⁴He(e,e'p) reactions – study of bound nucleon

Simona Malace University of South Carolina

SRC 2007 Workshop Jefferson Lab, October 26-27, 2007

Motivation

Conventional Nuclear Physics

Nucleons are effectively and well described as:

- \Rightarrow point-like protons and neutrons (+ form factor)
- \Rightarrow interaction through effective forces (meson exchange)

<u>QCD</u>

- \Rightarrow Nucleons and mesons are not the fundamental entities
- Nucleons and mesons are composite objects of quarks and gluons

Is the structure of the nucleons modified by the nuclear medium?

- Exclusive A(e,e'p) data provide for sensitive tests:
 - \clubsuit Cross sections
 - \Rightarrow Polarization observables

Experimental Goal

Measure, as accurate as possible, observables that give access to possible modifications of the form factors in the nuclear medium. => Polarization observables

Free nucleon:

$$\frac{G_E}{G_M} = -\frac{P_x'}{P_z'} \cdot \frac{(E_i + E_f)}{2m} \tan \frac{\theta_e}{2}$$

Bound nucleon:

evaluation within model

i.e. assumptions about the wave functions, current operators, finalstate interactions (FSI)....

Theoretical Framework

Born Approximation

Quasielastic scattering on bound nucleon:

Born + Impulse Approximation(IA)

 $W_{if} = \int dx \int dy \int \frac{dq}{(2\pi)^2} j_{\mu}^{\ e}(x) e^{-iq(x-y)} \frac{(-1)}{q_{\mu}^2} J_{N}^{\ \mu}(y)$ electron current current

Due to the presence of the nuclear medium, additional effects have to be taken into account when calculating the currents for $e-N_{bound}$ scattering as opposed to $e-N_{free}$ scattering.

In-Medium Effects

Electron-photon vertex current: $j_{\mu}^{\ e}(r) = \overline{\psi}_{f}^{\ e}(r)\gamma^{\mu}\psi_{i}^{\ e}(r)$

Coulomb distortion of the electron wave function (especially important for heavy nuclei). -> J.M. Udias et al., Phys.Rev.C 48, 2731

Photon-nucleon vertex current: $J_N^{\mu}(r) = \overline{\psi}_F^{N}(r) \widehat{J}_N^{\mu} \psi_B^{N}(r)$

-> Off-shell effects (no unambiguous treatment)

$$\widehat{J}_{cc1}^{\ \mu} = G_M(Q^2)\gamma^{\mu} - \frac{\kappa}{2M}F_2(Q^2)(P_i^{\mu} + P_f^{\ \mu}), \quad \widehat{J}_{cc2}^{\ \mu} = ..., \quad \widehat{J}_{cc3}^{\ \mu} = ...$$
T. De Forest, Jr. Nucl. Phys. A392, 232

 $\hat{J}_{cc1},\hat{J}_{cc2},\hat{J}_{cc3}$ equivalent for free nucleon but not guaranteed to produce the same result for bound nucleons

• Current conservation (cc) rather exception than rule in most calculations.

• Prescriptions proposed to partially cure this deficiency: imposed cc => different gauges.

Vary prescriptions seem to converge with increasing Q², especially at low missing momentum.
 D. Debruyne, J. Ryckebusch..., Phys. Rev. C 62, 024611

In-Medium Effects

-> Many-body currents: e.g. MEC- e.g. the photon couples to a meson which has been exchanged between two nucleons inside the nucleus.

→ IA ⇔ Direct Knockout Mechanism (DKO) ("zero-order approximation")

To account for meson exchanges between nucleons we need "higher-order corrections" to the DKO. two-body current

 $<\psi_{f} |\hat{J}^{\mu}|\psi_{i}>=<\chi(1)|J^{\mu}(1b)|\psi_{\beta}(1)>+\sum_{\alpha=1}^{A}<\chi(1)\psi_{\alpha}(2)|J^{\mu}(2b)|\psi_{\beta}(1)\psi_{\alpha}(2)-\psi_{\alpha}(1)\psi_{\beta}(2)>$ $\Rightarrow A. \text{ Meucci et al., Phys. Rev. C 66, 034610}$

The sensitivity of polarization observables on MEC was predicted to be moderate only at p_m > 200 MeV/c. → J. Ryckebusch, Phys. Rev. C 60, 034604

Final-State Interactions: interactions which occur after the nucleon has been struck by the photon before it leaves the vicinity of the nucleus.

 \rightarrow Most calculations account for FSI via **optical potentials (OPT)**.

(e,e'p)(p,p)
 J. Udias et al., Phys. Rev. C 51
 (e,e'p)(p,p) + (e,e'n)(n,p)
 R. Schiavilla, Phys. Rev. Lett. 65, 835

Some calculations use **Glauber framework** to incorporate FSI.

