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Divided by a common language?

“England and America are two countries divided by a common language”

Can the same be said of QCD experimentalists and lattice theorists?
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Minkowski, Wick and Euclid

Some properties of theories in Minkowski space can be related by
Wick rotation to corresponding theories in Euclidean space.

Analytic continuation: t → iτ , −i
~ S → 1

~S .

Using Euclidean metric is needed for numerical path integration


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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The symmetries of QCD

QCD is the relativistic SU(3) gauge theory of quarks

quarks gluons

ψαi Aa
µ

i = 1 . . .Nc colour a = 1 . . . 8 adjoint colour
α = 1 . . . 4 spin µ = 1 . . . 4 4-vector

The symmetries that define Euclidean QCD are

Gauge symmetry
Poincaré group (rotations, boosts and translations)
CPT (charge conjugation, parity and time-reversal)
Flavour SU(Nf ) (for Nf mass degenerate quark flavours)
Chiral SU(Nf )L × SU(Nf )R (for Nf massless quark flavours)
Conformal invariance for theory with only massless quarks

The QCD vacuum spontaneously breaks some of these symmetries

The lattice will explicitly break some of these symmetries. . .
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Continuum gauge transformations

Quark fields form a (fundamental) representation of the gauge group,
SU(3), that means they transform under a (space-time dependent)
rotation as

ψ(x) −→ ψ(g)(x) = Λ(x)ψ(x)

ψ̄(x) −→ ψ̄(g)(x) = ψ̄(x)Λ†(x)

where Λ(x) is the gauge transformation at x , and Λ†(x)Λ(x) = 1,
det Λ(x) = 1.

To make a theory of fermion with this symmetry, another field is
needed that transmits information about relative gauge
transformations at nearby points.

The derivative ∂µ acting on the quark field must be replaced with a
gauge covariant derivative Dµ with

Dµ = ∂µ − igAµ
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Continuum gauge transformations (2)

Aµ is another field, that transforms according to

Aµ −→ A(g)
µ =

1

ig
(∂µΛ)Λ−1 + ΛAµΛ−1

Now under a gauge transformation, Dψ transforms in the same way
as ψ so the bilinear ψ̄Dψ is gauge invariant.

Aµ forms an adjoint representation of the gauge transformation group.

So A can be written in terms of an element of the Lie algebra of
SU(3): Aµ(x) = T aAa

µ(x)

A field strength tensor can be written, which is analogous to the
electromagnetic tensor (which contains electric and magnetic fields)

Fµν = ∂µAν − ∂νAµ + ig [Aµ,Aν ]

The QCD field strength tensor has a commutator that is not present
for QED, which leads to gluon self-interaction.
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Gauge invariant actions

The field strength tensor has simple transformation properties

Fµν −→ F (g)
µν = ΛFµνΛ−1

A gauge-invariant action on the gauge fields can be defined

Sg =
1

4

∫
d4x Tr FµνFµν

Similarly, for a quark field, a suitable action is

Sq =

∫
d4x ψ̄(γµDµ + m)ψ

Here, we have wick-rotated the gamma-matrices so the quark fields
form a spin-1/2 representation of SO(4).

{γµ, γν} = δµν
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Lattice fields - the quarks

Quark fields are discretised in the simplest way; the fields are
restricted to take values only on sites of the four-dimensional
space-time lattice, ψ(x , t)→ ψn1,n2,n3,n4 .

Each lattice site has 4× Nc = 12 degrees of freedom per quark
flavour.

Gauge transforms will be defined for sites too:

ψn1,n2,n3,n4 −→ ψ
(g)
n1,n2,n3,n4 = Λn1,n2,n3,n4ψn1,n2,n3,n4 .

In a path integral, fermions must be represented by elements of a
grassmann algebra: ∫

dη = 0,

∫
dη η = 1

This will make life complicated for us when it comes to simulations.

And more problems with quarks will arise when we try to define an
action...
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Lattice fields - the gluons

Wilson recognised the way to build actions with a gauge symmetry on
the lattice was to put the gluon field onto the lattice in a very
different way: gluons live on links.

