Streaming Readout

D.K. Hasell

Future Trends in Nuclear Physics Computing
Thomas Jefferson National Accelerator Facility
March 16–18, 2016
Traditional Triggered Data Acquisition Scheme

10 MHz
100 kHz
1 kHz
100 Hz
5 Hz
100 kB
Traditional Triggered Data Acquisition Scheme

Can not read out everything
- event rate / size greater than what can be handled in time
- must reduce rate by discarding background and noise events
- and / or selecting “interesting” events

Identifying “interesting” events is the challenge
- timing with respect to beam crossing very useful
- indications of energy in calorimeter, potential track, muon signal, . . .
- tracks coming or not coming from interaction point, . . .

Problems with this approach
- often special detectors, hardware, and electronics to provide a trigger
- decision based on a subset of the data from detector
- based on a posteriori knowledge, looking for what you expect
Red Light Camera Trap

The second image records the vehicle proceeding through the intersection while the light is red.

The first image records the vehicle behind the crosswalk while the light is red.

Wireless Detection Sensor

Detection Zone
Might Miss the Unexpected
The Energy Frontier

LHC - run 2 - now - luminosity $= 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
- ~ 20 pile-up events per beam crossing, 40 MHz rate or 25 ns
- hardware level 1 trigger reduce rate to 100 kHz, decision in $\sim 2 \mu s$
- 20,000 cores high level trigger to 1 kHz in ~ 200 ms

LHC - run 4 - 2026 - luminosity $= 10^{35} \text{ cm}^{-2}\text{s}^{-1}$
- ~ 200 pile-up events per beam crossing, every 25 ns
- level 0 trigger to 1 MHz in $\sim 6 \mu s$
- level 1 trigger to 400 kHz in $\sim 30 \mu s$
- high level trigger to 10 kHz

Major changes to meet upgraded luminosity

Moral: Assume the luminosity will be upgraded
EIC - Event Rates assuming 10^{33} cm$^{-2}$s$^{-1}$
EIC - nominally $10^{33} - 10^{34}$ cm$^{-2}$s$^{-1}$ - but?
Will run at JLab on the LERF
- $6 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$
- current design $\sim 80,000$ channels, may be drastically reduced
- 4 TB/s
- possible to also run at Cornell ERL at $10 \times L$
Advances in Computer Performance

Advances in Computer Performance

Single core performance advances may be slowing down?
- was driven by improved processes, architecture, organisation, . . .
- then limited by power, memory latency, I/O speed, . . .
- cache speeds didn’t keep up with CPU speeds

But computer performance will continue to improve $\times 1000$ by 2022?
- improvements in production process
- multi-core processors, MIC, . . .
- on core DRAM
- solid state disks

Leverage computer performance/$\$ and disk space/$\$ for physics
Streaming Readout Components

Front-End Electronics
- specific for each detector type and requirements
 - pre-amp, amplifier, shaper / filter, discriminator, . . .
- FADC - sampling rate and precision as needed
 - can be somewhat removed from other components
 - accepts multiple channels as input
 - suppresses channels with no signal
 - streams multiplexed output to data processing unit

Connection to data processing
- ethernet, infiniband, or special protocol
- copper or optical fiber
 - optical fiber might provide electrical isolation
- digital data so electronics can be remote from detector
 - outside radiation environment, accessible, maintainable
Streaming Readout Components

Data processing unit - FPGA based
- accepts signals from several FEE
- de-multiplexes signal into individual channels
- FPGA processes each channel to extract data
 - leading edge or CF timing, time above threshold, . . .
 - amplitude, total charge, . . .
- maintains histograms of data for each channel
- adds time stamp and channel ID
- streams channels with valid data (more zero suppression)

Clock, slow control, and calibration channels
- all units synchronized with a common clock pulse for time stamp
- 2-way slow control communication with master DAQ system
 - sends histograms periodically
 - accepts threshold or pedestal settings for each channel
 - can apply calibration to the raw data
Streaming Readout Components

