target. Targets used in
the experiment include 1H, 2H, 12C, 64Cu, and 197Au. From
this data it may be possible to extract the Q2, pπ , k and A
dependence of any observed color transparency.

The state of pion transparency theory has been quiet for
some time. Stimulated by the new experiment, our purpose
is to display the results of earlier theory [9] using specific
kinematics and nuclear targets that allows us to discuss the
feasibility of observing color transparency in electroproduc-
tion reactions as well as other nuclear effects. Papers on pionic
transparency [10] have appeared since the time of Ref. [9].
The new feature of the present work is the evaluation at the
specific experimental kinematics of Ref. [8]. We also include
the effects of expansion absent from Ref. [10]. We do not
incorporate the possible interference effects between point-like
and blob-like configurations that could produce oscillations in
color transparency that are included in Ref. [10].

The final state interactions of semiexclusive nuclear reac-
tions can be described quite well by Glauber-type calculations.
If a PLC is created inside the nucleus and subsequently evolves

into a physical particle its final state interactions will be
modified and transparency will result.

If one is summing over all nuclear final states, the nuclear
transparency can be defined as the ratio of a model calculation
of a nuclear cross section (including the effects of FSI’s to the
(A times the) cross section produced by a free nucleon target.
The use of this ratio allows one to assess the influence of FSI’s
without having a detailed knowledge of the reaction dynamics.

A semiclassical formula [11] has been developed to
compute nuclear transparency for situations in which the
kinematics of the outgoing pion are known precisely, but the
cross section involves a sum over all of the excited nuclear
states [12]. The strength of the final state interactions depends
on an emission probability computed using the eikonal
approximation and an effective interaction that parametrizes
the variation of the final state interactions as the ejectile
propagates through the nucleus. If the particle produced inside
the nucleus is a PLC which then expands into the observed final
state, the interaction with the nuclear matter deviates from that
of Glauber-type calculations (Fig. 1).

The semiclassical formula for pion transparency in the
reaction (e, e′A → π+X) involves only a single integral over
the path of the outgoing pion,

T = Aeff

A

= 1
A

∫
d3rρ(r) exp

[
−

∫ ∞

z

dz′σeff(z′ − z,pπ )ρ(r ′)
]
. (1)

The nuclear density ρ(r) is of Woods-Saxon form with
radius parameter R = 1.1 fm A1/3 and diffuseness a =
0.54 fm, and is normalized to A and the effects of final state
interaction is contained in the effective interaction, σeff . The
effective interaction contains two parts, one for z′ − z less than
a length lc describing the interaction of the expanding PLC,
another, for larger values of z′ − z describing the final state
interaction of the physical particle. The effective interaction
for the PLC is

σeff(z, pπ ) = σπN (pπ )

[(
n2

〈
k2
t

〉

Q2

(
1 − z

lc

)
+ z

lc

)

× θ (lc − z) + θ (z − lc)
]

. (2)
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FIG. 2: Nuclear transparency, T, vs. Q2 for 2H and 12C (left,
top panel), 27Al (right, top), 63Cu (left, bottom) and 197Au
(right, bottom). The inner error bars are the statistical un-
certainties and the outer error bars are the statistical and
point-to-point systematic uncertainties added in quadrature.
The dark band in the bottom right panel is the Q2 dependent
model uncertainty, and is the same for all nuclei. The solid
and dashed lines are Glauber and Glauber plus CT calcula-
tions, respectively [20]. Similarly, the dot-dash and dotted
lines are Glauber and Glauber plus CT calculations, respec-
tively [21]. These calculations also include the effect of short
range correlations (SRC).

