Introduction to spectroscopy on the lattice

Mike Peardon

Trinity College Dublin
JLab synergy meeting, November 21, 2008

Divided by a common language?

"England and America are two countries divided by a common language"

Can the same be said of QCD experimentalists and lattice theorists?

Overview

- Discretising QCD
- Monte Carlo methods
- Spectroscopy
- Scattering and decay physics
- Spectroscopy 2.0
- Conclusions

Minkowski, Wick and Euclid

- Some properties of theories in Minkowski space can be related by Wick rotation to corresponding theories in Euclidean space.
- Analytic continuation: $t \rightarrow i \tau, \frac{-i}{\hbar} S \rightarrow \frac{1}{\hbar} S$.
- Using Euclidean metric is needed for numerical path integration

The symmetries of QCD

- QCD is the relativistic $S U(3)$ gauge theory of quarks
quarks

$$
i=\begin{gathered}
\psi_{i}^{\alpha} \\
1 \ldots N_{c} \text { colour } \\
\alpha=1 \ldots 4 \text { spin }
\end{gathered}
$$

- The symmetries that define Euclidean QCD are
- Gauge symmetry
- Poincaré group (rotations, boosts and translations)
- CPT (charge conjugation, parity and time-reversal)
- Flavour $\operatorname{SU}\left(N_{f}\right)$ (for N_{f} mass degenerate quark flavours)
- Chiral $S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R}$ (for N_{f} massless quark flavours)
- Conformal invariance for theory with only massless quarks
- The QCD vacuum spontaneously breaks some of these symmetries
- The lattice will explicitly break some of these symmetries. . .

Continuum gauge transformations

- Quark fields form a (fundamental) representation of the gauge group, $S U(3)$, that means they transform under a (space-time dependent) rotation as

$$
\begin{aligned}
& \psi(x) \longrightarrow \psi^{(g)}(x)=\Lambda(x) \psi(x) \\
& \bar{\psi}(x) \longrightarrow \bar{\psi}^{(g)}(x)=\bar{\psi}(x) \Lambda^{\dagger}(x)
\end{aligned}
$$

where $\Lambda(x)$ is the gauge transformation at x, and $\Lambda^{\dagger}(x) \Lambda(x)=1$, $\operatorname{det} \Lambda(x)=1$.

- To make a theory of fermion with this symmetry, another field is needed that transmits information about relative gauge transformations at nearby points.
- The derivative ∂_{μ} acting on the quark field must be replaced with a gauge covariant derivative D_{μ} with

$$
D_{\mu}=\partial_{\mu}-i g A_{\mu}
$$

Continuum gauge transformations (2)

- A_{μ} is another field, that transforms according to

$$
A_{\mu} \longrightarrow A_{\mu}^{(g)}=\frac{1}{i g}\left(\partial_{\mu} \Lambda\right) \Lambda^{-1}+\Lambda A_{\mu} \Lambda^{-1}
$$

- Now under a gauge transformation, $D \psi$ transforms in the same way as ψ so the bilinear $\bar{\psi} D \psi$ is gauge invariant.
- A_{μ} forms an adjoint representation of the gauge transformation group.
- So A can be written in terms of an element of the Lie algebra of $S U(3): A_{\mu}(x)=T^{a} A_{\mu}^{a}(x)$
- A field strength tensor can be written, which is analogous to the electromagnetic tensor (which contains electric and magnetic fields)

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i g\left[A_{\mu}, A_{\nu}\right]
$$

- The QCD field strength tensor has a commutator that is not present for QED, which leads to gluon self-interaction.

Gauge invariant actions

- The field strength tensor has simple transformation properties

$$
F_{\mu \nu} \longrightarrow F_{\mu \nu}^{(g)}=\Lambda F_{\mu \nu} \Lambda^{-1}
$$

- A gauge-invariant action on the gauge fields can be defined

$$
S_{g}=\frac{1}{4} \int d^{4} x \operatorname{Tr} F_{\mu \nu} F_{\mu \nu}
$$

- Similarly, for a quark field, a suitable action is

$$
S_{q}=\int d^{4} x \bar{\psi}\left(\gamma_{\mu} D_{\mu}+m\right) \psi
$$

- Here, we have wick-rotated the gamma-matrices so the quark fields form a spin- $1 / 2$ representation of $S O(4)$.

