Lattice QCD and Experiment, Revealing the Structure of Hadrons JLab, 21-22 Nov. 2008

Experimental Study of Generalized Parton Distributions

Charles Earl Hyde Université Blaise Pascal, and Old Dominion University

GPDs accessed via Deeply Virtual Exclusive Reactions

 $ep \rightarrow ep\gamma$ Q², W² large $ep \rightarrow eNm$ -t/Q² <<1

 Experiment must determine Q² scale of factorization and/or isolate leading twist terms from Q²-dependence.

Deeply Virtual Meson Production

- σ_L~ [Q²]⁻³
 σ_T~ [Q²]⁻⁴
- $ep \rightarrow e'NV$, Vector Mesons
 - H, E
 - Flavor Sensitivity for $\rho^{0,+}$, ω , ϕ .
- $ep \rightarrow e'Nm$, Pseudo-scalar mesons
 - ~H, ~E
 - Flavor Sensitivity for $\pi^{0,+}$, K^{0,+}
- Factorization scale 10 GeV²?

Diffractive channels: HERA results

[Levy: Frankfurt, Strikman, CW 05]

- LO QCD factorization ↔ Dipole picture
 Gluon GPD ↔ Color dipole moment
- Measurements of diffractive channels (J/ψ, φ, ρ, γ) have confirmed applicability of QCD factorization:
 - Energy dependence changes with $Q^2\,$
 - t–slopes universal at high Q^2
 - Flavor relations ϕ : ρ
- Transverse gluonic size of nucleon ... essential input for small-*x* physics!

DVCS: The simplest exclusive reaction

• VCS-BH interference gives direct access to the DVCS amplitude.

- The kinematic dependence of the amplitude on (k, φ, spin), at fixed (ξ, Q², t)
- Multiple experimental observables.

DVCS, GPDs, Compton Form Factors(CFF), and Lattice QCD

(at leading order:)

$$T^{DVCS} \sim \int_{-1}^{+1} \frac{H(x,\xi,t)}{x \pm \xi + i\varepsilon} dx + \dots \sim P \int_{-1}^{+1} \frac{H(x,\xi,t)}{x \pm \xi} dx - i\pi H(\pm\xi,\xi,t) + \dots$$

Twist- & Spin-Structure of Cross Sections

Single Spin Cross Section Differences ($\sim \sin \phi$):

- Twist-2 \Rightarrow *Im*[*DVCS*[†]*BH*].
- Twist-3 \Rightarrow *Im*[*DVCS*[†]*DVCS*].
- Separable by $s=(k+P)^2$ and Q^2 dependence.

Unpolarized Cross Sections

- $d\sigma = |BH|^2 + Re[DVCS^{\dagger}BH] + |DVCS|^2$
 - Only |BH|² known a priori.
 - − Twist-2⇒ Re[DVCS[†]BH] and $|DVCS|^2$ intermingle.
 - Separable with positrons or $s=(k+P)^2$ dependence

Relative Asymmetries

$$A \sim \frac{\text{Im}\left[DVCS^*BH\right]}{|BH|^2 + \text{Re}\left[DVCS^*BH\right] + |DVCS|^2}$$

• Re, Im parts of Interference and |DVCS|² all contribute.

Exploiting the harmonic structure of DVCS with polarization

With unpolarized beam and Long. polarized target: $\Delta \sigma_{UL} \sim \sin \varphi \left\{ F_1 \tilde{H} + \xi (F_1 + F_2) H + (t / 4M^2) F_2 E \right\} d\varphi$

With unpolarized beam and Transversely polarized target: $\Delta \sigma_{UT} \sim \cos \varphi \sin(\phi_{S} - \varphi) \left\{ (t / 4M^{2})F_{2}H - (t / 4M^{2})F_{1}E + ... \right\} d\varphi$

Separations of CFFs $H(\pm\xi,\xi,t)$, $E(\pm\xi,\xi,t)$,...

Steps to Extraction of GPDs from Cross Sections

Single Spin Cross Section Differences measure the Im[Interference Terms]

$$\frac{d^{4}\vec{\sigma}-d^{4}\vec{\sigma}}{dx_{B}dQ^{2}dtd\varphi} = \frac{\Gamma(x_{B},Q^{2},t)}{P_{1}(\varphi)P_{2}(\varphi)}\left\{s_{1}^{\prime}\sin\varphi + s_{2}^{\prime}\sin2\varphi\right\}$$
Observable
$$s_{1}^{\prime} = 8Ky(2-y)\operatorname{Im}C^{\prime}(F)$$
C'(F)
$$C^{\prime}(F) = F_{1}H + \frac{x_{B}}{2-x_{B}}(F_{1}+F_{2})\tilde{H} - \frac{t}{4M^{2}}F_{2}E$$
Im H = $\pi\sum_{q}e_{q}^{2}\left\{H^{q}(\xi,\xi,t) - H^{q}(-\xi,\xi,t)\right\}$
GPD !!!

