Deuteron breakup at high Q² and higher missing masses

Werner Boeglin Florida International University Miami

Contents

- Towards really high p_m: A proposal for 6 GeV
- A 12 GeV example
- Higher missing masses : Resonance Re-Scattering

D(e,e'p)n at JLAB at high Q²

- experiments in Hall A and Hall B (CLAS)
- test generalized eikonal approximation (Glauber based)
- next: short distance structure of the deuteron
- study nucleon resonance (future)

Calculations

$p_m = 0.2 \text{ GeV/c}$

 $p_m=0.4 \text{ GeV/c}$

```
p_m = 0.5 \text{ GeV/c}
```


Experiments at low(er) Q²

Momentum Dependence from CLAS

Problems

- Low Q²: FSI
 - $N\Delta$ and other resonance contributions
- High Q²: CLAS : not well defined kinematics
 - integrated over very large kinematical range
 - many different reaction mechanism contribute

optimize kinematics to:

> maximize cross section
 > minimize competing reaction mechanisms
 > p_f ≈ 1.5 · p_m

Experimental Guidance

Theoretical Guidance

needs to be checked with additional calculations

Kinematics Overview

Angular Distribution up to $p_m = 1 \text{GeV/c}$

Calculation: M.Sargsian

Feasibility Studies using Standard Spectrometers in Hall A

Proposal for the next PAC (the last for 6 GeV)

Beam energy 5.25 GeV Spectrometer $p_{max} = 4$ GeV/c Electron arm fixed at: $Q^2 = 3.5$ (GeV/c)² x = 1.30

Vary proton arm to measure : $p_m = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 \text{ GeV/c}$

Count Rates (MCEEP estimate)

Counts/Hr and 100 μ A 15 cm LD with Cuts

after about 250 Hr beam time :

12 GeV Example I

Count Rates

missing momenta up to 1.4-1.5 GeV/c

Count Rates

High M_{miss} Example: Re-scattering of Nucleon Resonances: S_{11}

Reaction Mechanisms

PWIA: no rescattering

Necessary conditions to extract resonance information :

- D(e,e'p)n needs to be understood
- resonance production mechanism needs to be under control
- large Q² : Eikonal approximation is valid

recent JLAB experiments have provided necessary data.

Model Calculations

L.Frankfurt et al. *PRC, C60 (1999) 055202*

- general eikonal approximation for rescattering
- 2 models for S₁₁
- constituent quark model (CQM)
- effective chiral lagrangian (ECL) based: S₁₁ as a superposition of N π , N η , ΛK and ΣK states

Example of information obtainable from rescattering :

- within CQM : spatial parameters
- fit amplitude to data

S₁₁ Properties

 $I(J^P) = \frac{1}{2}(\frac{1}{2})$

neutral modes : 72% 2γ 39% 8.4%-15.4% $3\pi^{0}$ 32% 6.9%-12.7% charged modes : 28% $\pi^{+}\pi^{-}\pi^{0}$ 23% 1.9%-3.5% $\pi^{+}\pi^{-}\gamma$ 4.8% 0.4%-0.7%

Hall C results

C.S.Armstrong et al. PRD 60 (1999) 052004

Summary of electro-production results

R.Thompson et.al. PRL 86 (2001) 1702

η production off the proton

small sample of e6 CLAS data

M_{inv} of recoiling system

η electro-production off the deuteron

D(e,e'pyy)n

• small sample of e6 CLAS data (about 1.7%)

invariant 2γ mass

Analysis :

Event selection criteria

- scattered electron $\rightarrow q^{\mu}$
- proton $\rightarrow p_p^{\mu}$
- 2 photons $\rightarrow k_1^{\mu}, k_2^{\mu}$

$$p_{\eta}^{\mu} = k_{1}^{\mu} + k_{2}^{\mu}$$

$$p_{S_{11}}^{\mu} = p_{\eta}^{\mu} + p_{p}^{\mu}$$

$$p_{m}^{\mu} = q^{\mu} + p_{D}^{\mu} - p_{S_{11}}^{\mu}$$

Apply cuts to invarant masses

invariant 2y mass

invariant recoil mass

cut on invariant resonance mass

Kinematical Variables

$$x = 1 - \frac{M_R^2 - M^2}{Q^2 + M_R^2 - M^2}$$

no phase space correction

small p_m 53 events

remember: 1.7 % of all data !

large p_m 27 events

Summary

- ✓ New results confirm general GEA description with room for improvements
- ✓ JLAB uniquely suited for high p_m study: high p_m in the Deuteron should be measured as soon as possible provides guidance for 12 GeV program
- ✓ Start using Deuteron as femto-technology lab: resonance re-scattering
- ✓ real photon can also be used: new detector systems: GlueX/Hall D will be available for other physics