from data and simulation) added in quadrature. The Q2

dependent model uncertainty is shown as a dark band in
the bottom right panel of Fig. 2. There is an additional
7.0% normalization type model uncertainty, independent
of Q2, not shown in the figure. The observed Q2 depen-
dence of the transparency deviates from the calculations
without CT of Larson et al. and Cosyn et al. [20, 21], and
are in better agreement with the CT calculations of the
same authors. Larson et al. use a semi-classical Glauber
multiple scattering approximation, while Cosyn et al. use
a relativistic version of Glauber multiple scattering the-
ory. Both groups incorporate CT using the quantum dif-
fusion model of Ref. [22] with the same parameters τ =
1 fm/c and M2

h = 0.7 GeV2.
In addition to the Q2 dependence, the dependence of

the nuclear transparency on A, is important in the search
of CT effects and is examined by fitting the transparency
as a function of A at fixed Q2 to the form T = Aα−1.
The parameter α is found to be ∼ 0.76 in fits to the
pion-nucleus scattering cross sections [23], and it is ex-
pected to be energy independent. An energy dependence
of the parameter α (which quantifies the A dependence
of nuclear transparency) is a signal for CT-like effects.
Our results shown in Fig. 3, indicate that the energy de-
pendence of the parameter α deviates significantly from
the conventional nuclear physics expectation. The sys-
tematic uncertainties shown include contributions from
the fitting error and the model uncertainties. Our re-
sults are in reasonable agreement with α extracted from
the calculations (with CT) of Larson et al. [20] but are
systematically lower than the calculations (with CT and

FIG. 3: The parameter α (from T = Aα−1) is shown vs Q2.
The inner error bars are the statistical uncertainty and the
outer error bars are the quadrature sum of statistical and
systematic and model uncertainties. The hatched band is the
value of α extracted from pion-nucleus scattering data [23].
The solid, dashed, and dotted lines are α obtained from fitting
the A dependence of the theoretical calculations, Glauber,
Glauber+CT [20], and Glauber+SRC+CT [21] respectively.

short range correlations) of Cosyn et al. [21].
These results seem to confirm the predicted early on-

set of CT in mesons compared to baryons. Our results,
together with the previous meson transparency measure-
ments [11, 12], suggest a gradual transition to meson pro-
duction with small inter-quark separation, and the onset
of reaction mechanisms necessary for QCD-factorization
at Q2 values of a few (GeV/c)2. These results also put
severe constraints on early models of CT which predict a
dramatic transition with a threshold-like behavior.

In summary, we have measured the nuclear trans-
parency of pions from Q2 = 1.1 to 4.7 (GeV/c)2 over
a wide range of A (2 - 197). Both the energy dependence
and the A dependence of the transparency show devia-
tions from the traditional nuclear physics expectations
and are in agreement with CT calculations [20, 21]. It
is important to extend these measurements to Q2 ∼ 10
(GeV/c)2, where the largest CT effects are predicted, in
order to establish the onset of CT effect on a firm footing.
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Our results shown in Fig. 3, indicate that the energy de-
pendence of the parameter α deviates significantly from
the conventional nuclear physics expectation. The sys-
tematic uncertainties shown include contributions from
the fitting error and the model uncertainties. Our re-
sults are in reasonable agreement with α extracted from
the calculations (with CT) of Larson et al. [20] but are
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short range correlations) of Cosyn et al. [21].
These results seem to confirm the predicted early on-

set of CT in mesons compared to baryons. Our results,
together with the previous meson transparency measure-
ments [11, 12], suggest a gradual transition to meson pro-
duction with small inter-quark separation, and the onset
of reaction mechanisms necessary for QCD-factorization
at Q2 values of a few (GeV/c)2. These results also put
severe constraints on early models of CT which predict a
dramatic transition with a threshold-like behavior.