▶ P. Lava, J. Ryckebush, B. Van Overmeire, Phys. Rev. C 71, 014605

Typical Glauber approaches rely on spin-independent NN scattering amplitudes => the effect of FSI smaller in Glauber framework than in a relativistic OPT one.

In-Medium Effects

Medium modifications of the electromagnetic current through the form-factor:

e.g.
$$\hat{J}_{cc1}^{\mu} = G_M(Q^2)\gamma^{\mu} - \frac{\kappa}{2M}F_2(Q^2)(P_i^{\mu} + P_f^{\mu}) \rightarrow \text{free or medium-modified nucleon form-factor ?}$$

For example:

Quark Meson Coupling Model (QMC)

Structure of the nucleon described by valence quarks in a bag (Cloudy-bag model).
 Nuclear system described using effective scalar (σ) and vector (ω) meson fields.
 Scalar and vector fields of nuclear matter couple

directly to confined quarks.
=> Modification of internal structure of bound nucleon ^{0.7}

→ D.H. Lu *et al.*, Phys. Rev. C 60, 068201

Chiral Quark-Soliton Model of the Nucleon (CQSM)

 The chiral quark-soliton model provides the quark and antiquark structure of the proton.

The overall procedure for the form-factor extraction is similar to the QMC model.
J. R. Smith and G. A. Miller, Phys. Rev. Lett. 91, 212301

Good description of the EMC effect.

Excellent Description of Many Observables

 $^{16}O(e,e'p)$ at Q² = 0.8 (GeV/c)²

 \Rightarrow Importance of fully relativistic calculation.

Also excellent description of ¹²C(e,e'**p**) induced polarization. J. Gao et al., Phys. Rev. Lett. **84**, 3265 (2000); J.M. Udias et al., Phys. Rev. Lett. **83**, 5451 (1999)

E93-049 and E03-104 at Jlab Hall A

Target: ⁴He, H

⁴He: + High density target => any possible medium effects are enhanced.

- \Rightarrow Its relative simplicity allow realistic microscopic calculations.
- Variety of calculations show that polarization-transfer observables in ⁴He(e,e'p)³H are influenced little by FSI, MEC.
- **H**: \checkmark H is baseline when estimating the effect of the medium on the polarization-transfer ratio in ⁴He(e,e'p)³H.

<u>Kinematics</u>: quasielastic scattering + low p_m + symmetry about p_m =0

Q² = 0.5, 0.8, 1.0, 1.3, 1.6, 2.6 GeV²

 \rightarrow We extract P_x ', P_z ', P_y .

<u>Beam</u>: Longitudinally polarized electron beam (85%).

Incoming electron helicity flipped -> access to both the polarization transfer and the induced polarization.

Detection system: Hall A High Resolution Spectrometers (HRS)

 \Rightarrow Left/Right arm: polarized proton/scattered electron detection.

 \Rightarrow We make sure we get triton in the final state.

E93-049 analysis: final (published). E03-104 analysis: ongoing.

Free Proton Form-Factor Ratio G_E/G_M

 \Rightarrow Full analysis of E03-104 will yield smaller systematic uncertainties.

Polarization-Transfer in ⁴He(e,e'p)³H

RDWIA calculation: no MEC and no charge-exchange FSI terms. Study shows: effect of MEC < 3%.

 RMSGA calculation: similar procedure as RDWIA but different treatment of FSI =>FSI underestimated.

RDWIA and RMSGA models cannot describe the data.

Data effectively described by medium modified form factors.

 Preliminary data from E03-104 possibly hint an unexpected trend in Q².

Polarization-Transfer in ⁴He(e,e'p)³H

Schiavilla et al. calculation provides for alternative explanation:

\Rightarrow R is suppressed ~ 4% from MEC.

Spin-dependent charge-exchange FSI suppresses R ~ 6%.

Charge-exchange term not well constrained => need precise P_y data.

Induced Polarization in ⁴He(e,e'p)³H

4 E03-104 took specific data that will set tight constraints on FSI.

Summary

Proton in the nuclear medium:

- Models predict change of the internal structure of a bound nucleon.
- Corrections due to in-medium form factors could be significant.

Polarization transfer in ⁴He(e,e'p):

- Significant deviation from RDWIA results; data effectively described by proton medium modifications.
- Alternative interpretation in terms of strong charge-exchange FSI.
- \Rightarrow Induced polarization crucial to clarify role of FSI.
- \Rightarrow New results from E03-104 will provide needed constraints.
- Preliminary data from E03-104 possibly hint an unexpected trend in Q² for R.

Sensitivity to reaction mechanisms

R^{RDWIA} ≈ 0.97 x R^{RPWIA} Small sensitivity to bound-state wave function current operator optical potential Enhancement of lower components (spinor distortions) in RDWIA