Data distribution module - FPGA based
- accepts signals from several data processing units
- sorts data according to time stamps into time windows
- sends data to different event reconstruction CPUs
 - based on time window and beam crossing
 - time windows may overlap

Reconstruction CPUs
- collects all data from all detector for given time window
- analyses data from all detectors to accept or reject
- if accepted can build event and save
- otherwise move on to the next available time window
Alternative Streaming Readout Concept
Alternative Streaming Readout Concept

Replace data merge and data distribution nodes
- replace with computers or clusters with disk space
- specific for a given detector
- can begin reconstruction and sorting within time windows
- stores data locally for each time window
- provides data upon request to event building CPUs
- can share data with other detector CPUs
- discards data if “sell by date” expired
Streaming Readout Issues

Readout scheme strongly coupled to detector technology

- FEE and Data Processor tailored to detector and its requirements
- FPGAs non-trivial to program
 - code also specific to detector and requirements
- need a basic design that can be applied to several detectors
 - change sampling rate, number of bits, etc. as needed
 - standardize code to obtaining timing, ADC, QDC, …

Detector must also be designed with streaming readout in mind

- detector can not require a trigger to start readout
- GEM, micromegas with APV, DREAM ASICs readout need a trigger
Hardware

Front-End Electronics
- currently in contact with an ASIC manufacturer
- 64+ channels, 40 MSPS, 14 bit ADC
- built-in gain and shaping controls
- zero suppression on chip
- high bandwidth serial transceiver lanes

Data processing cards exist commercially
- CAEN interested in collaborative development
 - desktop, NIM, and VME FPGA modules exist
 - 64 channel, 62.5 MSPS, 12 bit
 - software for peak sensing ADC, QDC, and TDC measurements
- CAEN user programmable FPGA logic module
 - up to 192 input channels
 - up to 130 output channels
 - 32 independent gate and delay generators
SLAC - ATCA based DAQ and control systems
- RCE (Reconfigurable Cluster Element)
- plug-in architecture for applications
- firmware and software development kits
- based upon Xilinx Zynq platform
- full mesh 10G network
- 96 high speed back end links
- in use at DUNE, ATLAS, HPS, . . .
- modified HPS board at MIT for DarkLight evaluation

FNAL
- CAPTAN+X - compact and programmable data acquisition
 - Xilinx Virtex 7
 - 10 GB ethernet
- CAPTAN+X used in off-the-shelf DAQ system for test stations
DAQ / Trigger Development at National Laboratories

BNL
- not focusing on a single solution
- develop solutions for each experiment’s needs
- use commercial, off-the-shelf components
- energy frontier
 - ATLAS - LAr calorimeter (digitizer), MNSW (FE ASIC), TDAQ
- intensity frontier
 - MicroBooNE (FEE), SBND (TPC R/O), DUNE (cold ASIC)
- capability to produce ASIC as well as full boards useful

ANL ? JLab ? …

Would be nice if the national labs worked together and standardized
Crates Standards

NIM

CAMAC

FastBus

VME
- lots of crates still in use, large number of manufacturers
- will stay as a legacy system for decades
- parallel, asynchronous bus but VME320 only 320 MB/s
- protocol easy to implement in FPGA
- limited power and cooling
- VXI, VPX similar

VXS
- compatible with VMS but has 10 GB agnostic differential lines
Advanced Telecommunications Architecture - ATCA

Driven by telecom / internet industry
- Amazon, NetFlix, Google, . . .
- cell phones

Crate standard
- -48 V power, zone 1
- redundant cooling
- crate management
- 40 GB backplane, zone 2

Blade standard
- 400 W per blade
- hot swapable
- RTM, zone 3
Triggered and streaming readout systems not so different
- triggered systems discard events early based on subset of data
- goal of streaming systems is to look at all the data
- barring some hardwired electronic trigger both rely on computations

Performance improvements make streaming readout more accessible
- faster FPGAs, multi-core computers, disk access, and networks
- motivation to design for the future technology not the past

Programming a streaming readout may be simpler than the alternative
Thank You