Recent Progress in Low-Temperature, Atmospheric Pressure Plasmas

Michael Barankin and Robert Hicks
Chemical Engineering and Materials Science
University of California, Los Angeles, CA
Outline

• Radio frequency, low-temperature, atmospheric plasma sources
• Discharge physics & chemistry
• Plasma applications
• Conclusions
Atomflo™ Plasma Tool

- Handheld system developed by Surfx Technologies LLC.
- Generates intense beam of radicals at low temperature.

Atomflo™ applicator
Control Unit

©2007 UCLA. All rights reserved.
High-Speed Linear Sources

- Beam widths from 1.0 to 12 inches.
- Activates plastic at up to 1.0 m/s.
- Gas temp. 150 – 300 °C.
- Treats 3D objects.

Atomflo™-500R by Surfx
Versatile Chemistry

- Atomflo™ may be fed with up to 5.0 vol.% O₂, H₂, N₂, CF₄, N₂O, NH₃, etc, in inert gas.
- Up to 20% of molecules are dissociated into atoms, O, H, N, F, etc.
- Chemicals may be injected downstream to deposit thin coatings.
Plasma Physics

• Need to determine the properties of the plasma:
 – Breakdown voltage, V_B
 – Electron density, n_e
 – Electron temperature, T_e
 – Neutral gas temperature, T_n
Helium breaks down at 170 V.

Townsend region before breakdown.

Abnormal glow discharge.
Current and Voltage Waveforms

- Smooth waveforms without spikes.
- Capacitive – current precedes voltage in time.
- Phase angle:
 - Argon $\sim 80^\circ$.
 - Helium $\sim 83^\circ$.

RF at 13.56 MHz
Electron Density

\[J = -en_e \mu_e E \]

- \(J \) = current density, A/cm\(^2\)
- \(n_e \) = plasma density, cm\(^{-3}\)
- \(\mu_e \) = electron mobility (\(\alpha \ 1/P \)), cm\(^2\)/V.s
- \(E \) = electric field (V/d), V/cm
Electron Temperature

Power balance on free electrons:

\[\varepsilon = n_e \frac{P}{K_BT_g} k_1 I_1 + n_e \left[n_e \langle \sigma_{ei} \nu_e \rangle + \frac{P}{K_BT_g} \langle \sigma_{ea} \nu_e \rangle \right] \frac{2m_e}{M} \frac{3}{2} K_B \left(T_e - T_g \right) \]

- Power loss due to ionization
- Total power input
- Loss from electron-ion collisions
- Loss from electron-atom collisions
- Electron temperature

Physics of Atomflo™ Plasma Source

• Break down voltages: helium = 170 V; argon = 550 V.
• Electron density \((n_e) = 1.0 \times 10^{12} \text{ cm}^{-3} \).
• Electron temperature = 1.2 eV.
• Neutral temperature = 150 – 300 °C.
Plasma Chemistry

• Need to determine:
 – Reaction mechanism.
 – Concentrations of radicals in plasma and afterglow.
Experimental Apparatus

Titration with NO:
\[\text{NO} + \text{O} + \text{M} \rightarrow \text{NO}_2 + \text{M} \]
Oxygen Atom Density

[O] = 1.2±0.6 ×10^{17} \text{ cm}^{-3}

Gas density = 1.3×10^{19} \text{ cm}^{-3}

⇒ 1.2 vol.% O atoms!

Conditions: 5.0 L/min Ar, 6.0 vol.% O_2, 150 W/cm^3, and 300±30 °C.
Plasma Model

- Model inputs:
 - n_e
 - T_e
 - T_g
 - Feed gases

- Mechanism:
 - 32 rxns plasma
 - 11 rxns afterglow
Comparison of Model and Experiment

• Oxygen atoms
 – Exp.: \(1.2 \pm 0.6 \times 10^{17} \text{ cm}^{-3}\)
 – Model: \(1.0 \times 10^{17} \text{ cm}^{-3}\)

• Ozone
 – Exp. *: \(4.3 \pm 0.5 \times 10^{14} \text{ cm}^{-3}\)
 – Model: \(2.9 \times 10^{14} \text{ cm}^{-3}\)

* Determined experimentally by UV absorption.
Comparison of Atmospheric Plasmas

<table>
<thead>
<tr>
<th>Type of Discharge</th>
<th>Plasma Density (cm(^{-3}))</th>
<th>O Atom Density (cm(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torch</td>
<td>(10^{16})</td>
<td>(10^{17} - 10^{18})</td>
</tr>
<tr>
<td>Corona</td>
<td>(10^{9})</td>
<td>(10^{12})</td>
</tr>
<tr>
<td>Dielectric barrier discharge</td>
<td>(10^{9})</td>
<td>(10^{13})</td>
</tr>
<tr>
<td>RF capacitive discharge</td>
<td>(10^{12})</td>
<td>(10^{16} - 10^{17})</td>
</tr>
</tbody>
</table>

Atomflo™ 1000x more powerful than coronas!
Applications

• Activating polymers for bonding.
• Metal etching.
• Depositing thin films:
 – SiO$_2$, Si$_3$N$_4$, a-Si:H, ZnO, DLC.
Surface Activation
Adhesion to Carbon-Fiber Composites

Without plasma, adhesive failure.