In summary, we have measured the nuclear trans-
parency of pions from Q2 = 1.1 to 4.7 (GeV/c)2 over
a wide range of A (2 - 197). Both the energy dependence
and the A dependence of the transparency show devia-
tions from the traditional nuclear physics expectations
and are in agreement with CT calculations [20, 21]. It
is important to extend these measurements to Q2 ∼ 10
(GeV/c)2, where the largest CT effects are predicted, in
order to establish the onset of CT effect on a firm footing.
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VM CT studies
☺CT is observed for γ+A →J/ψ +A at FNAL  (Sokoloff et al)

 ◆     ρ -meson production at high energies - inconclusive - some evidence in 
incoherent scattering  - E665, HERMES - missing  energy is significant - hadrons can 
be produced - in principle a different type of process. 

Complication:  ρ has large width. Decay length  ~ pρ/Γmρ   less or  comparable to the 
radius of iron for pρ <  2GeV/c. Two pions are absorbed with cross section > 60 mb for these 
energies - effect disappears at large pρ  and mimics CT pattern.  Jlab experiment has applied a correction 
- we (Frankfurt, Miller, MS 07) find a different expression - but numerical difference is not large.
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In the Jlab ρ experiment upper limit on the excitation energy is imposed. Hence 
several processes can contribute - production of  ρ    without extra elastic 
rescatterings -T0, one elastic rescattering T1,... There are also interference terms  
which are strongly suppressed at the t-range of the experiment.

dσ1

dt
= A(A − 1)

(

dσγ∗

dt

)

t=t0

(

dσV

dt

)

t=t0

∫

d2b
∫

∞

−∞

dzρ(b, z)T (b, z) (1 − σtotT (b, z))A−2

∫ d2q1

π

d2q2

π
e−B1q2

1
−B2q2

2δ(2)(q1 + q2 − q). (12)

The integral over q1, q2 can be evaluated with the result

∫ d2q1

π
d2q2

π e−B1q2
1
−B2q2

2δ(2)(q1 + q2 − q) = 1
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There is a hundred MeV cutoff on the nuclear exctation energy. The single scattering term
above leads to nuclear excitation energies less than that, so the cutoff is not effective in this
term. does not enter here.
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Similarly the double rescattering term is given by
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The result Eq. (16) is useful for the Glauber calculations, but Eq. (15) is more easily generalized
to include the effects of color transparency.

The integral over q1, q2, q3 can be done with the result
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where q2 ≡ q2 (q is in the ⊥ direction) and t0 corresponds to the minimum momentum transfer
to the nucleon. The elastic vector meson-nucleon scattering cross section is given by dσV

dt with

dσV

dt
=

(

dσV

dt

)

t=t0

exp (−B2q
2
⊥). (3)

The total vector meson-nucleon cross section is given by σtot. A convenient parametrization,
based on unitarity is:

dσV

dt
=

σ2
tot

16π
(1 + α2) exp (−B2q

2
⊥), (4)

where α is the ratio of the real to imaginary parts of the elastic scattering amplitude.
The nuclear rho production cross section is given by dσ

dt with

dσ

dt
=

∞
∑

n=0

dσn

dt
, (5)

where n denotes the number of elastic rescatterings. We need to explicitly count the number
of elastic rescatterings to be able to keep track of the energy loss and make sure that we match
the experimental conditions. We assume that any contribution to the vector meson-nucleon
inelastic cross section involves large enough energy loss to be cut out of the ANL experiment.

We define the transparency as

Tn ≡
dσn

dt

Adσγ∗

dt

(6)

TA =
dσn

dt

Adσγ∗

dt

=
∞
∑

n=0

Tn. (7)

II. GLAUBER FORMULAE
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3
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FIG. 1: (Color online) Glauber calculations. Transparency vs. σtot = σ. The black curve represents
T0, the red curve T1, and the cyan curve T2. The sum T0 + T1 + T2 is shown in the blue curve. The
forward limit, no momentum transfer is used.

