

The experimental study of nucleon form factors

R. Gilman, Rutgers University Lattice QCD and Experiment: Revealing the Structure of Hadrons Jefferson Lab 21-22 November 2008

The Experimental Study of Nucleon Form Factors

- Ground Rules
 - Since this is the first form factor talk, to a knowledgable audience, I will go quickly over the usual introductory material, but quickly
 - Bias towards space-like form factors, measured at JLab
 - Largely ignore 2y exchange, theories/fits/interpretations
- Basics and Techniques
- Existing Data
- Expected Data
- Summary

Basics: EM Current

EM currents are:

 $\mathbf{J}_{\mathbf{e}}^{\mu} = \overline{\mathbf{u}}(\mathbf{p})[\boldsymbol{\gamma}^{\mu}]\mathbf{u}(\mathbf{p})$

$$\mathbf{J}_{\mathbf{p}}^{\mu} = \bar{\mathbf{u}}(\mathbf{p}) [\mathbf{F}_{1}(\mathbf{Q}^{2}) \boldsymbol{\gamma}^{\mu} + i \frac{\kappa}{2\mathbf{M}} \mathbf{F}_{2}(\mathbf{Q}^{2}) \boldsymbol{\sigma}^{\mu\nu} \mathbf{q}_{\nu}] \mathbf{u}(\mathbf{p})$$

- Simple leading-order picture
- Spin-¹/₂ proton 2s+1=2 terms in its EM current
- Form factors (FF) are the Q²dependent coefficients that describe the internal structure of the proton

Basics: Problem with 1y Exchange Picture

- EM coupling is too strong: radiative corrections
- (c) and (d) off other target nucleons as well
- Two γ exchange, (e)+(f), responsible for Rosenbluth / polarization disagreement
- "Coulomb correction": beam electron accelerated by 1/r potential inside atomic e

Basics: Problem with 1y Exchange Picture

- Corrections depend on kinematics, acceptance
- Cross section experiments do standard "Mo + Tsai" corrections, but watch out for old data
- Two γ exchange, (e)+(f), under active investigation
- For more, try http://www.jlab.org/RC/ or talk with Andrei Afanasev

Basics: choice of FF

- Two common choices of FF:
 - Helicity conserving F_1 Dirac and helicity nonconserving F_2 Pauli FF provide a simpler current for theorists
 - Sachs electric $G_{\rm E}$ and magnetic $G_{\rm M}$ FF provide simpler cross section expressions, and a misleading interpretation, for experimentalists

 σ_{R}

$$J_{p}^{\mu} = \bar{u}(p)[F_{1}(Q^{2})\gamma^{\mu} + i\frac{\kappa}{2M}F_{2}(Q^{2})\sigma^{\mu\nu}q_{\nu}]u(p)$$

$$G_{E} = F_{1} - \tau\kappa F_{2} \qquad G_{M} = F_{1} + \kappa F_{2}$$

$$F_{1} = \frac{G_{E} + \tau G_{M}}{1 + \tau} \qquad F_{2} = \frac{G_{M} - G_{E}}{\kappa(1 + \tau)}$$

$$R_{R} \equiv \epsilon (1 + \tau) \frac{\frac{d\sigma}{d\Omega}}{\frac{d\sigma}{Mott}} = \epsilon G_{Ep}^{2}(Q^{2}) + \tau G_{Mp}^{2}(Q^{2})$$

$$\tau = Q^{2}/4M^{2}$$

$$\epsilon^{-1} = 1 + 2(1 + \tau) \tan^{2}\frac{\theta}{2}$$

Basics: Extracting FF from cross section

- FF can be determined from cross sections in model dependent or modelindependent ways
 - Choose functional form for FF and fit data
 - Use Rosenbluth technique on cross sections: measure different combinations of E, θ that give the same Q² but different ϵ

$$\sigma_{\rm R} \equiv \epsilon (1+\tau) \frac{{\rm d}\sigma/{\rm d}\Omega}{{\rm d}\sigma_{\rm Mott}/{\rm d}\Omega} = \epsilon G_{\rm Ep}^2({\rm Q}^2) + \tau G_{\rm Mp}^2({\rm Q}^2)$$

$$\epsilon^{-1} = 1 + 2(1 + \tau) \tan^2 \frac{\theta}{2}$$

Rutgers

Basics: Extracting FF from cross section

Basics: Extracting FF from "polarizations"