With Atomflo™ plasma, cohesive failure.
Treatment of 3-D Parts

• Robot-mounted plasma sources scan
 – any 3-D object.
 – any size of flat panel display.
Plasma Etching Results

- Rates exceed those obtained in low-pressure plasmas.
- Chemistry selection for disparate materials:
 - Organics etched with O_2 plasma.
 - Metals etched with CF_4/O_2 plasma.
Tantalum Etching in \(\text{CF}_4/\text{O}_2 \) Plasma Afterglow

- Tantalum is a surrogate for plutonium.
- Etch rates up to 6.0 \(\mu\text{m}/\text{min} \) observed.
- Rate most sensitive to applied power.
Surface Morphology After Tantalum Etching

Surface is heavily fluorinated: TaF$_3$ and TaF$_4$ by XPS.
Plasma-Enhanced Chemical Vapor Deposition

Plasma Gas Mixture

RF Power

Plasma Zone

Metal Precursor

Ceramic Spacer

Sample Stage

Metal Precursor

Substrate

Heater
Plasma-Enhanced Chemical Vapor Deposition

RF Power

Argon & O₂

Plasma Physics

Afterglow Chemistry

Volatile chemical precursor

Thin Film Materials

©2007 UCLA. All rights reserved.
Organosilane Precursors

- TMCTS
- TEOS
- HMDSO
- TMDSO
- HMDSN
Low Porosity Glass Grown with HMDSN

Three-dimensional image of 650-nm-thick film grown at 0.24 μm/min using HMDSN.
Diamond-Like Carbon

- Process conditions:
 - 0.1 L/min C₂H₂, 0.5 L/min H₂, 30 L/min He, 180 W & 155 °C.
- Dep. rate = 0.2 μm/min
- Confirm DLC film by C¹³ NMR with magic angle spinning.

©2007 UCLA. All rights reserved.
Conclusions

• RF atmospheric plasmas are powerful tools for surface treatment.

• Ideal for automated processing of 3-D plastics.

• New processes are being developed to greatly enhance the functionality of materials.
Acknowledgements

- **Surfx Technologies**

 Peter Guschl, Steve Babayan, Joel Penelon, Quoc Truong, & Jason Orsborn

- **U. Delaware, Center for Composite Materials**

 Joe Dietzel & Jack Gillespie

- **UCLA**

 Angela Ladwig, Eleazar Gonzalez, Greg Nowling, Xiawan Yang, Maryam Moravej, Vincent Tu, Sarah Habib, Franky Chan, Melanie Yajima, Vu Le, Jarrad Ghirdalucci, Guowan Ding, Andreas Schutze
Numerical Model of the Plasma Chemistry

• One-dimensional “plug-flow” simulation.
• Mechanism includes 39 elementary steps among 19 species: neutrals, ions and metastables.
• Results compared to titration experiment.
Profiles of the Charged and Metastable Species

Electronegative plasma: $n_{F^-} = 5 \times n_e$.

Gas flow

$T_e = 2.5 \text{ eV}$
Profiles of the Neutral Species

Fluorine atom density: 1.3×10^{15} cm$^{-3}$.

Good agreement with H$_2$ titration.
H$_2$ Titration of F Atoms in CF$_4$ Plasma Afterglow

F atoms = 2x1015 cm$^{-3}$
1.2 cm downstream of electrodes.

12.8 Torr CF$_4$, 2.3 Torr O$_2$, 745 Torr He, 73 W/cm3 and 100 °C.
Effect of Process Conditions on Tantalum Etch Rate

- **O₂ Partial Pressure (Torr)**: The etch rate starts at a lower value and then increases as the O₂ partial pressure increases. There is a visible trend where the etch rate increases with increasing O₂ partial pressure.

- **CF₄ Partial Pressure (Torr)**: The etch rate shows a linear increase with the CF₄ partial pressure. The relationship is linear, indicating a direct proportional increase in etch rate with the CF₄ partial pressure.
Plasma Etching of UO₂

Process conditions:

– Total Flow: 42 L/min, He/O₂/CF₄
– O₂: 6 Torr
– CF₄: 15 Torr
– RF Power: 300 W
– Temperature: 200 °C
– Nozzle-to-sample distance: 3 mm
Uranium Oxide Surface Morphology

Scanning electron micrographs of UO$_2$ film before and after etching with CF$_4$/O$_2$/He plasma:

Before | After a 2-min etch | After a 5-min etch

©2007 UCLA. All rights reserved.
Surface Composition

X-ray photoelectron spectra of UO₂ film

Counts

Binding Energy (eV)

©2007 UCLA. All rights reserved.
Dependence of U 4f Peak Intensity on Time

- Rate accelerates due to increased film porosity.
- Re-deposition may result in tail at >3 min.