Nucleon Form Factors on the Lattice

Meifeng Lin

Massachusetts Institute of Technology

Lattice QCD and Experiment Workshop Jefferson Lab, November 21-22, 2008

Outline

Lattice Methodology

- Nucleon Matrix Elements from the Lattice
- Accessing Different Momentum Transfer on the Lattice
- Control of Systematic Errors

2 Current Lattice Results

- Electromagnetic Form Factors
- Axial Form Factors
- Strangeness Form Factors
- Other Form Factor Calculations

3 Summary and Outlook

Outline

Lattice Methodology

Nucleon Matrix Elements from the Lattice

- Accessing Different Momentum Transfer on the Lattice
- Control of Systematic Errors

Current Lattice Results

- Electromagnetic Form Factors
- Axial Form Factors
- Strangeness Form Factors
- Other Form Factor Calculations

3 Summary and Outlook

Electromagnetic Form Factors

Electromagnetic form factors

$$\langle N(P')|J^{\mu}_{EM}(x)|N(P)\rangle = \bar{u}(P')\left[\gamma^{\mu}F_1(q^2) + i\sigma^{\mu\nu}\frac{q_{\nu}}{2M_N}F_2(q^2)\right]u(P)e^{iq\cdot x}$$

- Proton:
$$J_{EM}^{\mu} = \frac{2}{3}\bar{u}\gamma^{\mu}u - \frac{1}{3}\bar{d}\gamma^{\mu}d$$

- Neutron:
$$J_{EM}^{\mu} = -\frac{1}{3}\bar{u}\gamma^{\mu}u + \frac{2}{3}d\gamma^{\mu}d$$

•
$$q = P' - P, Q^2 = -q^2$$
.

 Elastic electron-proton scattering gives information about size, shape, charge and current distributions of the nucleon.

• We want to determine the matrix element $\langle N(P')|J^{\mu}_{EM}(x)|N(P)\rangle$ on the lattice.

Nucleon Matrix Elements

• Lattice three-point correlation function:

$$C^{\mathsf{3pt}}_{\alpha'\alpha}[(t',\vec{p}');(\tau,\vec{q});(t,\vec{x})] = \sum_{\vec{x}'} e^{-i\vec{p}'\cdot\vec{x}'} \sum_{\vec{y}} e^{i\vec{q}\cdot\vec{y}} \langle N_{\alpha'}(t',\vec{x}')O(\tau,\vec{y})\overline{N}_{\alpha}(t,\vec{x})\rangle$$

where $O(\tau, \vec{y})$ can be operators of interest, such as J_{EM}^{μ} mentioned earlier

• Fixed momentum transfer \vec{q} and sink momentum \vec{p}' , and source momentum determined as $\vec{p} = \vec{p}' - \vec{q}$.

Connected vs. Disconnected

 Written in terms of quark fields, nucleon operator (neutron) is typically

$$N(x) = \epsilon^{abc} (d^a \mathcal{C} \gamma_5 u^b) d^c$$

 Together with the current operator, two types of contractions contribute

- Disconnected diagram is expensive to calculate (more later).
- In the isovector case (p n), only connected diagrams contribute.

Nucleon Matrix Elements

• Ground state dominates when $t' \gg \tau \gg t$

$$C^{\text{3pt}}_{\alpha'\alpha}[(t',\vec{p}');(\tau,\vec{q});(t,\vec{x})] \rightarrow \frac{1}{2E_{\vec{p}'}2E_{\vec{p}}}e^{-E_{\vec{p}'}(t'-\tau)}e^{-E_{\vec{p}}(\tau-t)}e^{-i\vec{p}\cdot\vec{x}} \times \langle \Omega|N_{\alpha'}|N,\vec{p}',s'\rangle\langle N,\vec{p},s|\overline{N}_{\alpha}|\Omega\rangle\langle N,\vec{p}',s'|O|N,\vec{p},s'\rangle\langle N,\vec{p},s'|\overline{N}_{\alpha}|\Omega\rangle\langle N,\vec{p}',s'|O|N,\vec{p},s'\rangle\langle N,\vec{p},s'|\overline{N}_{\alpha}|\Omega\rangle\langle N,\vec{p}',s'|O|N,\vec{p},s'\rangle\langle N,\vec{p},s'|\overline{N}_{\alpha}|\Omega\rangle\langle N,\vec{p}',s'|O|N,\vec{p},s'\rangle\langle N,\vec{p},s'|\overline{N}_{\alpha}|\Omega\rangle\langle N,\vec{p}',s'|O|N,\vec{p},s'\rangle\langle N,\vec{p},s'|D|N,\vec{p},s'\rangle\langle N,\vec{p},s'|D|N,\vec{p},s'|D|N,\vec{p},s'|D|N,\vec{p},s'\rangle\langle N,\vec{p},s'|D|N,\vec{p},$$