- Double-polarization observables depend on ratios of the EM FF, allowing a small FF to be determined from polarizations and measured cross sections
 - Polarized beam + recoil proton polarization determined by polarimeter (FPP)
 - High luminosity, but FPP eA^2 ~ 0.01
 - Polarized beam + polarized target asymmetry
 - Low luminosity, dilution factors
- Proposed by Akhiezer et al., 1950s and 1960s, repopularized by Arnold, Carlson, and Gross in 1980s
- First double-polarization FF experiments at Bates and Mainz ~ 1990

Lattice QCD and Experiment, JLab, 21-22 Nov 2008 The Experimental Study of Nucleon Form Factors

Polarization Transfer

 $I_{0}P_{x} = -2\sqrt{\tau(1+\tau)}\tan(\frac{\theta_{e}}{2})G_{E}^{p}G_{M}^{p}$ $I_{0}P_{z} = \frac{E+E'}{M}\sqrt{\tau(1+\tau)}\tan^{2}(\frac{\theta_{e}}{2})G_{Mp}^{2}$

 $R = \mu_{p} \frac{G_{Ep}}{G_{Mp}} = -\mu_{p} \frac{E + E'}{2M} \tan(\frac{\theta_{e}}{2}) \frac{P_{x}}{P_{z}}$

 $\bar{\rho}$

Py: induced from $I_0 = G_E^2 + \frac{\tau}{\epsilon} G_M^2$ (imaginary part of) 2γ exchange, small and hard to measure

FPP azimuthal asymmetry determines R, sensitive only to spin transport

Polarization Transfer

 $I_{0}P_{x} = -2\sqrt{\tau(1+\tau)}\tan(\frac{\theta_{e}}{2})G_{E}^{p}G_{M}^{p}$ $I_{0}P_{z} = \frac{E+E'}{M}\sqrt{\tau(1+\tau)}\tan^{2}(\frac{\theta_{e}}{2})G_{Mp}^{2}$

$$\mathbf{R} = \mu_{\mathbf{p}} \frac{\mathbf{G}_{\mathbf{E}\mathbf{p}}}{\mathbf{G}_{\mathbf{M}\mathbf{p}}} = -\mu_{\mathbf{p}} \frac{\mathbf{E} + \mathbf{E'}}{\mathbf{2M}} \tan(\frac{\theta_{\mathbf{e}}}{\mathbf{2}}) \frac{\mathbf{P}_{\mathbf{x}}}{\mathbf{P}_{\mathbf{x}}}$$

 $\bar{\rho}$

FPP azimuthal asymmetry determines R, sensitive only to spin transport Py: induced from $I_0 = G_E^2 + \frac{\tau}{\epsilon} G_M^2$ (imaginary part of) 2γ exchange, small

> Insensitive to: spectrometer solid angle, target density, trigger and detector efficiencies, beam charge, charge asymmetry, normal radiative corrections, false asymmetries in FPP.

These might affect statistics and size of uncertainty, but not value of data point.

Polarization Transfer

 $I_{0}P_{x} = -2\sqrt{\tau(1+\tau)}\tan(\frac{\theta_{e}}{2})G_{E}^{p}G_{M}^{p}$ $I_{0}P_{z} = \frac{E+E'}{M}\sqrt{\tau(1+\tau)}\tan^{2}(\frac{\theta_{e}}{2})G_{Mp}^{2}$

$$\mathbf{R} = \mu_{p} \frac{\mathbf{G}_{Ep}}{\mathbf{G}_{Mp}} = -\mu_{p} \frac{\mathbf{E} + \mathbf{E'}}{\mathbf{2M}} \tan(\frac{\theta_{e}}{\mathbf{2}}) \frac{\mathbf{P}_{x}}{\mathbf{P}_{z}}$$

FPP azimuthal asymmetry determines R, sensitive only to spin transport Py: induced from $I_0 = G_E^2 + \frac{\tau}{\epsilon} G_M^2$ (imaginary part of) 2γ exchange, small

> Minimal sensitivity to helicity-correlated asymmetries (beam energy, position, angle) and box/cross 2y radiative corrections.

We measure "%" asymmetries, not ppm.

Polarization Transfer: naïve analysis

FPP azimuthal asymmetry phase shift determines R, magnitude determines product $P_e A_c$

(transport coordinates)

R Gilman, Rutgers Physics & Astronomy

(Xiaohui Zhan et al.)

