

Space-time Properties of Hadronization:

insights from semi-inclusive DIS on nuclei

Will Brooks Jefferson Lab

Hayk Hakobyan Yerevan State University

Workshop on Short-Range Structure of Nuclei at 12 GeV, Newport News, October 27, 2007

Outline

- Introduction
- Transverse momentum broadening and quark energy loss in nuclei
- Hadron formation lengths
- Other opportunities with existing data

Main Physics Focus

QCD in the space-time domain:

- How long can a light quark remain deconfined?
 - The production time τ_p measures this
 - Deconfined quarks lose energy via gluon emission
 - Measure τ_p (and dE/dx?) via <u>transverse momentum</u> <u>broadening</u> that arises due to partonic elastic scattering and medium-stimulated gluon emission
- How long does it take to form the full color field of a hadron?
 The formation time τ^h_f measures this
 - Measure τ_{f}^{h} via <u>hadron attenuation in nuclei</u> together with the understanding of the production time τ_{p}

"How long can a light quark remain deconfined?"

p_T Broadening, Production Time, and Quark Energy Loss

Definitions

Production time: lifetime of deconfined quark, e.g., $\tau_p \approx \frac{v(1-z)}{c\frac{dE}{dx}}$

p_T Broadening and Quark Energy Loss

• Quarks lose energy by *gluon emission* as they propagate

d

- In vacuum
- Even more within a medium

- This energy loss is manifested by Δp_T^2
- Δp_T^2 is a signature of the *production time* τ_p
- $\Delta E \sim L \quad \text{dominates in QED}$
- $\Delta E \sim L^2$ dominates in QCD?

$$E/dx \approx \frac{\alpha_s}{\pi} N_c \langle p_T^2 \rangle_L$$
 Medium-stimulated loss
calculation by BDMPS

Energy Loss in QCD

- Partonic energy loss in QCD is well-studied: dozens of papers over past 15 years
- Dominant mechanism is gluon radiation; elastic scattering is minor
- Coherence effects important: QCD analog of LPM effect ۲

 $\ell_c \approx \frac{\omega}{\langle k_\perp^2 \rangle_c}$ Coherence length \sim formation time of a gluon radiated by a group of scattering centers

Three regions: if mean free path is λ , and medium length is L, then \rightarrow

 $\ell_{c} < \lambda$ Incoherent gluon radiation $\lambda < \ell_c < L$ Coherent gluon radiation $\ell_c > L$ 'Single-scatter' gluon radiation

Baier, Schiff, Zakharov, Annu. Rev. Nucl. Part. Sci. 2000. 50:37-69

Δp_T^2 vs. v for Carbon, Iron, and Lead

Production length from JLab/CLAS 5 GeV data (Kopeliovich, Nemchik, Schmidt, hep-ph/0608044)

Δp_T^2 vs. $A^{1/3}$ for Carbon, Iron, and Lead

Only statistical errors shown

pT Broadening - Summary

What we have learned

- Precise, multivariable measurements of Δp_T^2 are feasible
- Quark energy loss can be estimated:
 - Data consistent with the novel $\Delta E \sim L^2$ 'LPM' behavior
 - ~100 MeV/fm for Pb at few GeV, perturbative formula
 - Can do a direct measurement?
- Deconfined quark lifetime can be estimated, $\sim 5 \text{ fm} @ \text{few GeV}$
- Much more theoretical work needed for quantitative results

Outstanding questions

- Is the physical picture accurate?
 - Transition to $\Delta E \sim L^* E^{1/2}$ behavior at higher v?JLAB12/EIC
 - Can asymptotic behavior $\Delta E \rightarrow 0$ be observed, $\nu \rightarrow \infty$? **EIC**
 - Hadronic corrections under control? Consistent with DY? E906
- Plateauing behavior due to short τ_p or energy loss transition?JLAB12
- Quantitative connection: jet quenching at RHIC/LHC? **THEORY**

"How long does it take to form the full color field of a hadron?"

Hadron Attenuation

Definitions

Hadronic multiplicity ratio

Hadron Attenuation – Physics Picture

- Hadrons lost from incident flux through
 - Quark energy loss
 - Interaction of prehadron or hadron with medium

Accardi, Grünewald, Muccifora, Pirner, Nuclear Physics A 761 (2005) 67–91 Jefferson Lab

HERMES Data – Kr for p, K, π

Hermes Data – Dependence on p_T and A

Examples of multi-variable slices of preliminary CLAS 5 GeV data for R^{π+}

B.Z. Kopeliovich et al. / Nuclear Physics A 740 (2004) 211-245

Accessible Hadrons (12 GeV)

 π^+

Examples of Experimental Data and Theoretical Predictions

Bins in yellow accessible at 5 GeV

Hadron Attenuation - Summary

<u>What we have learned</u>

- Hadronic multiplicity ratios depend strongly on hadron species, are universally suppressed at high z
- Main ingredients: prehadron cross sections, gluon radiation, formation lengths; possible exotic effects
- Verified EMC observation: Cronin-like phenomenon in lepto-nuclear scattering; new dependence on A, Q², x, z observed

Outstanding questions

- Energy loss or pre-hadron interaction? **THEORY JLAB12**
- How do hadrons form? Optimal method to extract formation lengths? THEORY JLAB12

Conclusions

- *Fundamental space-time processes in QCD* finally becoming experimentally accessible
- Parton propagation, hadron formation
- Plenty of exciting opportunities for the future!

• NB: can also use this data for inclusive, semi-inclusive EMC, HBT,

Backup Slides

Kinematics for p_T Broadening

Choose kinematics favoring propagating quark in-medium:

- $z (=E_h/v) > 0.5$ enhance probability of struck quark
- $z \ll 1.0$ and $v/m_h \gg 1 maximize production length to ensure <math>c\tau_p \gg$ nuclear size
- z, x such that nucleon factorization holds, to suppress target fragmentation influence
- x > 0.1 to avoid quark pair production

Hadron-Nucleus Absorption Cross Sections

 α < 1 interpreted as due to the strongly interacting nature of the probe

Experimentally $\alpha = 0.72 - 0.78$, for **p**, **K**, π

A. S. Carroll *et al.* Phys. Lett 80B 319 (1979)

FNAL E665 experiment

Adams et al. PRL74 (1995) 1525

deconfined?

• Ubiquitous skethy of chadrpic tation, pEddess: string model

deconfined?

• Two distinct dynamic dynamics and the scale:

These time scales are essentially unknown experimentally

Jefferson Lab

S. J. Brodsky, SLAC-PUB04551, March 1988

-JSA

Quasi-free A(e,e'p) : No evidence for CT

Conventional nuclear physics calculation by Pandharipande et al. gives adequate description

A(e,e'p) Results -- A Dependence

Close to proton-nucleus total cross section data!

Color Transparency in D

- Experimental ratios: σ

 (<0.3)/σ(0.1), σ(0.25)/σ
 (0.1) and σ(0.5)/σ(0.1)
- Black points: 6 GeV CLAS data already taken

A(π⁻,di-jet) Fermilab E791 Data

Brodsky, Mueller, Phys. Lett. B206 685 (1988) Frankfurt, Miller, Strikman, Nucl. Phys. A555, 752 (1993)

Pion Electroproduction

ρ^0 Electroproduction at Fixed Coherence Length

Airepetian et al. (HERMES Coll.) Phys. Rev. Lett. 90 (2003) 052501

'A' Dependence of Transparency