Then

T2 =
2

πB2(4B1 + B2)
exp
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dzρ(b, z)T 2(b, z) (1 − σtotT (b, z))A−3 (18)

III. COLOR TRANSPARENCY

Even though the formalism of Jennings & Miller [5] is cooler and allows for a connection to
the deeper dynamics we use the more convenient formalism of Frankfurt & Strikman [25]. The
results Eq. (9),Eq. (12) and Eq. (15) need to be modified. In those expressions the total cross
section is replaced by σeff . The effective interaction contains two parts, one for a propagation
distance z′− z less than a length lh describing the interaction of the expanding PLC, another,
for larger values of z′ − z describing the final state interaction of the physical particle. The
effective interaction for the PLC is

σeff(z, pρ) = σtot(pρ)

[(

n2〈k2
t 〉

Q2
+

z

lh
(1 −

n2〈k2
t 〉

Q2

)

θ(lh − z) + θ(z − lh)

]

, (19)

where lh = 2pρ/∆M2, with ∆M2 = 0.7GeV2. The prediction that the interaction of the
PLC will be approximately proportional to the propagation distance z for z < lh is called the

5

Glauber calculations. Transparency vs. σtot. The black curve represents T0 , 
the red curve T1 , and the cyan curve T2 . The sum T0 + T1 + T2 is shown in the 
blue curve. The forward limit, no momentum transfer is used. Effect of T1 + 
T2  remains small for the t-range of the experiment.
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We use the same inputs for the quantum diffusion model as for the pion case. Magnitude 
of the effect seems to agree with preliminary Jlab data.

Black and blue curves are for two different settings of the experiment 
corresponding to                                     and lc=0.45 fm.lc =

ν

(m2
ρ + Q2)

= 0.85fm

Small lc corresponds to distances over which quark-antiquark pair is produced. So 
one treat the  problem as production of a pair in one point with further expansion 
over the distance lcoh



Directions for future studies at Jlab

Until condition lcoh ≥ linter = 1/σρA

CT should remain small  (independent of whether it exists at all)

For nucleon linter ∼ 2fm =⇒ Q2 ≥ 13GeV 2

12 GeV upgrade  (e,e’p)  experiment can reach at least Q2=15 GeV2

One needs further studies at intermediate Q2  since the current situation is rather 
contradictory. 10 - 20% are not excluded - problem uncertainties in quenching.

14

is met   

Promising situation for Jlab at 11 GeV for meson production  - many 
channels  to compare dynamics of different GPDs and mesons
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Discrepancy with Glauber calculation is typically 30% for heavy nuclei???
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Glauber model ( Frankfurt, Strikman, Zhalov) : very small suppression at large Q2 :  Q> 0.9 
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contradict to the data.

Small quenching is consistent with a 
small strength at large excitation 

energies for the momentum range of 
the NE-18 experiment (R. Milner - 

private communication)
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Need data on (e,e’p) for small k and large Er  and Q2 ~ 2 GeV2

Alternative possibility - 10-15% transparency effect



Chiral transparency - pion cloud contribution becomes negligible in the nucleon form factor 
at Q2 > 1 GeV2  ➠ at large Q charge exchange processes should be suppressed (LF& 
H.Lee, GM, MS, MS- 97).  Difficult to observe for  e,e’p processes as effect of pions 
is relatively small.

17

Alternative  - use charge exchange processes. In FLMSS - considered 3He target. - 
not very practical process  e3He --> e n n Δ++

!q! " ,JMTMT!T#W $!ms%
m&%

ms2
m&2

p! '! (
B!p ,%"

(
m

!JM !L!S!ML!Ms! '! S!Ms!!s1! ,s2! ,ms1
! ms2

! '

#!TMT!&1!&2! , 1/2 m&1
! m&2

! '" dp! !)L!S!
J # $p! !$

q!

2
$ % YL!ML!

# p!$
q

2

̂ %
#!p! !$q! ,ms1

! m&1
! !J*N ,B!p! !msB

! m&B
! 'GBp#p! ,W $

#! p! !msB
! m&B

! ms2
! m&2

! !t#W $!p! 0 ms%
m&%

ms2
m&2'. #23$

In the above equation, )LS
J (p) is the radial part of the initial

pp relative wave function.