In practice, use COSY for optics, generate matrix elements for each event, maximum likelihood analysis determines target polarizations

Polarization Transfer: neutrons

Nucleon polarimeters measure transverse, not longitudinal, spin components through the $\sigma \cdot L$ spin-orbit force

For protons, being bent in the spectrometer magnetic field leads to spin precession, mixing the spin components and allowing both to be measured at the same time - for planar trajectories:

$$\chi_{\text{precess}} = \frac{g-2}{2} \gamma \theta_{\text{bend}}$$

The neutron spin can be precessed in a magnetic field so that the longitudinal spin rotates to transverse. Two different precession angles allow the ratio of form factors to be determined.

Polarized Beam & Target Asymmetry

$$\mathbf{A}_{\rm phys} = \frac{\mathbf{v}_{z}\cos\theta'\mathbf{G}_{\rm M}^{2} + \mathbf{v}_{x}\sin\theta'\cos\phi'\mathbf{G}_{\rm E}\mathbf{G}_{\rm M}}{(\epsilon \mathbf{G}_{\rm Ep}^{2} + \tau \mathbf{G}_{\rm Mp}^{2})/[\epsilon(1+\tau)]}$$

- Following notation of Crawford et al, BLAST article, PRL98 - but note typos in their formula (e.g., $G_{\rm E}$, not $G_{\rm E}^{2}$)
- Measuring with two sectors at the same time allowed determination of both $R = \mu_p G_E / G_M$ and of the product $P_{beam} P_{target}$

Polarized Beam & Target Asymmetry

- Following notation of Crawford et al, BLAST article, PRL98 - but note typos in their formula (e.g., $G_{\rm E}$, not $G_{\rm E}^{2}$)
- Measuring with two sectors at the same time allowed determination of both $R = \mu_p G_E / G_M$ and of the product $P_{beam} P_{target}$

Polarized Beam & Target Asymmetry

$$\mathbf{A}_{\rm phys} = \frac{\mathbf{v}_{z}\cos\theta'\mathbf{G}_{\rm M}^{2} + \mathbf{v}_{x}\sin\theta'\cos\phi'\mathbf{G}_{\rm E}\mathbf{G}_{\rm M}}{(\epsilon \mathbf{G}_{\rm Ep}^{2} + \tau \mathbf{G}_{\rm Mp}^{2})/[\epsilon(1+\tau)]}$$

measurements

- Following notation of Crawford et al, BLAST article, PRL98 - but note typos in their formula (e.g., $G_{\rm E}$, not $G_{\rm F}^{2}$)
 - Measuring with two sectors at the same time allowed determination of both $R = \mu_p G_E / G_M$ and of the product $P_{beam} P_{target}$

Data – recent and future improvements

- Proton:
 - High precision ep cross sections (Mainz, JLab)
 - Multianalyzer FPP systems to improve FOM
- Neutron:
 - High precision en cross sections from precise neutron detector calibrations from, e.g., in situ ratio techniques
 - Improved polarized ³He targets:
 - Polarization up from ~40% to 75% in Hall A "today" from narrow bandwidth COMET lasers
 - Improved polarization rate through two-tube flowthrough, vs one-tube diffusion, geometry
 - Two orders of magnitude improvement of a few years ago!

Data – John Arrington's ep Database

- http://www.jlab.org/resdata/
 - elastic e-p cross sections, used in the global fit of Phys.Rev.C68:034325(2003) [arXiv:nucl-ex/0305009]
 - elastic e-p cross sections, used in the global fit of Phys.Rev.C69:022201(R)(2003) [arXiv:nucl-ex/0309011]

Current / Recent and Expected Data

- **G**_Mⁿ:
 - Quasifree ed ep folded with QF
 - Quasifree (e,e') with pol. beam pol. target (low Q^2)
 - Quasifree (e,e'n) (all Q^2)
- **G**_Eⁿ:
 - Quasifree ³He(e,e'n) pol. Beam pol. target + cross section
 - Quasifree d(e,e'n) pol. transfer + cross section
- G_{M}^{P} : ep cross section
- G_{F}^{p} : ep polarization transfer + cross section

G_Mⁿ: CLAS E94-017

- J. Lachniet et al., submitted to PRL, arxiv/nucl-ex/0811.1716
- Data reported for Q² = 1 4.8 GeV²
- Dual ^{1,2}H targets for neutron efficiency calibration and ratio

 Data agree well with Miller LF quark model, but with either Diehl or Guidal GPD models fit to existing data

G_Mⁿ: CLAS E12-07-104

- G. Gilfoyle et al.
- Same technique as E94-017, enhanced by CLAS 12 GeV upgrade