• Two-point correlation function:

$$C_{\alpha\alpha'}^{\text{2pt}}(t',\vec{p}';t,\vec{x}) \to \frac{1}{2E_{\vec{p}'}}e^{-i\vec{p}'\cdot\vec{x}}e^{-E_{\vec{p}'}(t'-t)}\langle\Omega|N_{\alpha'}|N,\vec{p}',s\rangle\langle N,\vec{p}',s|\overline{N}_{\alpha}|\Omega\rangle$$

 Proper three-point to two-point ratio cancels out common factors

Three-point to two-point ratio

• Choice not unique. A good example:

$$\begin{aligned} R_{\mathcal{O}}(\tau, p', p) &= \frac{C_{\mathcal{O}}^{3\text{pt}}(\tau, p', p)}{C^{2\text{pt}}(t', p')} \\ &\times \left[\frac{C^{2\text{pt}}(t' - \tau + t, p) \ C^{2\text{pt}}(\tau, p') \ C^{2\text{pt}}(t', p')}{C^{2\text{pt}}(t' - \tau + t, p') \ C^{2\text{pt}}(\tau, p) \ C^{2\text{pt}}(t', p)} \right]^{1/2} \end{aligned}$$

- *R*_O(*τ*, *p*', *p*) should exhibit a constant region where it is free of excited-state contamination;
- The average of the plateau \overline{R} is proportional to $\langle N(\vec{p}')|O|N(\vec{p})\rangle$
- For different components of the current operator (e.g. $\mu = 1, 2, 3, 4$), we get a set of equations

$$\overline{R}_i = \sum_i A_{ij} \mathcal{F}_j$$

J

Overdetermined Analysis

• Typically the number of equations exceeds the number of form factors to be determined.

*χ*² minimization to determine the optimal values for the form factors {*F_j*}

$$\chi^2 = \sum_{i=1}^{N} \left(\frac{\sum_{j=1}^{n} A_{ij} \mathcal{F}_j - \overline{R}_i}{\sigma_i} \right)^2$$

n – number of form factors to be determined

N - number of non-zero contributions

 A_{ij} 's are known analytically. Fit parameters are \mathcal{F}_j 's.

Overdetermined Analysis - An Example

$$\mathrm{Im}\,\langle N(p')|J_1|N(p)
angle ~~ \propto ~~ F_1(Q^2) - rac{Q^2}{4M_N^2}F_2(Q^2)$$

~?

$$\operatorname{Re}\langle N(p')|J_2|N(p)\rangle \propto F_1(Q^2) + F_2(Q^2)$$

$$\operatorname{Re} \langle N(p')|J_4|N(p)\rangle \propto c \left[F_1(Q^2) - \frac{Q^2}{4M_N^2}F_2(Q^2)\right]$$

Outline

Lattice Methodology

Nucleon Matrix Elements from the Lattice

Accessing Different Momentum Transfer on the Lattice

Control of Systematic Errors

Current Lattice Results

- Electromagnetic Form Factors
- Axial Form Factors
- Strangeness Form Factors
- Other Form Factor Calculations

3 Summary and Outlook

Lattice Momenta

- Momenta discrete on the lattice
- Periodic Boundary Condition

$$\psi(x_i + L) = \pm \psi(x_i) \Rightarrow \vec{p} = \vec{p}_{FT} = \vec{n} \frac{2\pi}{L},$$
$$n_i \in \{-L, -L + 1, \dots, L\}$$

- finite number of momenta accessible
- large gap between adjacent momenta
- (Partially) Twisted B.C.

$$\psi(x_i + L) = e^{i\theta_i}\psi(x_i) \Rightarrow \vec{p} = \vec{p}_{FT} + \vec{\theta}/L$$

- allows to tune the momenta continuously
- increase the resolution at small momentum transfer
- Be careful with enhanced finite size effects!