$$
\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=\delta_{\mu \nu}
$$

Lattice fields - the quarks

- Quark fields are discretised in the simplest way; the fields are restricted to take values only on sites of the four-dimensional space-time lattice, $\psi(\underline{x}, t) \rightarrow \psi_{n_{1}, n_{2}, n_{3}, n_{4}}$.
- Each lattice site has $4 \times N_{c}=12$ degrees of freedom per quark flavour.
- Gauge transforms will be defined for sites too: $\psi_{n_{1}, n_{2}, n_{3}, n_{4}} \longrightarrow \psi_{n_{1}, n_{2}, n_{3}, n_{4}}^{(g)}=\Lambda_{n_{1}, n_{2}, n_{3}, n_{4}} \psi_{n_{1}, n_{2}, n_{3}, n_{4}}$.
- In a path integral, fermions must be represented by elements of a grassmann algebra:

$$
\int d \eta=0, \int d \eta \eta=1
$$

- This will make life complicated for us when it comes to simulations.
- And more problems with quarks will arise when we try to define an action...

Lattice fields - the gluons

- Wilson recognised the way to build actions with a gauge symmetry on the lattice was to put the gluon field onto the lattice in a very different way: gluons live on links.
- Abandon the vector potential as the fundamental degree of freedom, use instead a small path-ordered exponential connecting adjacent sites on the lattice:

$$
U_{\mu}(x)=\mathcal{P} \exp \left\{i g \int_{x}^{x+\hat{\mu}} d s A_{\mu}(s)\right\}
$$

- Path-ordering is needed to give an unambiguous meaning to this expression since the gauge group is non-abelian $\left(A_{\mu}(x)\right.$ does not commute with $A_{\mu}(y)$ when $\left.x \neq y\right)$.
- $U \mu \in S U(3)$ while $A_{\mu} \in \mathcal{L}(S U(3))$.
- To define a path-integral, we need to integrate over the $S U(3)$ group manifold; use an invariant Haar measure, $\mathcal{D} U$

Maintaining gauge invariance means

Quark fields on sites

Gauge fields on links

Lattice gauge invariants

- Define the rules of gauge transformations so gauge invariants can be constructed out of lattice fields:

Gauge transformations of lattice fields

$$
\begin{aligned}
\psi(x) \longrightarrow \psi^{(g)}(x) & =\Lambda(x) \psi(x) \\
\bar{\psi}(x) \longrightarrow \bar{\psi}^{(g)}(x) & =\bar{\psi}(x) \Lambda^{\dagger}(x) \\
U_{\mu}(x) \longrightarrow U_{\mu}^{(g)}(x) & =\Lambda(x) U_{\mu}(x) \Lambda^{\dagger}(x+\hat{\mu})
\end{aligned}
$$

- Since $\Lambda^{\dagger} \Lambda=1$, the following expressions are invariant under these transformations

Simple lattice gauge invariant functions

$$
\begin{gathered}
\bar{\psi}(x) U_{\mu}(x) \psi(x+\hat{\mu}) \\
\operatorname{Tr} U_{\mu}(x) U_{\nu}(x+\hat{\mu}) U_{\mu}^{\dagger}(x+\hat{\nu}) U_{\nu}^{\dagger}(x)
\end{gathered}
$$

Lattice gauge invariants

Gauge invariance

To rotate a quark field at site $x, \psi(x) \rightarrow$ $\psi^{g}(x)=g(x) \psi(x) \ldots$
... we must also rotate the gauge fields that start or end at the site $U_{\mu}(x) \rightarrow$ $U_{\mu}^{g}(x)=g(x) U_{\mu}(x) g^{\dagger}(x+\hat{\mu})$

The gauge invariance of the special functions is seen

Lattice action - the gluons

- To define a path integral, we also need an action
- The simplest gauge invariant function of the gauge link variables alone is the plaquette (the trace of a path-ordered product of links around a 1×1 square).

$$
\left.S_{G}[U]=\frac{\beta}{N_{c}} \sum_{x, \mu<\nu} \operatorname{Re} \operatorname{Tr}\left(1-U_{\mu}(x) U_{\nu}(x+\hat{\mu}) U_{\mu}^{\dagger}(x+\hat{\nu}) U_{\nu}^{\dagger}(x)\right)\right)
$$

This is the Wilson gauge action

- A path integral for the Yang-Mills theory of gluons would be

$$
Z_{Y M}=\int \prod_{\mu, x} \mathcal{D} U_{\mu}(x) e^{-S_{G}[U]}
$$

- The coupling constant, g appears in $\beta=\frac{2 N_{c}}{g^{2}}$
- No need to fix gauge; the gauge orbits can be trivially integrated over and the group manifold is compact.