Abandon the vector potential as the fundamental degree of freedom,
use instead a small path-ordered exponential connecting adjacent sites
on the lattice:

Uµ(x) = Pexp

{
ig

∫ x+µ̂

x
ds Aµ(s)

}

Path-ordering is needed to give an unambiguous meaning to this
expression since the gauge group is non-abelian (Aµ(x) does not
commute with Aµ(y) when x 6= y).

Uµ ∈ SU(3) while Aµ ∈ L(SU(3)).

To define a path-integral, we need to integrate over the SU(3) group
manifold; use an invariant Haar measure, DU
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Maintaining gauge invariance means . . .

Quark fields

on sites

on links

Gauge fields
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Lattice gauge invariants

Define the rules of gauge transformations so gauge invariants can be
constructed out of lattice fields:

Gauge transformations of lattice fields

ψ(x) −→ ψ(g)(x) = Λ(x)ψ(x)

ψ̄(x) −→ ψ̄(g)(x) = ψ̄(x)Λ†(x)

Uµ(x) −→ U(g)
µ (x) = Λ(x)Uµ(x)Λ†(x + µ̂)

Since Λ†Λ = 1, the following expressions are invariant under these
transformations

Simple lattice gauge invariant functions

ψ̄(x)Uµ(x)ψ(x + µ̂)

Tr Uµ(x)Uν(x + µ̂)U†µ(x + ν̂)U†ν(x)
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Lattice gauge invariants
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Gauge invariance

↓

↙↘

To rotate a quark field at site x , ψ(x)→
ψg (x) = g(x)ψ(x) . . .

. . . we must also rotate the gauge fields
that start or end at the site Uµ(x) →
Ug
µ (x) = g(x)Uµ(x)g †(x + µ̂)

The gauge invariance of the special func-
tions is seen
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Lattice action - the gluons

To define a path integral, we also need an action

The simplest gauge invariant function of the gauge link variables
alone is the plaquette (the trace of a path-ordered product of links
around a 1× 1 square).

SG [U] =
β

Nc

∑
x ,µ<ν

ReTr
(

1− Uµ(x)Uν(x + µ̂)U†µ(x + ν̂)U†ν(x))
)

This is the Wilson gauge action

A path integral for the Yang-Mills theory of gluons would be

ZYM =

∫ ∏
µ,x

DUµ(x)e−SG [U]

The coupling constant, g appears in β = 2Nc
g2

No need to fix gauge; the gauge orbits can be trivially integrated over
and the group manifold is compact.
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Lattice action - the gluons

A Taylor expansion in a shows that

SG [U] =
β

Nc

∑
x ,µ<ν

ReTr
(

1− Uµ(x)Uν(x + µ̂)U†µ(x + ν̂)U†ν(x))
)

=

∫
d4x − 1

4
Tr FµνFµν +O(a2)

All terms proportional to odd powers in the lattice spacing vanish
because the lattice action preserves a discrete parity symmetry.

The action is also invariant under a charge-conjugation symmetry,
which takes Uµ(x)→ U∗µ(x).

We have kept almost all of the symmetries of the Yang-Mills sector,
but broken the SO(4) rotation group down to the discrete group of
rotations of a hypercube.
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Lattice actions - the quarks

The continuum action is a bilinear with a first-order derivative
operator inside;

SQ =

∫
d4xψ̄(γµDµ + m)ψ

When m = 0, the action has an extra, chiral symmetry:

ψ −→ ψ(χ) = e iαγ5ψ, ψ̄ −→ ψ̄(χ) = ψ̄e iαγ5

The simplest lattice representation of a first-order derivative that
preserves reflection symmetries is the central difference:

∂µψ(x) =
1

2a
(ψ(x + µ̂)− ψ(x − µ̂))

This can be made gauge covariant by including the gauge links:

Dµψ(x) =
1

2a
(Uµ(x)ψ(x + µ̂)− Uµ(x − µ̂)ψ(x − µ̂))

BUT on closer inspection, there are more minima to this action than
we want. Consider the case with no gauge fields, and when
ψ(x) = e ikx with k = {π, 0, 0, 0} or {π, π, 0, 0} or {π, π, π, 0} or . . . .
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Lattice doubling

Central difference between

these two points is zero, not large!
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Lattice actions - the quarks (3)

This is the (in)famous doubling problem.