Outline

Lattice Methodology

- Nucleon Matrix Elements from the Lattice
- Accessing Different Momentum Transfer on the Lattice
- Control of Systematic Errors

Current Lattice Results

- Electromagnetic Form Factors
- Axial Form Factors
- Strangeness Form Factors
- Other Form Factor Calculations

3 Summary and Outlook

Sources of Systematic Errors

- Finite Volume:
 - Lattice volume V should be large enough to "fit" a nucleon
 - Common wisdom: $m_{\pi}L$ should be greater than 4
- Finite Lattice Spacing (Discretization Errors)
 - Typical fermion formulation has $\mathcal{O}(a^2)$ discretization errors
- Chiral Extrapolations
 - Quark masses m_q (or pion masses) in the simulations are heavier than physical ones.
- Continuum QCD is recovered only in the limits of
 - $V
 ightarrow \infty$
 - $a \rightarrow 0$
 - $m_q \rightarrow m_q^{phys}$

Overview

 In past few years, many collaborations have carried out large-scale dynamical calculations for quantities ranging from nucleon electromagnetic form factors to generalized form factors.

Collaboration	Fermion	a [fm]	$L^3 \times T$ [l.u.]	L [fm]	m_{π} [MeV]
ETMC	$N_f = 2 \text{ tmQCD}$	0.089	$24^3 \times 48$	2.13	313, 390, 447
LHPC	$N_f = 2 + 1 \text{DWF}$	0.114	$24^3 \times 64$	2.74	330
		0.084	$32^3 \times 64$	2.69	298, 356, 406
	DWF on Asqtad	0.124	$20^3 \times 64$	2.48	293, 356, 495, 688, 758
			$28^3 \times 64$	3.47	356
QCDSF	$N_f = 2$ Clover	0.07 - 0.11	-	1.4 - 2.6	350 - 1170
RBC/UKQCD	$N_f = 2 + 1 \text{ DWF}$	0.114	$24^3 \times 64$	2.74	330, 420, 560, 670

References

- ETMC, arXiv:0811.0724
- LHPC, PoS(LAT2008)169, arXiv:0810.1933
- QCDSF, arXiv:0709.3370, arXiv:0710.2159
- RBC/UKQCD, arXiv:0810.0045
- Reviews at lattice conferences
 - J. Zanotti, PoS(LATTICE2008)007
 - Ph. Hägler, PoS(LATTICE2007)013
 - K. Orginos, PoS(LATTICE2006)018

Outline

Lattice Methodology

- Nucleon Matrix Elements from the Lattice
- Accessing Different Momentum Transfer on the Lattice
- Control of Systematic Errors

Current Lattice Results

Electromagnetic Form Factors

- Axial Form Factors
- Strangeness Form Factors
- Other Form Factor Calculations

3 Summary and Outlook

Q^2 scaling

Benchmark calculations: isovector electromagnetic form factors

$$\begin{array}{ll} F_{i}^{p} &=& \frac{2}{3}F_{i}^{u}-\frac{1}{3}F_{i}^{d} \\ F_{i}^{n} &=& -\frac{1}{3}F_{i}^{u}+\frac{2}{3}F_{i}^{d} \end{array} \right\} \Rightarrow F_{i}^{p-n} = F_{i}^{u}-F_{i}^{d} \end{array}$$

Sachs form factors:

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M_N^2}F_2(Q^2), \ G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$

- With isospin symmetry, disconnected diagrams do not contribute

Q^2 scaling – G_F^{p-n}

- Simulations done at pion masses heavier than physical
- Extrapolations are needed to have a direct comparison with experiment

arXiv:0810.1933

Meifeng Lin (MIT)

Nucleon Form Factors on the Lattice

November 21, 2008 18/46

Q^2 scaling – G_M^{p-n}

- Simulations done at pion masses heavier than physical
- Extrapolations are needed to have a direct comparison with experiment

Meifeng Lin (MIT)

at Zero Momentum Transfer

• The slopes of form factors at $Q^2 = 0$ give mean squared radii:

$$\langle r_i^2 \rangle = -6 \frac{\partial F_i(Q^2)}{\partial Q^2}|_{Q^2=0}, \ i=1,2$$

