Final State Interaction in (e,e') Reactions at large x and Q2

Misak Sargsian Florida International University, Miami, FL

Outlook of the talk

FSI in inclusive reactions

Within Generalized Eikonal Approximation

several issues

- Setting up kinematics relevant for SRC
- Setting up kinematics relevant for GEA
- the space time properties of FSI in GEA
- Conservation law for alpha in GEA and why it is good for SRC

in light and medium nuclei, FSI can be localized within SRC **Correlation Parameter**

$$\alpha_i = A \frac{E_i - p_i^z}{E_A - p_A^z}$$

Momentum Fraction of Nucleus carried by the constituent

$\alpha_i > j$ corresponds to *j*-nucleon correlation

In Electroproduction Reaction

$$x = \frac{\alpha - \frac{m_{f}^{2} - m_{i}^{2}}{2mq_{0}}}{1 + \frac{2p_{i}^{z}}{q_{0} + q}}$$

Introduction to x > 1 inclusive A(e,e')X processes

Frankfurt & Strikman Phs. Rep. 81

Bjorken x as a correlation index

For quasielastic scattering at x > jCorresponds to the scattering from as minimum j+1nucleon system at rest

$$\vec{p_i} = -\vec{p_m} = \vec{p_f} - \vec{q}$$

$$R = \frac{A_2\sigma[A_1(e,e')X]}{A_1\sigma[A_2(e,e')X]}$$

Two Nucleon Correlations

x > 1

Egiyan, et al PRC 2004

Three Nucleon Correlations

$$R = \frac{A_2 \sigma[A_1(e,e')X]}{A_1 \sigma[A_2(e,e')X]}$$

|x>2|

Is the scaling accidental ? Onset of the scaling is Q^2 dependent in agreement with SRC picture

Is the scaling accidental ? Onset of the scaling is Q^2 dependent in agreement with SRC picture

Is the scaling accidental?

Within SRC model

$$R \mid_{1 < x < 2} \sim \frac{a_2(A_1)}{a_2(A_2)}$$

 $R \mid_{2 < x < 3} \sim \frac{a_2(A_1)}{a_2(A_2)}$

$a_2(^3He)$	=	1.7(0.3)
$a_2(^4He)$	=	3.3(0.5)
$a_2({}^{12}C)$	=	5.0(0.5)
$a_2(^{27}Al)$	=	5.3(0.6)
$a_2({}^{56}Fe)$	=	5.2(0.9)
$a_2(^{197}Au)$	=	4.8(0.7)

	$a_{2N}(A)$	$a_{6q}(A)$	$a_{3N}(A)$	$a_{9q}(A)$
³ He	$0.080 \pm 0.000 \pm 0.004$	0.134	$0.0018 \pm 0.0000 \pm 0.0006$	0.022
⁴ He	$0.154 \pm 0.002 \pm 0.033$	0.166	$0.0042 \pm 0.0002 \pm 0.0014$	0.047
^{12}C	$0.193 \pm 0.002 \pm 0.041$	0.125	$0.0055 \pm 0.0003 \pm 0.0017$	0.026
$^{56}\mathrm{Fe}$	$0.227 \pm 0.002 \pm 0.047$	0.146	$0.0079 {\pm} 0.0003 {\pm} 0.0025$	0.036

Biggest question how come FSI is not distorting this picture?

Our prediction is that FSI is confined within SRC

We made this observation based on the estimates of the characteristic distances that highly virtual struck nucleon propagates

$$r \approx \frac{1}{\Delta E v}$$

Day, Frankfurt, MS, Strikman, PRC 1993

Generalized Eikonal Approximation

Frankfurt, Greenberg, Miller, MS, Strikman, ZPhys 1995,

Frankfurt, MS, Strikman, PRC1997 ,

MS, Int. J. Mod. Phys 2001,

High Energy Photo/Electro-Nuclear Reactions

Kinematics

I. Momenta involved in the reactions $q \approx p_f$ > few GeV/c.

A new small parameter

For inclusive (e,e') reaction

$$\begin{aligned} \frac{p_{-}^{f}}{p_{+}^{f}} &\equiv \frac{E^{f} - p_{z}^{f}}{E^{f} + p_{z}^{f}} \approx \frac{m^{2}}{4p_{z}^{f}} \ll 1\\ \frac{q_{-}}{q_{+}} &\approx \frac{x_{Bj}^{2}m^{2}}{Q^{2}} \ll 1 \end{aligned}$$