The Nielson-Ninomiya “no-go” theorem

There are no chirally symmetric, local, translationally invariant
doubler-free fermion actions on a regular lattice.

To put quarks on the lattice, more symmetry must be broken or else a
theory with extra flavours of quarks must be simulated.

A number of solutions are used, each with their advantages and
disadvantages.

The most commonly used are:

Wilson fermions
Kogut-Susskind (staggered) fermions
Ginsparg-Wilson fermions (overlap, domain wall, perfect...)
Twisted mass
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Wilson’s lattice quark action

Wilson’s original solution was to abandon chiral symmetry and add a
lattice operator whose continuum limit is an irrelevant dimension-five
operator. The term gives the doublers a mass ∝ 1/a

The extra term in the lattice action is the lattice representation of

a
∑
µ

D2
µψ ≈

∑
µ

Uµ(x)ψ(x + µ̂) + U†µ(x − µ)ψ(x − µ̂)

The breaking of chiral symmetry means the quark mass is not
protected from additive renormalisations (short-distance gluons will
now give quarks a large mass)

Approaching the continuum limit requires fine-tuning to restore chiral
symmetry and ensure quarks are light.

Breaking chiral symmetry now introduces lattice artefacts at O(a).

This action has a Symanzik-improved counterpart, the
Sheikholeslami-Wohlert action, which removes all O(a) errors by a
field redefinition and the addition of another dim-5 term, σµνFµν
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The Ginsparg-Wilson relation

Actions that break chiral symmetry, but preserve a modified version
can be constructed. The new chiral symmetry is

{γ5, /D} = 2a /Dγ5/D so {γ5, /D
−1} = 2a γ5

In a propagator, chiral symmetry is broken by a contact term
A number of realisations of this symmetry are in use. Neuberger’s
overlap uses an action

D = I − DW√
D†W DW

where DW is the Wilson action with a large negative quark mass.
Domain Wall quarks use a 5d lattice field (coupled to
four-dimensional gluons). The boundaries in the 5th dimension are set
up so left- and right-handed quarks bind to different walls in 5d.
Modes are separated so chiral symmetry is (almost) maintained.
These quarks are expensive!
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Staggered quarks

Kogut and Susskind proposed an interesting partial solution to the
doubling problem.

A field redefinition is used to scatter the sixteen components of four
flavours (“tastes”) of quarks across the corners of a hypercube.

On each lattice sites there are just Nc degrees of freedom

A remnant of chiral symmetry remains which is sufficient to ensure
there is no additive mass renormalisation.

Simulations are fast; there is no fine-tuning so the fermion matrix is
well-behaved and always positive which helps the simulation
algorithms

UV gluons can change the “taste” of a quark, so flavours mix

Practitioners simulate theories with one or two flavours by taking
fractional powers of the fermion path integral. It is still a matter of
debate whether this is legitimate.
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QCD on the computer - Monte Carlo integration

On a finite lattice, with non-zero lattice spacing, the number of
degrees of freedom is finite. The path integral becomes an “ordinary”
high-dimensional integral.

High-dimensional integrals can be estimated stochastically by Monte
Carlo. Variance reduction is crucial, and can be achieved effectively
provided the theory is simulated in the Euclidean space-time metric.

No useful importance sampling weight can be written for the theory
in Minkowski space.

The Euclidean path-integral is a weighted average:

〈O〉 =
1

Z

∫
DUDψ̄Dψ O[U, ψ̄, ψ] e−S[U,ψ̄,ψ]

e−S varies enormously; sample only the tiny region of configuration
space that contributes significantly.
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Dynamical quarks in QCD

Monte Carlo integration with Nf = 2 (mass degenerate) quarks.
Quark fields in the path integral obey a grassmann algebra which is
difficult to manipulate in the computer.
The quark action is a bilinear; the grassmann integrals can be done
analytically and give

ZQ [U] =

∫
DψDψ̄ e−

P
f ψ̄f M[U]ψ = det MNf [U]