- $F_1(0)$: charge of the proton/neutron;
 - Measured directly on the lattice
 - $F_1(0) \equiv 1$ sets the renormalization constant
- $F_2(0) = \mu_N 1 \equiv \kappa$, anomalous magnetic moment
 - Not directly measurable on the lattice
 - Extrapolated from fits to the Q² dependence

Isovector Dirac Radius $\langle r_1^2 \rangle$

Isovector Dirac Radius $\langle r_1^2 \rangle$

Baryon chiral perturbation theory

- Current state-of-the-art lattice calculations have pion masses $m_\pi\gtrsim 300~{
 m MeV}$
- Need a theoretical framework to guide the extrapolation to the physical point
- Heavy baryon chiral perturbation theory with Δ degree of freedom (small scale expansion SSE) BERNARD, FEARING, HERMERT AND MEISSNER (1998)
 - Low-energy effective theory
 - Expansion parameters

$$\frac{m_\pi^2}{\Lambda_\chi^2}, \frac{q^2}{\Lambda_\chi^2}, \frac{\Delta^2}{\Lambda_\chi^2}$$

Low-energy constants

 g_A , F_{π} , M_N , Δ , c_A , c_V , ... + counter terms Δ here is the Δ -N mass difference in the chiral limit

Chiral Formulae

$$(r_{1}^{\nu})^{2} = -\frac{1}{(4\pi F_{\pi})^{2}} \left\{ 1 + 7g_{A}^{2} + (10g_{A}^{2} + 2)\log\left[\frac{m_{\pi}}{\Lambda_{\chi}}\right] \right\} -\frac{12B_{10}^{(r)}(\Lambda_{\chi})}{(4\pi F_{\pi})^{2}} + \frac{c_{A}^{2}}{54\pi^{2}F_{\pi}^{2}} \left\{ 26 + 30\log\left[\frac{m_{\pi}}{\Lambda_{\chi}}\right] +30\frac{\Delta}{\sqrt{\Delta^{2} - m_{\pi}^{2}}}\log\left[\frac{\Delta}{m_{\pi}} + \sqrt{\frac{\Delta^{2}}{m_{\pi}^{2}}} - 1\right] \right\}.$$

Ideally would like to determine all the constants from lattice.

- Reality: Not enough data to constrain all the parameters; use phenomenological input for g_A , F_{π} , M_N , Δ and c_A
- Only one free parameter $B_{10}^{(r)}(\lambda)$ to fit
- Extrapolation curve greatly constrained by the chiral formula

Isovector Pauli Radius $\langle r_2^2 \rangle$

Anomalous Magnetic Moments

Some Remarks

- Calculations by different collaborations show a consistent picture, albeit differences in fermion discretization, lattice spacings, etc.
- Lattice results still lack of the curvature as predicted by heavy baryon chiral perturbation theory at current pion masses
- Lighter pion masses are needed to have unambiguous chiral extrapolations

Accessing small Q^2

- Traditional lattice calculations are performed using periodic boundary conditions for the fermion fields
- Big gap between first non-zero momentum transfer and $Q^2 = 0$

QCDSF, Lattice 2008

Accessing small Q^2

- Using twisted boundary conditions for the valence quarks allows to vary Q² continuously
- Help to constrain the fits at small momentum transfer

QCDSF, Lattice 2008

Large- Q^2 Behavior – Experiment

- Possible zero crossing for isovector electric form factor at Q² ~ 4.5 GeV²
- Proton electric and magnetic form factor ratio decreases with Q², instead of being a constant!

Accessing large Q^2

- Zero-crossing for G_E^{p-n} ?
- First step: getting good signals at high Q^2 (usually very noisy)
- Exploratory studies by H.W.Lin et al, arXiv:0810.5141
 - Quenched anisotropic lattices
 - Variational methods to obtain principal correlators
 - Fit two-point and three-point principal correlators directly to extract the nucleon matrix elements (as opposed to ratio method)

Outline

Lattice Methodology

- Nucleon Matrix Elements from the Lattice
- Accessing Different Momentum Transfer on the Lattice
- Control of Systematic Errors

Current Lattice Results

- Electromagnetic Form Factors
- Axial Form Factors
- Strangeness Form Factors
- Other Form Factor Calculations

3 Summary and Outlook

Axial and induced pseudoscalar form factors

$$\langle p(P')|A_{\mu}^{+}(x)|n(P)\rangle = \overline{u}_{p}(P')\left[\gamma_{\mu}\gamma_{5}G_{A}(q^{2}) + q_{\mu}\gamma_{5}\frac{G_{P}(q^{2})}{2M_{N}}\right]u_{n}(P)e^{iq\cdot x}$$

What's interesting...