M

$$\sqrt{\frac{Q^2(2-x)}{x}} \ge \frac{1}{2}$$

P_f

$$p_r$$

 $e + d \longrightarrow e' + p + n$

$$A_{1}^{\mu} = -\int \frac{d^{4}p_{r}'}{i(2\pi)^{4}} \frac{\bar{u}(p_{f})\bar{u}(p_{r})F_{NN}[\not\!p_{r}'+m][\not\!p_{D}-\not\!p_{r}'+\not\!q+m]}{(p_{D}-p_{r}'+q)^{2}-m^{2}+i\epsilon} \frac{\Gamma_{\gamma^{*}N}^{\mu}[\not\!p_{D}-\not\!p_{r}'+m]\Gamma_{DNN}}{((p_{D}-p_{r}')^{2}-m^{2}+i\epsilon)(p_{r}'^{2}-m^{2}+i\epsilon)}.$$

$$\int \frac{d^0 p'_r}{p'^2_r - m^2 + i\epsilon} = -\frac{i(2\pi)}{2E'_r}$$

$$A_{1}^{\mu} = -\sqrt{2}(2\pi)^{\frac{3}{2}} \sum_{\lambda_{1}} \int \frac{d^{3}p_{r}'}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{r}'}} \frac{\sqrt{s(s-4m^{2})}f_{pn}(p_{r\perp}-p_{r\perp}')}{(p_{D}-p_{r}'+q)^{2}-m^{2}+i\epsilon}$$
$$\times J_{\gamma^{*}N}^{\mu}(\lambda_{f},p_{D}-p_{r}'+q;\lambda_{1},p_{D}-p_{r}') \cdot \frac{\psi_{D}(p_{r}')}{N(p_{r}')}$$

$$(p_D - p'_r + q)^2 - m^2 + i\epsilon = m_D^2 - 2p_D p'_r + p'^2_r + 2q(p_D - p'_r) - Q^2 - m^2 + i\epsilon.$$

From Energy-Momentum conservation

$$(p_D - p_r + q)^2 = m^2 = m_D^2 - 2p_D p_r + m^2 + 2q(p_D - p_r) - Q^2$$

$$(p_D - p'_r + q)^2 - m^2 + i\epsilon = 2|\mathbf{q}| \left[p'_{rz} - p_{rz} + \frac{q_0}{|\mathbf{q}|} (E_r - E'_r) + \frac{m_D}{|\mathbf{q}|} (E_r - E'_r) \right]$$

$$A_{1}^{\mu} = -(2\pi)^{\frac{3}{2}} \sum_{\lambda_{1}} \int \frac{d^{3}p_{r}'}{(2\pi)^{3}} \frac{1}{2|q|\sqrt{E_{r}'}} \frac{\sqrt{s(s-4m^{2})}f_{pn}(p_{r\perp}-p_{r\perp}')}{p_{rz}'-p_{rz}+\Delta+i\epsilon} \\ \times J_{\gamma^{*}N}^{\mu}(\lambda_{f},p_{D}-p_{r}'+q;\lambda_{1},p_{D}-p_{r}') \cdot \frac{\psi_{D}(p_{r}')}{N(p_{r}')}.$$
where $\Delta = \frac{q_{0}}{|q|}(E_{r}-E_{r}') + \frac{M_{d}}{|q|}(E_{r}-E_{r}') \approx m\frac{q_{0}}{|q|}(1-x)$
 $\int \frac{dp_{rz}'}{(2\pi)} \frac{\psi_{d}(p_{r}')}{p_{rz}'-(p_{rz}-\Delta)+i\varepsilon} = -\frac{i}{2} \left[\Psi_{d}(\tilde{p}_{r}) + i\tilde{\Psi}_{d}(\tilde{p}_{r}) \right]$
where $\tilde{p}_{r} \equiv (p_{r\perp}', p_{rz}-\Delta)$

$$A_{1}^{\mu} = -\frac{\sqrt{2(2\pi)^{\frac{3}{2}}}}{4i} \sum_{\lambda_{1}} \int \frac{d^{2}k_{\perp}}{(2\pi)^{2}} \sqrt{2E_{r}'} \frac{\sqrt{s(s-4m^{2})}}{2|q|E_{r}'} \\ \left[f_{pn}^{on}(k_{\perp}) J_{\gamma^{*}N}^{\mu,on} \Psi_{D}(\tilde{p}_{r}) + i f_{pn}^{off}(k_{\perp}) J_{\gamma^{*}N}^{\mu,off} \tilde{\Psi}(\tilde{p}_{r}) \right] \frac{1}{N(p_{r}')}$$

Frankfurt, MS, Strikman, PRC1997 ,

Recoil-Neutron Angular Distributions; Hall A Exp.

