Status and Prospects for Meson Spectroscopy: an Experimentalist's Perspective

Ryan Mitchell Indiana University

Lattice QCD and Experiment November 21-22, 2008

The Big Picture

Why meson spectroscopy?

- 1. We want to study QCD in a "simple" environment.
- 2. The meson system presents a rich spectrum of traditional states.
 - We can isolate effects due to spin-dependence, quark mass-dependence, α_s , wavefunctions, etc.
- 3. The meson system should also provide access to gluonic fields.

The Role of Lattice QCD (I)

(from the perspective of an experimentalist studying meson spectroscopy)

I. Provide contact between experiment and QCD.

A. Precision tests.

- ➡ meson masses
- ➡ transition rates
- \rightarrow decay constants (c.f., f_D and f_{Ds})
- ➡ etc.

B. Qualitative features.

For example, **true or false**:

- 1. QCD predicts mesons with gluonic degrees of freedom.
- 2. Experiments can produce these mesons.
- 3. Experiments can observe these mesons.

The Role of Lattice QCD (II)

(from the perspective of an experimentalist studying meson spectroscopy)

II. Provide contact between models and QCD.

- ► Lattice QCD "only gives numbers."
- ► Models are "better for our intuition."

Two old calculations experimentalists still like:

Experimental Landscape

- Recent highlights of meson spectroscopy include:
 - 1. The discovery of the **X**, **Y**, **Z** states.
 - 2. High-statistics studies of $e^+e^- \rightarrow$ light quark vectors.
 - 3. Precision measurements in charmonium.
 - 4. New dialogues on light quark hybrid mesons.

(Also: the η_b , D_{SJ} states, D and D_S decay constants, the glueball picture)

- This is a time of transition:
 - **BaBar** has ended; **Belle** continues
 - CLEO-c has ended; BES II has become BES III
 - Zeus, H1 have ended; PANDA is being designed
 - JLab will upgrade from 6 GeV to 12 GeV (GlueX)
 - (*CDF* and *D0* will end; the *LHC* will begin)
- New facilities will carry the field into the future...

BES III (Beijing, China)

(7/20/08)

 Muon Counter
 SC magnet

 TOF
 TOF

 Be beam pipe
 Orift Chamber

CsI(TI) calorimeter

- Unprecedented Statistics:
 - **10 billion J/\psi per year** (*BES II has 58 million*)
 - **3 billion** ψ (**2S**) **per year** (*CLEO-c has 27 million*)
- Wide Physics Scope:
 - charmonium
 - light quark spectroscopy
 - energy scans
 - open charm

BES III physics book: arXiv:0809.1869

 e^+e^- in the τ -charm region

BEPC II Luminosity:

╋

New BES III Detector.

 $\sim 10^{33} \,\mathrm{cm}^{-2}\mathrm{s}^{-1}$

PANDA (Darmstadt, Germany)

GlueX (Newport News, USA)

Highlights of Meson Spectroscopy

- 1. The discovery of the X, Y, Z states.
- 2. High-statistics studies of $e^+e^- \rightarrow$ **light quark vectors**.
- 3. Precision measurements in charmonium.
- 4. New dialogues on light quark hybrid mesons.

not covered but also new and interesting: 5. the η_b discovery, 6. D_{SJ} states, 7. D and D_S decay constants, 8. the glueball picture

- The X,Y, and Z states have brought about an unexpected renaissance in meson spectroscopy.
- Start with the X(3872) in B decays.
- Then the **Y**(4008), **Y**(4260), **Y**(4350), **Y**(4660) in Initial State Radiation.

- The discoveries have extended beyond the charmonium region into bottomonium (the Y(10890)) and strangeonium (the Y(2175)).
- It is difficult to fit these new states into the traditional charmonium (or bottomonium or strangeonium) spectra. \Rightarrow Molecules? \Rightarrow Tetraquarks? \Rightarrow Hybrid Mesons?

X(3872)

- Discovered by **Belle** in $B^+ \rightarrow K^+X$; $X \rightarrow \pi^+\pi^-J/\psi$ (**PRL 91, 262001** (2003): 2nd most cited Belle paper(!)).
- Confirmed by **BaBar**, **CDF**, and **D0**.
- The mass (3872.2 ± 0.8 MeV/c²) is very close to M(D⁰) + M(D^{0*}). Width is ~3 MeV/c².
 - → Possible D⁰D^{0*} molecule? Tetraquark?
- **CDF** angular analysis concludes it has $J^{PC} = 1^{++}$ or 2^{-+} (**PRL 98, 132002** (2007)).
- **Belle** and **BaBar** both see $X(3872) \rightarrow D^0D^{0*}$.
- Belle now observes X(3872) in both $B^+ \rightarrow K^+X$ and $B^0 \rightarrow K^0X$ with about equal strengths.
- **BaBar** has observed $X(3872) \rightarrow \gamma \psi(2S)$ and $\gamma J/\psi$, with $B(\gamma \psi(2S))/B(\gamma J/\psi) \sim 3$.