G_{M}^{n} : Hall A PAC34 PR12-09-0xx

- B. Quinn et al., new proposal to upcoming PAC 34
- New proposal using neutron detector + Super Bigbite
 Spectrometer
- Pushes Q² up to 18 GeV², vs ~13 GeV² of approved CLAS E12-07-104

- G_{E}^{n} : existing data
- Latest results from MIT Bates BLAST, E Geis et al., PRL 101, 042501 (2008)
- No need for a bump in low Q²
 G_Eⁿ
- Lomon VMD better than Miller RCQM at low Q² or Belushkin VMD at moderate Q²

G_{E}^{n} : Hall A E02-013

- Wojtsekhowski, Cates, et al.
- Pol. ³He(e,e'n), Bigbite for e' + BigHand for n
- Highest Q² G_Eⁿ
 to date
- With pol ³He target improvements, new PAC34 proposal to go to ~ 10 GeV²

RUTGERS

"Neutron charge distribution" Miller notes high Q² data

- Long Range Plan: conventional 3d Fourier transform
- Miller Trento talk: 2d Fourier transform of F₁ gives neutron transverse charge distribution negative at origin

& Astronomy

G_M^p: Hall A E12-07-108

- B. Moffit et al.
- Cross sections for ep elastic scattering
- Old SLAC data from forwardangle cross sections, assuming form factor scaling

G_E^p: Hall C E04-108 + Hall A E12-07-109

- G_{F}^{p} -III+2 γ took data in late 2007/early 2008
- Working on analysis code, so results too preliminary to show
- E12-07-109

 approved to go
 out to 15 GeV2
 using
 calorimeter for
 electrons +
 SuperBigbite
 for protons

G_E^p: Hall A E12-07-109

- G_e^{P} -I (run 1998) went to 3 GeV² using 2 HRS spectrometers
- How does G^p_e-V get to 15 GeV²?
- Increased electron solid angle: calo vs HRS
- Increased proton solid angle: SBS vs HRS
- Increased rate capability: GEMs vs
 VDCs
- Dual vs single analyzer FPP
- Beam energy, current, polarization

Low Q² Proton Ratio Data, early 2007

Lattice QCD and Experiment, JLab, 21-22 Nov 2008 The Experimental Study of Nucleon Form Factors

Low Q² Proton Ratio Data, early 2007

Low Q² Proton Ratio Data, late 2007

E05-103 FPP calibration data (G. Ron et al PRL 98), with higher statistics than previous calibrations (Gayou, Wijesooriya, Jiang et al.) contradict idea of FW structure and clearly show FF ratio < 1

Direct Implications on Separated F.F.

Combining Berger at al. PLB 35, 1971 d σ /d Ω with new FPP data in G. Ron et al PRL 98, we showed fits tend to get $G_{\rm M}$ about right, but

tend to over predict $G_{\rm E}$

Table 1. Differential cross sections: The quoted errors are only random errors. A normalization error of $\pm 4\%$ has to be added.

$q^2(f^{-2})$	θ (⁰)	$s_{0}(\text{GeV})$	$rac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \left[10^{-34} rac{\mathrm{cm}^2}{\mathrm{ster}}\right]$		
2	25,25	0,660	32800	± 990	
3	25,25	0.815	18570	± 550	
3.065	35.15	0.605	8630	± 260	
5	25.25	1.064	8410	± 260	
	35.15	0.784	4000	±120	
8	25,25	1.364	3610	± 90	
10	25.25	1,537	2285	± 46	
	31.74	1,249	1328	± 26	
	32,27	1.231	1310	± 26	
	35.15	1.142	1080	± 22	
	50,06	0.848	460.3	± 9.4	
	64.72	0.696	252.9	± 4.1	
	90.27	0.556	117.8	+ 23	

Lattice QCD and Experiment, JLab, 21-22 Nov 2008 The Experimental Study of Nucleon Form Factors

Low Q² Proton Ratio Data, late 2007

Belushkin fit and lowest Q² points suggest a + slope at Q² = 0, conventionally implying slightly larger magnetic radius