Lattice action - the gluons

- A Taylor expansion in a shows that

$$
\begin{aligned}
S_{G}[U] & \left.=\frac{\beta}{N_{c}} \sum_{x, \mu<\nu} \operatorname{Re} \operatorname{Tr}\left(1-U_{\mu}(x) U_{\nu}(x+\hat{\mu}) U_{\mu}^{\dagger}(x+\hat{\nu}) U_{\nu}^{\dagger}(x)\right)\right) \\
& =\int d^{4} x-\frac{1}{4} \operatorname{Tr} F_{\mu \nu} F_{\mu \nu}+\mathcal{O}\left(a^{2}\right)
\end{aligned}
$$

- All terms proportional to odd powers in the lattice spacing vanish because the lattice action preserves a discrete parity symmetry.
- The action is also invariant under a charge-conjugation symmetry, which takes $U_{\mu}(x) \rightarrow U_{\mu}^{*}(x)$.
- We have kept almost all of the symmetries of the Yang-Mills sector, but broken the $S O(4)$ rotation group down to the discrete group of rotations of a hypercube.

Lattice actions - the quarks

- The continuum action is a bilinear with a first-order derivative operator inside;

$$
S_{Q}=\int d^{4} x \bar{\psi}\left(\gamma_{\mu} D_{\mu}+m\right) \psi
$$

- When $m=0$, the action has an extra, chiral symmetry:

$$
\psi \longrightarrow \psi^{(\chi)}=e^{i \alpha \gamma_{5}} \psi, \bar{\psi} \longrightarrow \bar{\psi}^{(\chi)}=\bar{\psi} e^{i \alpha \gamma_{5}}
$$

- The simplest lattice representation of a first-order derivative that preserves reflection symmetries is the central difference:

$$
\partial_{\mu} \psi(x)=\frac{1}{2 a}(\psi(x+\hat{\mu})-\psi(x-\hat{\mu}))
$$

- This can be made gauge covariant by including the gauge links:

$$
D_{\mu} \psi(x)=\frac{1}{2 a}\left(U_{\mu}(x) \psi(x+\hat{\mu})-U_{\mu}(x-\hat{\mu}) \psi(x-\hat{\mu})\right)
$$

- BUT on closer inspection, there are more minima to this action than we want. Consider the case with no gauge fields, and when $\psi(x)=e^{i k x}$ with $k=\{\pi, 0,0,0\}$ or $\{\pi, \pi, 0,0\}$ or $\{\pi, \pi, \pi, 0\}$ or \ldots.

Lattice doubling

Lattice actions - the quarks (3)

- This is the (in)famous doubling problem.

The Nielson-Ninomiya "no-go" theorem

There are no chirally symmetric, local, translationally invariant doubler-free fermion actions on a regular lattice.

- To put quarks on the lattice, more symmetry must be broken or else a theory with extra flavours of quarks must be simulated.
- A number of solutions are used, each with their advantages and disadvantages.
- The most commonly used are:
- Wilson fermions
- Kogut-Susskind (staggered) fermions
- Ginsparg-Wilson fermions (overlap, domain wall, perfect...)
- Twisted mass

Wilson's lattice quark action

- Wilson's original solution was to abandon chiral symmetry and add a lattice operator whose continuum limit is an irrelevant dimension-five operator. The term gives the doublers a mass $\propto 1$ /a
- The extra term in the lattice action is the lattice representation of

$$
a \sum_{\mu} D_{\mu}^{2} \psi \approx \sum_{\mu} U_{\mu}(x) \psi(x+\hat{\mu})+U_{\mu}^{\dagger}(x-\mu) \psi(x-\hat{\mu})
$$

- The breaking of chiral symmetry means the quark mass is not protected from additive renormalisations (short-distance gluons will now give quarks a large mass)
- Approaching the continuum limit requires fine-tuning to restore chiral symmetry and ensure quarks are light.
- Breaking chiral symmetry now introduces lattice artefacts at $\mathcal{O}(a)$.
- This action has a Symanzik-improved counterpart, the Sheikholeslami-Wohlert action, which removes all $\mathcal{O}(a)$ errors by a field redefinition and the addition of another dim-5 term, $\sigma_{\mu \nu} F_{\mu \nu}$