- Nucleon axial charge $g_A \equiv G_A(q^2 = 0)$
- $g_A = 1.2695(29)$ experimentally well-known
- The ability to reproduce the experiment serves as a precision test of lattice QCD techniques.

Q^2 Scaling - $G_A(\overline{Q^2})$

RBC/UKQCD, arXiv:0810.0045

ETMC, arXiv:0811.0724

Nucleon Axial Charge g_A

Nucleon Axial Charge g_A

 Puzzle: all the data fall on a horizontal line (more or less), 10% lower than experiment

Meifeng Lin (MIT)

Nucleon Form Factors on the Lattice

November 21, 2008 36 / 46

Finite Volume Effects?

- When $m_{\pi}L < 5$, g_A appears to bend down, away from the experimental value
- FVE to be the cause for the lack of curvature?
- Comparison with larger and smaller volume simulations is needed to confirm.

T. Yamazaki et al, PRL100, 032001(2008)

Outline

Lattice Methodology

- Nucleon Matrix Elements from the Lattice
- Accessing Different Momentum Transfer on the Lattice
- Control of Systematic Errors

Current Lattice Results

- Electromagnetic Form Factors
- Axial Form Factors

Strangeness Form Factors

Other Form Factor Calculations

Summary and Outlook

Strangeness Form Factors

- In QCD, proton is not just composed of up and down quarks
- Strange quarks are present as vacuum polarizations
- How do they contribute to the nucleon form factors?
- We can calculate the matrix element on the lattice:

 $\langle N(t')|\bar{s}\Gamma s(\tau)|N(t)\rangle$

• $\Gamma = \gamma_{\mu} \rightarrow G^{s}_{E}, G^{s}_{M}$ • $\Gamma = \gamma_{\mu}\gamma_{5} \rightarrow G^{s}_{A}$

Experiment

PVES + BNL E734 (vp scattering)

Meifeng Lin (MIT)

Disconnected Diagrams

- Only disconnected diagrams contribute to $\langle N(t')|\bar{s}\Gamma s(\tau)|N(t)\rangle$
- Need to calculate

$$C_1(\tau) = \sum_{\vec{x}} Tr[\Gamma D^{-1}(\vec{x},\tau)]$$

- Number of matrix inversions \propto lattice volume
- Too expensive! \Rightarrow resort to stochastic methods

Meifeng Lin (MIT)

Preliminary Results

R. Babich, Lattice 2008

Nucleon Form Factors on the Lattice

Outline

Lattice Methodology

- Nucleon Matrix Elements from the Lattice
- Accessing Different Momentum Transfer on the Lattice
- Control of Systematic Errors

Current Lattice Results

- Electromagnetic Form Factors
- Axial Form Factors
- Strangeness Form Factors
- Other Form Factor Calculations

Summary and Outlook

I have not talked about...

- Generalized form factors
- Δ electromagnetic form factors
- $N \Delta$ transition form factors
- *N*-Roper transition form factors

• ...

Summary

- Lattice calculations for nucleon form factors with dynamical fermions are available with pion masses \gtrsim 300 MeV.
- Results for isovector quantities show qualitative agreement with experiment.
- The range of *Q*² accessible to lattice QCD is being extended, in both directions.
- Strangeness content of the nucleon is also being pursued.

Outlook

- A number of systematic effects need to be addressed, including finite volume effects, discretization errors and chiral extrapolation errors.
 - Simulations with lighter pion masses, finer lattice spacings and larger volumes are underway.
 - Will help control these systematic errors.
- Calculations of disconnected diagrams remain challenging. But a lot of progress has been made.
- Precision calculations of the nucleon form factors from lattice QCD are accessible.
- Finally making contact with experiments?