Werner Boeglin, talk

Recoil-Neutron's Angular Distributions - I

K. Egiyan et al, PRL07

 $e + 3He \rightarrow e' + p + p + n$

MS, Abrahamyan,, Frankfurt, Strikman, PRC 2005

$$\begin{aligned} A_{1a}^{\mu} &= -\frac{F}{2} \sum_{s_{1'}, s_{2'}, s_1, s_2, s_3} \sum_{t_1, t_{2'}, t_2, t_3} \int \frac{d^3 p_2}{(2\pi)^3} d^3 p_3 \Psi_{NN}^{\dagger p_{r2}, s_{r2}, t_{r2}; p_{r3}, s_{r3}, t_{r3}}(p'_2, s_{2'}, t_{2'}; p_3, s_3, t_3) \\ &\times \frac{\sqrt{s_2^{NN}(s_2^{NN} - 4m^2)}}{2qm} \frac{f_{NN}(p'_2, s_{2'}, t_{2'}, p_f, s_f, t_f; |p_2, s_2, t_2, p_1 + q, s_{1'}, t_1)}{p_{mz} + \Delta^0 - p_{1z} + i\varepsilon} \\ &\times j_{t_1}^{\mu}(p_1 + q, s_{1'}; p_1, s_1) \cdot \Psi_A^{s_A}(p_1, s_1, t_1; p_2, s_2, t_2; p_3, s_3, t_3). \end{aligned}$$

$$\Delta^{0} = \frac{q_{0}}{q} (T_{r2} + T_{r3} + |\epsilon_{A}|)$$

Double Rescattering

$$\begin{aligned} A_{2a}^{\mu} &= \frac{F}{4} \sum_{s_{1},s_{2},s_{3}} \sum_{t_{1},t_{2},t_{3},t_{1'},t_{2'},t_{3'}} \int \frac{d^{3}p_{3}'}{(2\pi)^{3}} \frac{d^{3}p_{2}}{(2\pi)^{3}} d^{3}p_{3} \Psi_{NN}^{\dagger p_{r2},s_{r2},t_{r2};p_{r3},s_{r3},t_{r3}}(p_{2}',s_{2},t_{2'};p_{3}',s_{3},t_{3'}) \times \\ &\times \frac{\chi_{2}(s_{b3}^{NN}) f_{NN}^{t_{3'},t_{f}|t_{3},t_{1'}}(p_{3\perp}'-p_{3\perp})}{\Delta_{3}+p_{3z}'-p_{3z}+i\varepsilon} \frac{\chi_{1}(s_{a2}^{NN}) f_{NN}^{t_{2'},t_{1'}|t_{2},t_{1}}(p_{2\perp}'-p_{2\perp})}{\Delta^{0}+p_{mz}-p_{1z}+i\varepsilon} \\ &\times j_{t1}^{\mu}(p_{1}+q,s_{f};p_{1},s_{1}) \cdot \Psi_{A}^{s_{A}}(p_{1},s_{1},t_{1};p_{2},s_{2},t_{2};p_{3},s_{3},t_{3}), \end{aligned}$$

Dynamics of Reinteraction within GEA

Comparing with Glauber theory – Single Rescattering

GEA in coordinate space

$$A_{1}^{\mu} \sim \int d^{3}r \psi_{A-1}^{\dagger} e^{-ip_{i}r} \Theta(z) \Gamma_{GEA}^{NN}(\Delta_{0}, z, b) \Psi_{A}(r)$$
$$\Gamma_{GEA}^{NN}(\Delta_{0}, z, b) = e^{i\Delta_{0}z} \Gamma_{Glauber}^{NN}(z, b)$$

$$\Gamma_{Glauber}^{NN}(z,b) = \frac{1}{2i} \int f^{NN}(k_{\perp}) e^{-ik_{\perp}b} \frac{d^2k_{\perp}}{(2\pi)^2}$$

$$\Delta^0 = \frac{q_0}{q} \left(T_{r2} + T_{r3} + |\epsilon_A| \right)$$

Impulse Approximation

 $\Gamma_{Glauber}(z,b)$

 $\Gamma_{GEA}(\Delta_0, z, b)$

$\Gamma_{GEA}(\Delta_0, z, b)$

$$\mathcal{O}|_{\Delta,\Delta_2,\Delta_3\to 0}\to \Theta(z_2-z_1)\Theta(z_3-z_1)$$