The Ginsparg-Wilson relation

- Actions that break chiral symmetry, but preserve a modified version can be constructed. The new chiral symmetry is

$$
\left\{\gamma_{5}, \not \square\right\}=2 a \not D \gamma_{5} \not \subset \text { so }\left\{\gamma_{5}, \not D^{-1}\right\}=2 a \gamma_{5}
$$

- In a propagator, chiral symmetry is broken by a contact term
- A number of realisations of this symmetry are in use. Neuberger's overlap uses an action

$$
D=I-\frac{D_{W}}{\sqrt{D_{W}^{\dagger} D_{W}}}
$$

where D_{W} is the Wilson action with a large negative quark mass.

- Domain Wall quarks use a 5d lattice field (coupled to four-dimensional gluons). The boundaries in the $5^{\text {th }}$ dimension are set up so left- and right-handed quarks bind to different walls in 5d. Modes are separated so chiral symmetry is (almost) maintained.
- These quarks are expensive!

Staggered quarks

- Kogut and Susskind proposed an interesting partial solution to the doubling problem.
- A field redefinition is used to scatter the sixteen components of four flavours ("tastes") of quarks across the corners of a hypercube.
- On each lattice sites there are just N_{c} degrees of freedom
- A remnant of chiral symmetry remains which is sufficient to ensure there is no additive mass renormalisation.
- Simulations are fast; there is no fine-tuning so the fermion matrix is well-behaved and always positive which helps the simulation algorithms
- UV gluons can change the "taste" of a quark, so flavours mix
- Practitioners simulate theories with one or two flavours by taking fractional powers of the fermion path integral. It is still a matter of debate whether this is legitimate.

QCD on the computer - Monte Carlo integration

- On a finite lattice, with non-zero lattice spacing, the number of degrees of freedom is finite. The path integral becomes an "ordinary" high-dimensional integral.
- High-dimensional integrals can be estimated stochastically by Monte Carlo. Variance reduction is crucial, and can be achieved effectively provided the theory is simulated in the Euclidean space-time metric.
- No useful importance sampling weight can be written for the theory in Minkowski space.
- The Euclidean path-integral is a weighted average:

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \int \mathcal{D} \cup \mathcal{D} \bar{\psi} \mathcal{D} \psi \quad \mathcal{O}[U, \bar{\psi}, \psi] e^{-S[U, \bar{\psi}, \psi]}
$$

- e^{-S} varies enormously; sample only the tiny region of configuration space that contributes significantly.

Dynamical quarks in QCD

- Monte Carlo integration with $N_{f}=2$ (mass degenerate) quarks. Quark fields in the path integral obey a grassmann algebra which is difficult to manipulate in the computer.
- The quark action is a bilinear; the grassmann integrals can be done analytically and give

$$
Z_{Q}[U]=\int \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{-\sum_{f} \bar{\psi}_{f} M[U] \psi}=\operatorname{det} M^{N_{f}}[U]
$$

- The full partition function, including the gauge fields is

$$
Z=\int \mathcal{D} U Z_{Q}[U] e^{-S_{G}[U]}=\int \mathcal{D} U \operatorname{det} M^{N_{f}}[U] e^{-S_{G}[U]}
$$

- For (eg) $N_{f}=2 \operatorname{det} M^{2}$ is positive and can be included in the importance sampling. It is a non-local function of the gauge fields, and expensive to compute. Using $M^{\dagger}=\gamma_{5} M \gamma_{5}$, $\operatorname{det} M^{2}$ is re-written

$$
Z_{Q}[U]=\int \mathcal{D} \phi \mathcal{D} \phi^{*} e^{-\phi^{*}\left[M^{\dagger} M\right]^{-1} \phi}
$$