We now discuss the propagators appearing in Eqs. #16$
and #23$. The N% propagator is defined by

GN%#p! !,W $!
1

W$EN#p!$$E%#p!$$+%#p! ! ,W $
,

#24$

and the intermediate NN propagator by

GNN#p! !,W $!
1

W$EN#p!$$EN#p!$"i,
. #25$

This completes the specification of the conventional

theory, so that we may now turn to the effects of chiral

transparency. As discussed above, we may simply change

the coupling constant so that its growth with the expansion

of the wave packet is modeled as a function of the propaga-

tion length. The present formalism is in momentum space so

that we need to reexpress Eq. #14$ in momentum space. To

do this we first note that Eqs. #24$, #25$ can be reexpressed as

GN ,-#p! !W $!
C„p02#-$…

p0
2#-$$p!2"i,

, -!N ,% , #26$

where p0(N ,%) is the position of the pole of p!. The Fourier
transform of these Green’s functions .eip0r/r . Under chiral

transparency these are replaced by .eip0r/r(1$/e$r/lc).

This means that the effects of chiral transparency can be

included by replacing the above GN ,- by GN ,-
0 given by

GN ,-
0 #p! !W $!

C„p02#-$…
p0
2$p!2"i,

$
/C„p02#-$…

#p0"i/lc$
2#-$$p!2"i,

.

#27$

The transition matrix can be calculated according to Eq. #26$
to obtain results for the conventional theory, or by using Eq.

#27$ to obtain the results for chiral transparency.

IV. RESULTS

We now discuss the results of explicit calculations which

are focused on the quasielastic production of the %""n sys-

tem. That is both initial protons are taken to have momentum

nearly equal to zero, i.e., at the peak of the initial state wave

function, so that the cross section is maximized. This is

achieved by setting the invariant mass of the produced

%"" equal to the physical % mass of 1236 MeV, and by

setting the momentum of the produced neutron p according

to the relativistic constraint

FIG. 1. Chiral transparency ratio CT of Eq. #29$. The transverse
momentum of the neutron is 0.3 GeV/c . Harmonic oscillator wave

functions are used with b!1 fm. The parameter 12, which deter-

mines the value of lc , is varied.

FIG. 2. Chiral transparency ratio CT of Eq. #29$. The transverse
momentum of the neutron is 0.3 GeV/c . Harmonic oscillator wave

functions are used with b!1 fm. The parameter Q0
2, which deter-

mines the value of / , of Eq. #11$ is varied.
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p

p
n

n

π-

Δ0

Much more practical

Charge exchange drops with s as s-2 -  chiral  transparency - a faster drop + 
effect is larger for αΔ > 1 where nucleons are closer.  Change of distribution 
over  αΔ > 1 with increase of Q. CLAS  should have more than enough data 
to study this process. One can also do detailed studies in parallel with 
eD → epn studies via missing mass.



Large angle γ +N → π +N  in nuclei. Quark Counting rules with point-like 
photon imply a change of A-dependence already in the region where 
expansion effects are large - because in this regime photon penetrates to 
any point in the nucleus

A-dependence of virtual compton scattering - at what Q transition of 
vector dominance to CT. HERMES data are consistent with Guzey and MS 
prediction based on CT and closure - but accuracy of the data is moderate.

☺

☛
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Conclusions

High energy CT is well established

LHC:   ❖ Search for proton dissociation into three jets (TOTEM-CMS)

❖ Investigation of color opacity in ultraperipheral collisions

Jlab - 12 GeV

Decisive test of CT for meson production

lcoh   large enough to suppress expansion effects

Will allow to learn whether nucleon f.f. at Q2 ~ 10 -15 GeV2  

are dominated by PLC or mean field configurations

❖

❖

J-PARC, GSI Interesting programs possible complementary to Jlab
20


