D(e,e'p_s)X with "Spectator Tagging"

Sebastian Kuhn Old Dominion University

Overview

- Bound Neutron Structure Functions
- Spectator Tagging
- Final State Interactions
- Results from "Deeps"
- Preliminary Results from BoNuS
- Plans for 12 GeV

Bound Neutron Structure Functions - 2 Questions:

- 1) How can we explore the structure of the neutron if all we have are neutrons bound in nuclei?
 - In many cases, a neutron bound in deuterium can be considered "nearly free".
 - BUT: For certain kinematics (large x > 0.5, resonance region W < 2) the high-momentum (short-distance tail) of the deuteron wave function plays a large role and might distort the result.
- 2) Can we learn something about what happens to a nucleon if it is part of a short-distance pair?
 - Many ideas: Off-shell modifications of on-shell structure functions, color delocalization, suppression of point-like components, $\Delta\Delta$ components, extra mesons or 6-quark bags
 - Fundamental question about QCD in bound hadron systems that we haven't understood yet. Relevant for QCD phase diagram (high baryon density, neutron stars, color superconductivity?)

Bound Neutron Structure Functions

- Simple subtraction (deuteronproton) yields nonsense
- Kinematic shift of the effective Bjorken variable *x* or of *W*

$x_{\text{measured}} = \frac{Q^2}{2M\nu}$	$\langle x_{\text{relevant}} \rangle = \left\langle \frac{Q^2}{2(E_n v - \vec{p}_n \cdot \vec{q})} \right\rangle$
0.70	0.69
0.80	0.78
0.90	0.85
1.00	0.90

+ Binding (off-shell) effects, coherent scattering, final state interactions, non-nucleonic degrees of freedom in the ground state, nucleon structure modification ("EMC"-effect)

Free n structure function

- Needed to study duality in the neutron and to pin down $d/u(x \rightarrow 1)$

$$\frac{F_{2n}}{F_{2p}} \approx \frac{1 + 4d/u}{4 + d/u}$$

Deviations from free structure function: Off-shell Effects [should depend on α (p_s), x, Q²]

Spectator Tagging

High spectator momenta (> 0.2 - 0.3 GeV/c): "Deeps"

CLAS

*BoNuS = Barely off-shell Nucleon Scattering **RTPC = Radial Time Projection Chamber

Final State Interactions

Most pronounced for high spectator momenta and around 90° (θ_{qp}) -> need to understand!

Ciofi degli Atti and Kopeliovich, Eur. Phys. J. A17(2003)133

Results from "Deeps": Momentum Distribution

Vertical axis: Number of events

Horizontal axis: Proton momenta from 250 to 700 MeV/c

Left: Angular range > 107.5^o **Right: Angular range 72.5^o - 107.5^o**

3 different ranges in the final state mass W of the unobserved struck neutrons

PWIA model with "light cone"-wave function for deuterium

Results from "Deeps": Comparison w/ FSI model (CdA et al.)

Results from "Deeps": Ratio Method

Ratio =

$$\frac{\sigma(x^* = 0.55, \alpha_s)}{\sigma(x^* = 0.25, \alpha_s)}$$
(bound n)
$$\frac{\sigma(x = 0.55)}{\sigma(x = 0.25)}$$
(free n)

- Independent of deuteron WF, acceptance, kinematic factors
- Should be sensitive to off-shell effects at large x, but also influenced by FSI and target fragmentation
- Fixed p_T = 0.3 GeV/c -TOO LARGE!

Preliminary Results from BoNuS

Plans for 12 GeV