Dynamical quarks in QCD

- ϕ is an unphysical (non-local action) bosonic field with colour charge and spin structure (!) called the pseudofermion.
- Measuring the action requires applying the inverse of M a very large matrix
- M is sparse, and there are a set of linear algebra tricks (Krylov space solvers etc) that work effectively.
- Unfortunately, they require many applications of the matrix to a quark field, and so take a lot of computer time.
- This is where most computing power in lattice simulations goes; computing the effect of the quark fields acting on the gluons in the Monte Carlo updates.
- The alternative is the quenched approximation to QCD; ignore the fermion path integral completely - this is an unphysical approximation so its effects are hard to quantify.
- Inversion is needed again in the measurement stage too;

$$
\langle\psi(x) \bar{\psi}(y)\rangle=M^{-1}[U](x, y)
$$

Markov Chain Monte Carlo

- How is the configuration space sampled?
- All techniques use a Markov process: this is a stochastic transition that takes the current state of the system and jumps randomly to a new state, such that the probability of the jump is independent of the past states of the system.
- Ergodic (positive recurrent, irreducible) Markov chains have unique stationary distributions; build the Markov process so it has our importance sampling distribution as its stationary state.
- If this can be done, then the sequence of configurations generated by the process is our importance sampling ensemble!
- Almost all algorithms exploit detailed balance to achieve this.

An analogy: experiment and lattice

Accelerator

Configuration source

$$
\left\{U^{(1)} \rightarrow U^{(2)} \rightarrow U^{(3)} \rightarrow \ldots\right\}
$$

Detector

Measurement on fields

$$
C(t ; U)=\operatorname{Tr} G(U ; t) \operatorname{Tr} G(U ; 0)
$$

Statistical analysis and fitting

Statistical analysis and fitting

Hadron spectroscopy (1)

- Masses of (colourless) QCD bound-states can be computed by measuring two-point functions. The Euclidean two-point function is

$$
C(t)=\langle 0| \Phi(t) \Phi^{\dagger}(0)|0\rangle
$$

- The time-dependence of the operator, Φ is given by $\Phi(t)=e^{H t} \Phi e^{-H t}$, so

$$
C(t)=\langle\Phi| e^{-H t}\left|\Phi^{\dagger}\right\rangle
$$

inserting a complete set of energy eigenstates gives

$$
C(t)=\sum_{k=0}^{\infty}\langle\Phi| e^{-H t}|k\rangle\left\langle k \mid \Phi^{\dagger}\right\rangle=\sum_{k=0}^{\infty}|\langle\Phi \mid k\rangle|^{2} e^{-E_{k} t}
$$

- Then $\lim _{t \rightarrow \infty} C(t)=Z e^{-E_{0} t}$
- If the large-time exponential fall-off of the correlation function can be observed, the energy of the state can be measured.

Hadron spectroscopy (2)

- The energies of excited states can be computed reliably too.
- Tracking sub-leading exponential fall-off works sometimes but a more efficient method is to use a matrix of correlators. With a set of N operators $\left\{\Phi_{1}, \Phi_{2}, \ldots\right\}$ (with the same quantum numbers), compute all elements of

$$
C_{i j}(t)=\langle 0| \Phi_{i}(t) \Phi_{j}^{\dagger}(0)|0\rangle
$$

- Now solve the generalised eigenvalue problem

$$
C\left(t_{1}\right) v=\lambda C\left(t_{0}\right) v
$$

for different t_{0} and t_{1}.

- The method constructs an optimal linear combination to form a ground-state, and then constructs a set of operators that are orthogonal to it.
- The second eigenvector can not have overlap with the ground-state at large t, and will fall to the first excited energy.

Hadron spectroscopy (3)

- Lattice practitioners like to show this in an "effective mass plot". The effective mass is

$$
m_{\mathrm{eff}}(t)=-\frac{1}{a} \log \frac{C(t+a)}{C(t)}
$$

and for times large enough such that C is dominated by the ground-state, the effective mass should become independent of time; a "plateau".

- Radial (?) excitations of a "static-light" meson.

Spin on the lattice

- Eigenstates of the hamiltonian simultaneously form irreducible representations of $S O(3)$, the rotation group. Spin is a good quantum number.
- The lattice hamiltonian does not have $S O(3)$ symmetry. It is symmetric under the discrete sub-group of rotations of the cube, O_{h}. This group has 48 elements (once parity is included) and ten irreducible representations.
- The eigenstates of the lattice hamiltonian therefore have a good "quantum letter"; $A_{1}^{u, g}, A_{2}^{u, g}, E^{u, g}, T_{1}^{u, g}, T_{2}^{u, g}$
- Can we deduce the continuum spin of a state? With some caveats, yes.
- A pattern of degeneracies must be found and matched against the representations of O_{h} subduced from $S O(3)$.