Conservation of $\boldsymbol{\alpha}$

$$\begin{split} A_{1a}^{\mu} &= -\frac{F}{2} \sum_{s_{1'}, s_{2'}, s_{1}, s_{2}, s_{3}} \sum_{l_{1}, l_{2'}, l_{2}, l_{3}} \int \frac{d^{3}p_{2}}{(2\pi)^{3}} d^{3}p_{3} \Psi_{NN}^{\dagger p_{r2}, s_{r2}, t_{r2}; p_{r3}, s_{r3}, t_{r3}}(p_{2}', s_{2'}, t_{2'}; p_{3}, s_{3}, t_{3}) \\ &\times \frac{\sqrt{s_{2}^{NN}(s_{2}^{NN} - 4m^{2})}}{2qm} \frac{f_{NN}(p_{2}', s_{2'}, t_{2'}, p_{f}, s_{f}, t_{f}; |p_{2}, s_{2}, t_{2}, p_{1} + q, s_{1'}, t_{1})}{p_{mz} + \Delta^{0} - p_{1z} + i\varepsilon} \\ &\times j_{t_{1}}^{\mu}(p_{1} + q, s_{1'}; p_{1}, s_{1}) \cdot \Psi_{A}^{s_{A}}(p_{1}, s_{1}, t_{1}; p_{2}, s_{2}, t_{2}; p_{3}, s_{3}, t_{3}). \end{split}$$
(1)
$$\frac{1}{\left[p_{z}^{m} + \Delta_{0} - p_{1z} + i\epsilon\right]} = \frac{1}{m\left[\alpha_{1} - \alpha_{i} - \frac{Q^{2}}{2q^{2}} \frac{E_{m}}{m} + i\epsilon\right]}. \\ \hline E_{m} = q_{0} - T_{f} \\ \alpha_{i} = \alpha_{f} - \frac{q_{-}}{m} \end{aligned} \qquad \left[\frac{Q^{2}}{2|q|^{2}} \frac{E_{m}}{m} = \frac{1}{2\left(1 + \frac{q_{0}}{2mx}\right)} \frac{E_{m}}{m} \to 0 \end{split}$$

Conservation of $\boldsymbol{\alpha}$

$$A_{1}^{\mu} \sim -\int \psi_{A}(\alpha_{1}, p_{1t}, \alpha_{2}, p_{2t}, \alpha_{3}, p_{3t}) J_{1}^{em,\mu}(Q^{2}) \frac{f^{NN}}{[\alpha_{1} - \alpha_{m} - \frac{Q^{2}}{2q^{2}} \frac{E_{m}}{m} + i\epsilon]}$$
$$\psi_{A-1}(\alpha_{2}', p_{2t}', \alpha_{3}, p_{3t}) \frac{d\alpha_{1}d^{2}p_{1t}}{(2\pi)^{3}} \frac{d\alpha_{3}d^{2}p_{3t}}{(2\pi)^{3}}.$$

$$A_{2}^{\mu} \sim \int \psi_{A}(\alpha_{1}, p_{1t}, \alpha_{2}, p_{2t}, \alpha_{3}, p_{3t}) J^{em,\mu}(Q^{2}) \times \frac{f^{NN}(p_{1t} - p_{mt} - (p_{3t}' - p_{3t}))}{[\alpha_{1} - \alpha_{m} - \frac{Q^{2}}{2q^{2}} \frac{E_{m}}{m} + i\epsilon]} \frac{f^{NN}(p_{3t}' - p_{3t})}{[\alpha_{3} - \alpha_{3}' - \frac{Q^{2}}{2q^{2}} \frac{k_{3t}^{2}}{2m^{2}} + i\epsilon]} \psi_{A-1}(\alpha_{2}, p_{2t}', \alpha_{3}, p_{3t}') \frac{d\alpha_{3}d^{2}p_{3t}}{(2\pi)^{3}} \frac{d\alpha_{3}d^{2}p_{3t}}{(2\pi)^{3}}.$$
(1)

Conservation of α

Therefore if the kinematics is choosen such that $lpha_i=lpha_f-rac{q_-}{m}>j$

The $\,lpha_1$ which inters in FSI amplitude is $\,lpha_1\geq j$

and therefore FSI amplitude will be dominated by SRC

Which experimental signatures will indicate the suppression of long-range FSI ?

\Rightarrow Naturally will explain the scaling at x>1

$\Rightarrow E_m \approx \frac{p_m^2}{2m}$ - relation survives FSI

CM momentum distribution is not affected by FSI

Note on applying Eikonal/Glauber Theory to Inclusive Reactions

Eikonal/Glauber Theory Violates Unitarity

 $\sigma_{incl}
eq$

$\sigma_{incl} \sim$

Three Body Break-up He3(e,e'p)pn Reaction

 $Q^2 = 1.55 \text{ GeV}^2$

Benmokhtar, et al PRL 2005

 $\frac{p_m^2}{2m}$

Conclusion

- Generalized Eikonal Approximation provides adequate theoretical framework for understating the effect of reduced long range FSI
- As well as confinement of FSI within Short Range Correlations
- It will allow to explain the scaling properties of the inclusive cross section ratios at x>1
- It will allow also to explain why observed pp/pn ratios consistent with PWIA predictions
- Possibility to confine FSI in SRC may open new ways of exploring 2- and 3- nucleon short range correlations