- Discovered by **BaBar** in ISR $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ (PRL 95, 142001 (2005)).
- ISR gives $J^{PC} = 1^{--}$.
- Confirmed by **CLEO** and **Belle**.
- Latest **BaBar** results:
 - → $M = 4252 \pm 6 + 2_{-3} \text{ MeV/c}^2$.
 - No expected 1⁻⁻ charmonium states in this region. Models predict hybrids between 4200 and 5000 MeV/c².
 - ➡ Possible charmonium hybrid meson?
 - **CLEO** finds $\pi^0 \pi^0 J/\psi / \pi^+ \pi^- J/\psi$ consistent with an isoscalar.
 - Belle observes Y(4008), not confirmed by BaBar.

Y_b(10890)?

- **Belle** performed a scan in 2005 around the Y(**5S**)/Y(**10860**) peak to maximize **B**_S production.
- Anomalously large rates to π⁺π⁻Υ(nS) were observed, more than 100 times what one would expect from Y(4S).
- This is similar to the charmonium system if you compare Y(4260) with $\psi(nS)$ or $\psi(3770)$.
- Perform another scan (12/07) and see if the $\pi^+\pi^-\Upsilon(\mathbf{nS})$ cross sections look like $\Upsilon(\mathbf{5S})$?

NO.

- → $M = 10889.6 \pm 1.8 \pm 1.5 \text{ MeV/c2}$
- $\Gamma = 54 + 8.5 7.2 \pm 2.5 \text{ MeV/c2}$
- Is this a bottomonium version of Y(4260)?

 $Y_{s}(2175)?$

- Is there also a strangeonium analogue of the Y(4260)?
- **BaBar** looked at $e^+e^- \rightarrow \phi f_0(980)$ using ISR, where $\phi \rightarrow K^+K^-$ and $f_0(980) \rightarrow \pi^+\pi^-$ or $\pi^0\pi^0$.
 - → peak at 2175:
 - → $M = 2175 \pm 10 \pm 15 \text{ MeV/c}^2$
 - $\Rightarrow \Gamma = 58 \pm 16 \pm 20 \text{ MeV/c}^2$

- **BES** also sees this state in $J/\psi \rightarrow \eta \phi f_0(980)$
 - → M = $2175 \pm 10 \pm 15 \text{ MeV/c}^2$ → Γ = $58 \pm 16 \pm 20 \text{ MeV/c}^2$
- Belle also confirms. (arXiv:0808.0006)

 $M(\phi f_0(980)) (GeV/c^2)$

15

• The Future?

• Keep looking for new decay modes of the X, Y, Z to help elucidate their nature.

- → Belle continues running in the Υ region (ISR, B decays).
- → **BES** III has the capability to do energy scans in the ψ region.
- → **PANDA** will be well-suited to study any X, Y, Z coupling to pp.
- → **GlueX** could offer insight into the $Y_s(2175)$.

Light Quark Vectors

 BaBar has been using Initial State Radiation (ISR) to study e⁺ e⁻ → V

- One motivation is to provide input for the hadronic contributions to the calculation of $(g-2)_{\mu}$.
 - → Measure R exclusively (!).

2/4

• But meson spectroscopy also benefits (e.g., the Y(2175)).

2/4

Light Quark Vectors

2/4

Light Quark Vectors

Use $e^+e^- \rightarrow V$ to extract properties of vector excitations.

Light Quark Vectors

• Also results on:

2/4

- $\phi(1680)$
- Q(1450)
- Q(1700)
- the dip in 6π
- substructure analyses
- **BaBar** continues to analyze more final states.
- Vectors will also be produced in **GlueX**.

3/4 High-Statistics Charmonium

- The **charmonium system** provides a laboratory for the study of the strong force.
- The experimental situation:
 - Many new results from CLEO's total sample of 27M $\psi(2S)$.
 - **Belle** has new γγ results and **BaBar** has new B decays to charmonium results.
 - We are about to enter a new **BES III** era.
- Recent results in charmonium include:
 - M1 radiative transitions:
 - $\psi(1S,2S) \rightarrow \gamma \eta_c(1S)$ and $\eta_c(1S)$ mass
 - h_c mass
 - $J/\psi \rightarrow \gamma \gamma \gamma$
 - χ_{cJ} decays: $\rightarrow \gamma(\varrho, \omega, \phi)$, two bodies, $\gamma\gamma$, etc.
 - $\eta_c(2S)$ properties
 - etc. etc.