Spin on the lattice (2)

Example

The Yang-Mills glueball spectrum

J	A_{1}	A_{2}	E	T_{1}	T_{2}
0	1	-	-	-	-
1	-	-	-	1	-
2	-	-	1	-	1
3	-	1	-	1	1
4	1	-	1	1	1
5	-	-	1	2	1
6	1	1	1	1	2
			\vdots		

Creation operators: glueballs

- To measure the correlation functions, we need to measure appropriate creation operators on our ensemble.
- The operators should be functions of the fields on a time-slice and transform irreducibly according to an irrep of O_{h} (as well as isospin, charge conjugation etc.)
- First example: the glueball. An appropriate operator would be a gauge invariant function of the gluons alone: a closed loop trace.
- Link smearing greatly improved ground-state overlap.
- Apply smoothing filters to the links to extract just slowly varying modes that then have better overlap with the lowest states.

Creation operators: glueballs

- What do operators that transform irreducibly under O_{h} look like?

- Can make three operators by taking linear combinations of these loops.
- They form two irreducible representations (A_{1}^{g} and E_{g}).

Creation operators: glueballs

- After running simulations at more than one lattice spacing, a continuum extrapolation ($a \rightarrow 0$) can be attempted.
- The expansion of the action can suggest the appropriate choice of extrapolating function.

Isovector meson correlation functions

- To create a meson, we need to build functions that couple to quarks.
- In the simplest model, a meson would be created by a quark bilinear, so the appropriate gauge invariant creation operator (for isospin $I=1$) would be

$$
\Phi_{\text {meson }}(t)=\sum_{x} \bar{u}(\underline{x}, t) \Gamma U_{\mathcal{C}}(\underline{x}, \underline{y} ; t) d(\underline{y}, t)
$$

where Γ is some appropriate Dirac structure, and $U_{\mathcal{C}}$ a product of (smeared) link variables.

- As before, appropriate operators that transform irreducibly under the lattice rotation group O_{h} are needed.
- The complication here is that we do not have direct access to the fermion integration variables in the computer.
- As with updating algorithms, the observation that the quark action is bilinear saves us:

$$
\left\langle\psi_{a}^{\alpha}(\underline{x}, t) \bar{\psi}_{b}^{\beta}\left(\underline{y}, t^{\prime}\right)\right\rangle=\left[M^{-1}\right]_{a b}^{\alpha, \beta}\left(x, t ; y, t^{\prime}\right)
$$

Isovector meson correlation functions (2)

- Now the elementary component in the correlation function is

$$
\begin{gathered}
\langle 0| \Phi(t) \Phi^{\dagger}(0)|0\rangle= \\
\left\langle\operatorname{Tr} M^{-1}(\underline{z}, 0 ; \underline{x}, t) \Gamma U_{\mathcal{C}}(\underline{x}, \underline{y}, t) M^{-1}(\underline{y}, t ; \underline{w}, 0) \Gamma^{\dagger} U_{\mathcal{C}^{\prime}}(\underline{w}, \underline{z}, 0)\right\rangle
\end{gathered}
$$

- In general, this is still expensive to compute, since it requires knowing many entries in the inverse of the fermion operator, M.
- If the choice of operator at the source is restricted and no momentum projection is made, only the bilinear at (eg) the origin on time-slice 0 is needed.
- Quark propagation from a single site to any other site is computed by solving $M \psi=e_{0}^{a, \alpha}$ where e_{0} are the 12 vectors that only has non-zero components at the origin.
- Getting away from this restriction by estimating "all-to-all" propagators is an active research topic.

Isovector meson correlation functions (3)

Charmonium spectroscopy

J. Dudek, R. Edwards, N. Mathur \& D. Richards

$$
P C=-+
$$

$P C=--$

Isoscalar meson correlation functions (1)

- If we are interested in measuring isoscalar meson masses, extra diagrams must be evaluated, since four-quark diagrams become relevant. The Wick contraction yields extra terms, since

$$
\left\langle\psi_{i} \bar{\psi}_{j} \psi_{k} \bar{\psi}_{l}\right\rangle=M_{i j}^{-1} M_{k l}^{-1}-M_{i l}^{-1} M_{j k}^{-1}
$$