The full partition function, including the gauge fields is

Z =

∫
DU ZQ [U]e−SG [U] =

∫
DU det MNf [U]e−SG [U]

For (eg) Nf = 2 det M2 is positive and can be included in the
importance sampling. It is a non-local function of the gauge fields,
and expensive to compute. Using M† = γ5Mγ5, det M2 is re-written

ZQ [U] =

∫
DφDφ∗e−φ∗[M†M]−1φ
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Dynamical quarks in QCD

φ is an unphysical (non-local action) bosonic field with colour charge
and spin structure (!) called the pseudofermion.
Measuring the action requires applying the inverse of M a very large
matrix
M is sparse, and there are a set of linear algebra tricks (Krylov space
solvers etc) that work effectively.
Unfortunately, they require many applications of the matrix to a
quark field, and so take a lot of computer time.
This is where most computing power in lattice simulations goes;
computing the effect of the quark fields acting on the gluons in the
Monte Carlo updates.
The alternative is the quenched approximation to QCD; ignore the
fermion path integral completely - this is an unphysical approximation
so its effects are hard to quantify.
Inversion is needed again in the measurement stage too;

〈ψ(x)ψ̄(y)〉 = M−1[U](x , y)
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Markov Chain Monte Carlo

How is the configuration space sampled?

All techniques use a Markov process: this is a stochastic transition
that takes the current state of the system and jumps randomly to a
new state, such that the probability of the jump is independent of the
past states of the system.

Ergodic (positive recurrent, irreducible) Markov chains have unique
stationary distributions; build the Markov process so it has our
importance sampling distribution as its stationary state.

If this can be done, then the sequence of configurations generated by
the process is our importance sampling ensemble!

Almost all algorithms exploit detailed balance to achieve this.
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An analogy: experiment and lattice

Accelerator Configuration source

{U(1) → U(2) → U(3) → . . . }

Detector
Measurement on fields

C (t; U) = Tr G (U; t)Tr G (U; 0)

Statistical analysis and fitting Statistical analysis and fitting
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Hadron spectroscopy (1)

Masses of (colourless) QCD bound-states can be computed by
measuring two-point functions. The Euclidean two-point function is

C (t) = 〈0|Φ(t)Φ†(0)|0〉

The time-dependence of the operator, Φ is given by
Φ(t) = eHtΦe−Ht , so

C (t) = 〈Φ|e−Ht |Φ†〉

inserting a complete set of energy eigenstates gives

C (t) =
∞∑

k=0

〈Φ|e−Ht |k〉〈k |Φ†〉 =
∞∑

k=0

|〈Φ|k〉|2e−Ek t

Then limt→∞ C (t) = Ze−E0t

If the large-time exponential fall-off of the correlation function can be
observed, the energy of the state can be measured.
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Hadron spectroscopy (2)

The energies of excited states can be computed reliably too.

Tracking sub-leading exponential fall-off works sometimes but a more
efficient method is to use a matrix of correlators. With a set of N
operators {Φ1,Φ2, . . . } (with the same quantum numbers), compute
all elements of

Cij(t) = 〈0|Φi (t)Φ†j (0)|0〉

Now solve the generalised eigenvalue problem

C (t1)v = λC (t0)v

for different t0 and t1.

The method constructs an optimal linear combination to form a
ground-state, and then constructs a set of operators that are
orthogonal to it.

The second eigenvector can not have overlap with the ground-state at
large t, and will fall to the first excited energy.
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Hadron spectroscopy (3)

Lattice practitioners like to show this in an “effective mass plot”.
The effective mass is

meff(t) = −1

a
log

C (t + a)

C (t)

and for times large enough such that C is dominated by the
ground-state, the effective mass should become independent of time;
a “plateau”.
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 excited state
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Radial (?) excitations of a
“static-light” meson.
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Spin on the lattice

Eigenstates of the hamiltonian simultaneously form irreducible
representations of SO(3), the rotation group. Spin is a good quantum
number.

The lattice hamiltonian does not have SO(3) symmetry. It is
symmetric under the discrete sub-group of rotations of the cube,
Oh. This group has 48 elements (once parity is included) and ten
irreducible representations.