 $J/\psi, \psi(2S) \rightarrow \gamma \eta_c(1S)$ (CLEO)

CLEO: 24.5M $\psi(2S)$ arXiv:0805.0252[hep-ex] (submitted to PRL)

3/4

Three Measurements of M1 Transitions:

- A. $B(\psi(2S) \rightarrow \gamma \eta_c) = (4.32 \pm 0.16 \pm 0.60) \times 10^{-3}$ from inclusive η_c decays.
- B. $B(J/\psi \rightarrow \gamma \eta_c) / B(\psi(2S) \rightarrow \gamma \eta_c)$ using exclusive η_c decays.
- C. **B**($J/\psi \rightarrow \gamma \eta_c$) = (1.98±0.09±0.30)% taking A×B.

 $= B(J/\psi \rightarrow \gamma \eta_c)$

- One "surprise" was the non-trivial line-shape of the η_c .
- Recent Lattice QCD Results (Dudek et al, PRD73,07450(2006)) predict $\Gamma_{\gamma\eta c} = (2.0\pm0.1\pm0.4)$ keV $\Rightarrow B(J/\psi \rightarrow \gamma \eta_c) = (2.1\pm0.1\pm0.4)\%$

The experimental value of $B(J/\psi \rightarrow \gamma \eta_c)$ is now in line with theoretical expectations.

The h_c(1P) Mass (CLEO)

3/4

CLEO 24.5M $\psi(2S)$ arXiv:0805.4599 [hep-ex] (accepted by PRL)

 $\psi(2S) \rightarrow \pi^0 h_c(1P); h_c(1P) \rightarrow \gamma \eta_c$

(factor of 9 more data than previous measurement)

3/4 High-Statistics Charmonium

• This work will continue at **BES III**.

• Also expect precision studies from **PANDA**, **Belle**, and the **LHC** (?).

- Charmonium decays also offer opportunities to do light quark specroscopy.
 - ➡ Pick your quantum numbers.

- The observation of a meson with **exotic J^{PC}** would be a **"smoking gun"** for a meson beyond the quark model.
- The lightest exotic hybrid meson is *expected* to...
 - ... have $J^{PC} = 1^{-+}$ (called π_1)
 - ... decay through an S-wave to final states like $b_1\pi$ and $f_1\pi$
 - ... be produced most readily in photoproduction

- Most data to date has come from experiments with pion beams. (For example, E852 at Brookhaven used $\pi^-p \rightarrow Xp$ at 18 GeV/c.)
- One hybrid candidate that has received a lot of attention is the $\pi_1(1600) \rightarrow \varrho \pi_{...}$

$\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$ at 18 GeV/c

The exotic wave is sensitive to the number of amplitudes in the fit...

New Preliminary Results from CLAS (arXiv:0805.4438)

 $\gamma p \rightarrow \pi^+ \pi^+ \pi^- n$ at ~5 GeV

But the 1⁻⁺ hybrid meson is supposed to be enhanced in photoproduction...

- The status of the $\pi_1(1600) \rightarrow Q\pi$ remains in flux:
 - **COMPASS** is picking up the thread in pion production where E852 left off.
 - **CLAS** is giving us a first glance at photoproduction.
- New voices are joining in the dialogue:
 - Is the Y(2170) a viable (non-exotic J^{PC}) light quark hybrid candidate?
- We can look forward to:
 - Searches for hybrid production in charmonium decays from **BES III**.
 - Possible associated production (pp $\rightarrow (\pi,\eta,\omega,etc.)X$) of hybrid mesons at **PANDA**?
 - High-energy and polarized photoproduction at **GlueX**.

Summary

- The field of meson spectroscopy is vibrant.
- Recent highlights include:
 - 1. The discovery of the **X**, **Y**, **Z** states.
 - 2. High-statistics studies of $e^+e^- \rightarrow$ **light quark vectors**.
 - 3. Precision measurements in charmonium.
 - 4. New dialogues on light quark hybrid mesons.

not covered but also new and interesting:

5. the η_b discovery,

6. D_{SJ} states,

7. D and D_S decay constants,

8. the glueball picture

- Interactions with **lattice QCD** are important for precision tests, but also for our qualitative understanding of mesons and in the justification of models.
- The future is with, among others, **BES III**, **PANDA**, and **GlueX**.