- Now

$$
\begin{gathered}
\langle 0| \Phi_{I=0}(t) \Phi_{I=0}^{\dagger}(0)|0\rangle= \\
\langle 0| \Phi_{I=1}(t) \Phi_{I=1}^{\dagger}(0)|0\rangle-\langle 0| \operatorname{Tr} M^{-1} \Gamma U_{\mathcal{C}}(t) \operatorname{Tr} M^{-1} \Gamma U_{\mathcal{C}}(0)|0\rangle
\end{gathered}
$$

Locating the physical quark masses

H-W Lin, S. Cohen, J. Dudek, R. Edwards, B. Joó, D. Richards, J. Bulava,
J. Foley, C. Morningstar, E. Engelson, S. Wallace, J. Juge, N. Mathur, MP \& S. Ryan

$$
\begin{array}{lll}
l_{\Omega}=9
\end{array}
$$

Light hadron spectrum

H-W Lin, S. Cohen, J. Dudek, R. Edwards, B. Joó, D. Richards, J. Bulava,
J. Foley, C. Morningstar, E. Engelson, S. Wallace, J. Juge, N. Mathur, MP \& S. Ryan

Discrepancy predominantly from extrapolation in light quark mass?

No-go: the Maiani-Testa theorem

- Importance sampling Monte Carlo simulation only works efficiently for a path integral with a positive definite probability measure: Euclidean space.
- Maiani-Testa: Scattering matrix elements cannot be extracted from infinite-volume Euclidean-space correlation functions (except at threshold).
- Can the lattice tell us anything about low-energy scattering or states above thresholds?

Scattering lengths indirectly: Lüscher's method

- Scattering lengths can be inferred indirectly given the right measurements in Euclidean field theory.
- In a three-dimensional box with finite size L, the spectrum of low-lying states is discrete, even above thresholds (since the momenta of daughter mesons are quantised).
- Precise data on the dependence of the energy spectrum on L can be used to compute low-energy scattering (below inelastic threshold).
- This requires measuring energies of multi-hadron states.

Resonance energies and widths

- Above inelastic threshold, even less is known precisely.
- Resonant states will appear as "avoided level crossings" in the spectrum.
- Width can be inferred from the gap at the point where the energy levels get closest.

- Example: two states, $|\phi\rangle$ and $|\chi(p) \chi(-p)\rangle$ with $p=2 \pi / L$.

Resonance energies and widths

- Modelling these level crossings can be used to predict the energy and width of the resonance. Extracting these parameters from Monte Carlo data will require a precise scan of the energy of many states (ground-state, first excited, second ...) in a given symmetry channel to be carried out at a number of lattice volumes.

Requirements for measuring decay widths in QCD

- Light, dynamical quarks (to ensure unitarity)
- Accurate spectroscopy in appropriate channels
- Access to excited states in these channels
- Ability to create multi-hadron states

Quark propagation revisited

- For high-precision spectroscopy, we need to go beyond traditional "point-to-all" propagator methods.
- The restriction arises because M^{-1} is too large to compute and store in its entirity. We are able to apply it to a particular vector; $w=M^{-1} v$, so algorithms must start from this building block
- "All-to-all" techniques have been an active research topic for a long time, and are now entering mainstream spectroscopy calculations.
- The essential idea is to use Monte Carlo for the quark propagation phase too.
- Take a vector, η with all entries set randomly (and independently) to ± 1.
- Clearly $E\left[\eta_{i} \eta_{j}\right]=\delta_{i j}$ and so we have a stochastic representation of the identity operator in the vector space
- Now compute $\psi=M^{-1} \eta$ and so $E\left[\psi_{i} \eta_{j}\right]=M_{i j}^{-1}$

Stochastic "all-to-all" isoscalar data

S waves: $\eta_{c}\left(0^{-+}\right)$and $J / \Psi\left(1^{--}\right)$

P waves

D waves

h_{c} and the hybrid, 1^{-+}

Charmonium spectrum from all-to-all techniques

PRELIMINARY

Conclusions

- The lattice defines field theory without pertubative expansions, and regulates quantum fields
- Physics of lattice field theories can be computed numerically on (large) computers
- To do effective Monte Carlo, the Euclidean version of the field theory is needed; scattering and decay physics is difficult
- At present, simulations are starting to approach the physical quark masses
- Developing better methods to do spectroscopy is an active area of research; should be able to handle two-mesons states and isoscalar mesons with some precision soon.