GPD results from E00-110 (C.MUNOZ CAMACHO et al PRL 97:262002)

Beam helicity-independent cross sections at $Q^2=2.3$ GeV², $x_B=0.36$

Contribution of Re[DVCS*BH] + |DVCS|² large.
Positron beam or measurements at multiple incident energies to separate these two terms and isolate Twist 2 from Twist-3 contributions

PRL97:262002

CLAS 6 GeV Exclusivity and Kinematics

- H(e,e'γp)x
 - Co-linearity of γ with *q-p*'
 - Missing Energy E_x

- Example angular distribution of Beam Spin Asymmetry
- One (Q^2, x_B) bin
- Two *t*-bins.

CLAS, 6 GeV Beam Helicity Asymmetry

- Cross section analysis in progress
- Data set to be doubled by Feb 2009

S.Chen, et al, PRL 97, 072002 (2006)

A_{UL}

FIG. 6: The left panel shows the -t dependence of the sin ϕ moment of $A_{\rm UL}$ for exclusive electroproduction of photons, while the right shows the ξ dependence. Curves as in Fig. 5.

Higher statistics run coming in 2009 ... on to 12 GeV

DVCS-Deuteron, Hall Q

- E06-007:
 - $D(e,e'\gamma)X \approx$ $d(e,e'\gamma)d+n(e,e'\gamma)n+p(e,e'\gamma)p$
 - Sensitivity to E_n(ξ,ξ,t) in Im[DVCS*BH]
 - Sensitive to $(4J_d+J_u)/9$

- E08-025 (6 GeV- 2010)
 - Reduce the systematic errors
 - Separate the *Re[DVCS*BH]* et |*DVCS*|² terms on the neutron via two beam energies.

12 GeV DVCS program

- Proton DVCS
 - Beam spin dependent cross sections and asymmetries
 - Longitudinal target spin observables
 - Work in progress for transverse target spin observables
 - HD target, electron beam tests in 2010.
- Neutron DVCS
 - Quasi Free in Deuterium
 - Mixing of D and n, bound nucleon effects
 - Feasibility studies for n-tagging in CLAS12, and d-tagging in Hall A and CLAS12.
 - Feasibility studies of longitudinal and transverse spin observables in polarized ³He (Hall A)
- Nuclear DVCS
 - Deuteron
 - ⁴He(e,e'γα) in BoNuS detector (CLAS) 2009-2010

Personal estimate of DVCS Status 2018

- Precision tests of factorization with Q^2 range $\geq 2:1$ for
 - x_B∈[0.25,0.6]. t_{min}-t < 1 GeV².
 - Proton unpolarized target observables
 - Im[DVCS*BH], Re [DVCS*BH], |DVCS|².
- Longitudinal, transverse target spin observables
 - Separations of H, E,~H,~E at $x = \pm \xi = \pm x_B/(2-x_B)$ point.
- Partial *u*,*d* flavor separations from quasi-free neutron.
- Coherent Nuclear DVCS on D, He
- COMPASS data: $x_B \in [0.01, 0.1]$
- Final, fully exclusive, HERMES run

•Spatial imaging possible at $x=\xi$ (M. Burkardt)

•Strong constraints on full GPD(x, ξ, t) from experiment and lattice

•Need additional phenomenology to determine model dependence of full GPDs, sum rules

JLab12: 3, 4, 5 pass beam

Large Q²
range at
each x_B.
x_B = 0.36,
0.5, 0.6

Operates at T~500-750mK •Long spin relaxation times (months) •Weak transverse magnetic field

- 25+ years of development...
- Successful operation at LEGS photon beam
- Just in time for DVCS!!!!

Test in 2010 with electron beam, Experiment conditionally scheduled in 2011

Material	gm/cm ²	mass fraction
HD	0.735	77%
Al	0.155	16%
CTFE (C ₂ ClF ₃)	0.065	7 %

Heat extraction is accomplished with thin aluminum wires running through the target Measure DVCS cross sections at two beam energies Expand Calorimeter for improved π^0 subtraction Separate Re[DVCS*BH] from |DVCS|².

DVCS Exclusivity in Hall A

- Cross section analysis based on H(e,e'γ)X data
- Exclusivity confirmed by sample of H(e,e'γp) events