The eigenstates of the lattice hamiltonian therefore have a good
“quantum letter”; Au,g

1 ,Au,g
2 ,Eu,g ,T u,g

1 ,T u,g
2

Can we deduce the continuum spin of a state? With some caveats,
yes.

A pattern of degeneracies must be found and matched against the
representations of Oh subduced from SO(3).

Mike Peardon (TCD) Introduction to spectroscopy on the lattice November 21, 2008 31 / 54



Spin on the lattice (2)

J A1 A2 E T1 T2

0 1 − − − −
1 − − − 1 −
2 − − 1 − 1
3 − 1 − 1 1
4 1 − 1 1 1
5 − − 1 2 1
6 1 1 1 1 2

...

Example
The Yang-Mills glueball spectrum
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Creation operators: glueballs

To measure the correlation functions, we need to measure appropriate
creation operators on our ensemble.

The operators should be functions of the fields on a time-slice and
transform irreducibly according to an irrep of Oh (as well as isospin,
charge conjugation etc.)

First example: the glueball. An appropriate operator would be a
gauge invariant function of the gluons alone: a closed loop trace.

Link smearing greatly improved ground-state overlap.

Apply smoothing filters to the links to extract just slowly varying
modes that then have better overlap with the lowest states.
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Creation operators: glueballs

What do operators that transform irreducibly under Oh look like?

Φ1 Φ2 Φ3

Can make three operators by taking linear combinations of these
loops.
They form two irreducible representations (Ag

1 and Eg ).

ΦAg
1

= Φ1 + Φ2 + Φ3

Φ
(1)
Eg = Φ1 − Φ2

Φ
(2)
Eg = 1√

3
(Φ1 + Φ2 − 2Φ3)

Mike Peardon (TCD) Introduction to spectroscopy on the lattice November 21, 2008 34 / 54



Creation operators: glueballs

After running simulations at more than one lattice spacing, a
continuum extrapolation (a→ 0) can be attempted.
The expansion of the action can suggest the appropriate choice of
extrapolating function.
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Isovector meson correlation functions

To create a meson, we need to build functions that couple to quarks.
In the simplest model, a meson would be created by a quark bilinear,
so the appropriate gauge invariant creation operator (for isospin
I = 1) would be

Φmeson(t) =
∑
x

ū(x , t)ΓUC(x , y ; t)d(y , t)

where Γ is some appropriate Dirac structure, and UC a product of
(smeared) link variables.
As before, appropriate operators that transform irreducibly under the
lattice rotation group Oh are needed.
The complication here is that we do not have direct access to the
fermion integration variables in the computer.
As with updating algorithms, the observation that the quark action is
bilinear saves us:

〈ψαa (x , t)ψ̄βb (y , t ′)〉 = [M−1]α,βab (x , t; y , t ′)
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Isovector meson correlation functions (2)

Now the elementary component in the correlation function is

〈0|Φ(t)Φ†(0)|0〉 =

〈Tr M−1(z , 0; x , t)ΓUC(x , y , t)M−1(y , t; w , 0)Γ†UC′(w , z , 0)〉

In general, this is still expensive to compute, since it requires knowing
many entries in the inverse of the fermion operator, M.

If the choice of operator at the source is restricted and no momentum
projection is made, only the bilinear at (eg) the origin on time-slice 0
is needed.

Quark propagation from a single site to any other site is computed by
solving Mψ = ea,α

0 where e0 are the 12 vectors that only has non-zero
components at the origin.

Getting away from this restriction by estimating “all-to-all”
propagators is an active research topic.
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Isovector meson correlation functions (3)

The most general operator.