Rutgers

Radii - Miller et al. As $Q^2 \rightarrow \cdot$, $R \approx 1 - \frac{Q^2}{6} (R_M^2 - R_E^2)$ $b_{M}^{2} - b_{E}^{2} = \frac{2}{3} \frac{\mu}{\kappa} (R_{M}^{2} - R_{E}^{2}) + \frac{\mu}{M^{2}}$ While the sign of $R_{M}^{2} - R_{F}^{2}$ is basically undetermined - is R really linear out to 0.2 or 0.3 GeV²? - all data and fits indicate $b_{\mu}^2 - b_{\epsilon}^2 > 0$ Fit gives: $R_{M}^{2} - R_{F}^{2} = -0.014 \pm 0.007$ and $b_{M}^{2} - b_{F}^{2} = 0.110 \pm 0.007$

Mainz, E08-007 Status

- Mainz measured low energy part of their data set, working on achieving 1% cross sections
- E08-007 measured polarization transfer in May/June 2008, and hopes to measure DSA in early 2012

E08-007 Anticipated DSA/FPP Results

(Xiaohui Zhan et al.)

- $E_{HFS} = (1 + \Delta_{QED} + \Delta_{R}^{P} + \Delta_{hvp}^{P} + \Delta_{\muvp}^{P} + \Delta_{weak}^{P} + \Delta_{s}^{P}) E_{F}^{P} = 1420.4057517667(9) MHz$
- Structure term $\Delta_s = \Delta_z + \Delta_{POL}, \Delta_z = -2am_e r_z (1 + d^{rad}_z)$
- Zemach radius $r_z = -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left[\mathcal{G}_E(Q^2) \frac{\mathcal{G}_M(Q^2)}{(1+\kappa_p)} 1 \right]$
- Some recent articles:
 - Friar and Sick, PLB 579 (2004)
 - Brodsky, Carlson, Hiller, and Hwang, PRL 96 (2005)
 - Friar and Payne, PRC 72 (2005)
 - Nazaryan, Carlson, and Griffioen, PRL 96 (2006)
 - Carlson, Nazaryan, and Griffioen, arXiv:0805.2603v1

- Friar and Sick, PLB 579 (2004)
 - Form factors from electron scattering lead to r_z = 1.086 ± 0.012 fm
 - Continued Fraction Expansion up to 4 fm⁻¹, dipole parameterization for higher Q²
 - Need $\Delta_{POL} \sim 3.2 \pm 0.5$ ppm, somewhat inconsistent with estimate of 1.8 ± 0.8 ppm

- Brodsky, Carlson, Hiller, and Hwang, PRL 96 (2006)
 - $-\Delta_s = \Delta_z + \Delta_{POL} = -38.62(16) \text{ ppm}$
 - Use $\Delta_{POL} \sim 1.4 \pm 0.3$ ppm to obtain $\Delta_z = -40.0 \pm 0.6$ ppm, and $r_z = 1.043 \pm 0.016$ fm
 - Fits / parameterizations give $\Delta_z = -38.8 \rightarrow -41.7$ ppm, and $r_z = 1.012 \rightarrow 1.088$ fm
 - Needed Zemach correction between modern fits and the dipole

- Nazaryan, Carlson, and Griffioen, PRL 96 (2006)
 - $\Delta_{s} = \Delta_{z} + \Delta_{POL} = -38.58(16) \text{ ppm, but } \Delta_{z} = -39.32 \text{ ppm}$ (dipole) or ~ -41->-42 ppm (Kelly,Sick fits) and $\Delta_{POL} \sim$ 1.3 ± 0.3 ppm => perhaps okay to 1 - 2 ppm

- Carlson, Nazaryan, and Griffioen, arxiv:0805.2603 (2008)
 - Use new CLAS EG1b data to determine g_1 better at low Q^2 and constrain g_2

– Form factor	r_P	r_Z	Δ_Z	Δ_R^p	$\Delta_{\rm pol}$	Δ_S
	(fm)	(fm)	(ppm)	(ppm)	(ppm)	(ppm)
AMT [<u>31]</u>	0.885	1.080	-41.43	5.85	1.88	-33.70
AS [<u>32]</u>	0.879	1.091	-41.85	5.87	1.89	-34.09
Kelly <u>[33]</u>	0.878	1.069	-40.99	5.83	1.89	-33.27
FW [<u>34]</u>	0.808	1.049	-40.22	5.86	2.00	-32.36
dipole	0.851	1.025	-39.29	5.78	1.94	-31.60

Some General Comments

- Δ_{POL} relies on low Q² estimates of g_2^{p} in an unmeasured region -> a better data base is needed (Hall A low Q² g_2^{p} E08-027, expected 2011)
 - But MAID was okay for $g_{1,2}^{n}$, so probably okay here
- For Δ_z , uncertainties (and offsets?) in the fits -> a better data base is needed (Mainz+JLab)
- Our limited result at $Q^2 = 0.4 \text{ GeV}^2$ suggests G_M is about right, but G_E is 2% smaller than fits – if this were true generally, it would reduce the Zemach correction by about 0.5 ppm, moving it in the "right" direction – but this is one point, and high Q^2 form factors are largely a

Lattice QCD and Experiment, JLab, 21-22 Nov 2008 The Experimental Study of Nucleon Form Factors

Two-Photon Exchange – The Discrepancy

Two-Photon Exchange – Hall C data

- L.Pentchev analysis of JLab E04-019
- measured R at 3 values of ε for Q²=2.49 GeV²
- no ɛ-dependence seen at
 0.01 level
- Preliminary near on-line analysis; codes still undergoing debugging
- Polarizations apparently robust
- Several calculations: shown are Chen et al (2003) with GPDs, Blunden et al (2003) in hadronic model

Two-Photon Exchange: more experiments!

- e+/e- comparisons:
 - Arrington reanalysis of old e⁺/e⁻ ratio data: slope vs ε =
 -5.8 +/- 0.8% at 0.4 GeV²
 - Novosibirsk VEPP-3 BINP: slope of e⁺/e⁻ ratio vs ε = -10.4 +/- 2.2% at 1.6 GeV² (Nikolenko)
 - CLAS eg5-TPE planned to run in 2012 (Afanasev, Arrington, Brooks, Joo, Raue, Weinstein)
 - Olympus [BLAST @ DESY] ~2011 or 2012
- Induced polarizations:
 - Hall A E05-015 (Averett, Chen, Jiang): QF polarized
 ³He(e,e') SSA
- Rosenbluth separations
 - Hall C E05-017 (Arrington): ran May 2007

Parity Violation and Strange FF

• The usual relations:

$$G_{E,M}^{p}(Q^{2}) = \frac{2}{3} G_{E,M}^{u}(Q^{2}) - \frac{1}{3} G_{E,M}^{d}(Q^{2}) - \frac{1}{3} G_{E,M}^{s}(Q^{2})$$

$$A_{\text{th}} = \frac{\sigma_{R} - \sigma_{L}}{\sigma_{R} + \sigma_{L}} = \left[\frac{-G_{F}Q^{2}}{\pi\alpha\sqrt{2}}\right] \frac{\varepsilon G_{E}^{p\gamma} G_{E}^{pZ} + \tau G_{M}^{p\gamma} G_{M}^{pZ} - \frac{1}{2}(1 - 4\sin^{2}\theta_{W})\varepsilon' G_{M}^{p\gamma} G_{A}^{pZ}}{\varepsilon (G_{E}^{p\gamma})^{2} + \tau (G_{M}^{p\gamma})^{2}}$$

$$G_{E,M}^{pZ} = \frac{1}{4} (G_{E,M}^{p\gamma} - G_{E,M}^{n\gamma}) - \sin^{2}\theta_{W} G_{E,M}^{p\gamma} - \frac{1}{4} G_{E,M}^{s}$$

- $A_{PV} + G_{E,M}^{p,nY} + G_{A}^{pZ}$ (calculated) --> $G_{E,M}^{s}$
- G. Ron et al indicated HAPPEX-I shifted by ~0.5 σ towards 0 due to smaller G_F
- Similar change in F.F. in HAPPEX-III kinematics would lead to ~1σ shift

RUTGERS

Current PV Experimental Status

- Small contributions of strange quarks at Q²~0.1 GeV²
- R. Young PRL 97: dashed contour
- K. Paschke, unpublished, solid contour
- Or R McKeown, not shown

Current PV Experimental Status

- G0 expected to unblind analysis and report backward angle measurements for $Q^2 = 0.2 0.6 \text{ GeV}^2$ soon
- HAPPEX-3 expected to run late 2009

Summary

- Lots of new data taken and about to come out
- Many experiments planned for 12 GeV era to extend form factors out to ~10-18 GeV²
- Besides EMFF themselves
 - Radii and densities
 - Hyperfine structure
 - Strange FF
 - Flavor, IS/IV decompositions
 - GPDs, fits, models, calculations

Thanks to:

- Organizers
- DOE/JLab and NSF Physics
- J Arrington, F Benmokhtar, J Gilfoyle, D Higinbotham, L Pentchev, C Perdrisat, E Piasetzky, B Quinn, G Ron, B Wojtsekhowski, X Zhan...