A restricted correlation func-
tion accessible to one point-to-
all computation.
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Charmonium spectroscopy

J. Dudek, R. Edwards, N. Mathur & D. Richards
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Isoscalar meson correlation functions (1)

If we are interested in measuring isoscalar meson masses, extra
diagrams must be evaluated, since four-quark diagrams become
relevant. The Wick contraction yields extra terms, since

〈ψi ψ̄jψk ψ̄l〉 = M−1
ij M−1

kl −M−1
il M−1

jk

Now
〈0|ΦI=0(t)Φ†I=0(0)|0〉 =

〈0|ΦI=1(t)Φ†I=1(0)|0〉 − 〈0|Tr M−1ΓUC(t)Tr M−1ΓUC(0)|0〉
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Locating the physical quark masses

H-W Lin, S. Cohen, J. Dudek, R. Edwards, B. Joó, D. Richards, J. Bulava,

J. Foley, C. Morningstar, E. Engelson, S. Wallace, J. Juge, N. Mathur, MP & S. Ryan

lΩ = 9m2
π/4m2

Ω and sΩ = 9(2m2
K −m2

π)/4m2
Ω
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Light hadron spectrum

H-W Lin, S. Cohen, J. Dudek, R. Edwards, B. Joó, D. Richards, J. Bulava,

J. Foley, C. Morningstar, E. Engelson, S. Wallace, J. Juge, N. Mathur, MP & S. Ryan

Discrepancy predominantly from extrapolation in light quark mass?
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No-go: the Maiani-Testa theorem

Importance sampling Monte Carlo simulation only works efficiently for
a path integral with a positive definite probability measure: Euclidean
space.

Maiani-Testa: Scattering matrix elements cannot be extracted from
infinite-volume Euclidean-space correlation functions (except at
threshold).

Can the lattice tell us anything about low-energy scattering or states
above thresholds?
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Scattering lengths indirectly: Lüscher’s method

Scattering lengths can be inferred indirectly given the right
measurements in Euclidean field theory.

In a three-dimensional box with finite size L, the spectrum of
low-lying states is discrete, even above thresholds (since the momenta
of daughter mesons are quantised).

Precise data on the dependence of the energy spectrum on L can be
used to compute low-energy scattering (below inelastic threshold).

This requires measuring energies of multi-hadron states.
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Resonance energies and widths

Above inelastic threshold, even less is known precisely.

Resonant states will appear as
“avoided level crossings” in the
spectrum.

Width can be inferred from the gap at
the point where the energy levels get
closest.

L

E(L)

Gap ~ Width

Example: two states, |φ〉 and |χ(p)χ(−p)〉 with p = 2π/L.
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Resonance energies and widths

Modelling these level crossings can be used to predict the energy and
width of the resonance. Extracting these parameters from Monte
Carlo data will require a precise scan of the energy of many states
(ground-state, first excited, second . . . ) in a given symmetry channel
to be carried out at a number of lattice volumes.

Requirements for measuring decay widths in QCD

Light, dynamical quarks (to ensure unitarity)

Accurate spectroscopy in appropriate channels

Access to excited states in these channels

Ability to create multi-hadron states
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Quark propagation revisited

For high-precision spectroscopy, we need to go beyond traditional
“point-to-all” propagator methods.

The restriction arises because M−1 is too large to compute and store
in its entirity. We are able to apply it to a particular vector;
w = M−1v , so algorithms must start from this building block

“All-to-all” techniques have been an active research topic for a long
time, and are now entering mainstream spectroscopy calculations.

The essential idea is to use Monte Carlo for the quark propagation
phase too.

Take a vector, η with all entries set randomly (and independently) to
±1.

Clearly E [ηiηj ] = δij and so we have a stochastic representation of the
identity operator in the vector space

Now compute ψ = M−1η and so E [ψiηj ] = M−1
ij
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Stochastic “all-to-all” isoscalar data
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S waves: ηc(0−+) and J/Ψ(1−−)
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P waves
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D waves
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hc and the hybrid, 1−+
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Charmonium spectrum from all-to-all techniques

PRELIMINARY
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Conclusions

The lattice defines field theory without pertubative expansions, and
regulates quantum fields

Physics of lattice field theories can be computed numerically on
(large) computers

To do effective Monte Carlo, the Euclidean version of the field theory
is needed; scattering and decay physics is difficult

At present, simulations are starting to approach the physical quark
masses

Developing better methods to do spectroscopy is an active area of
research; should be able to handle two-mesons states and isoscalar
mesons with some precision soon.
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