Parallel Computing

David Lawrence, JLab
Mar. 16, 2016

III

Types of “Parallel” Computing

Y
,\‘ =
‘}Q‘:‘E ’ﬂ
N T

e Nomenclature
— Parallel vs. concurrent
— Bit-level vs. data level

 Multi-threaded
* Multi-process
e Distributed

e Grid

e SIMD

* GPU/GPGPU

e MIC

3/2/16 Parallel Computing - David Lawrence 2

SIMD = Single Instruction Multiple Data

e Special registers on CPU where multiple numbers
can be packed and operated on simultaneously

 Also known as “vectorization”

e gcc: “...vectorization is enabled by the flag -ftree-vectorize and by

default at -03”

 CPU vendors have their own implementations

and evolutions
(e.g. Intel has ...)

e MMX (1997, Pentium 5)
e SSE (1999) — SSE4(2006)
* AVX (2008)
 MIC/VPU

64bit

128 bit
256 bit
512 bit

SIMD = Single Instruction Multiple Data

AN 1 la° 1 1

W W W
Ul vl el
O

~ ° 1 ° _

// Multiply a 5x1 matrix by its transpose

inline DMatrix5x5 MultiplyTranspose(const DMatrix5x1 &ml){
ALIGNED_16_BLOCK_WITH_PTR(__m128d, 5, p)

}

m128d &bl=p[0];

m128d &b2=p[1];

m128d &b3=p[2];

m128d &bd=p([3];

m128d &bS5=p[4];

bl=_mm_set1l_pd(m1(@));

b2=_mm_set1_pd(m1(1));

b3=_mm_set1l_pd(m1(2));

bd4=_mm_set1l_pd(m1(3));

b5=_mm_set1_pd(ml(4));

return DMatrix5x5(_mm_mul_pd(ml.GetV(®),bl),_mm_mul_pd(ml.GetV(0),b2),
_mm_mul_pd(ml.GetV(®),b3),_mm_mul_pd(ml.GetV(@),bd),
_mm_mul_pd(ml.GetV(@),b5),
_mm_mul_pd(ml.GetV(1),bl),_mm_mul_pd(ml.GetV(1),b2),
_mm_mul_pd(ml.GetV(1),b3),_mm_mul_pd(ml.GetV(1),bd),
_mm_mul_pd(ml.GetV(1),b5),
_mm_mul_pd(ml.GetV(2),bl),_mm_mul_pd(ml.GetV(2),b2),
_mm_mul_pd(ml.GetV(2),b3),_mm_mul_pd(ml.GetV(2),bd),
_mm_mul_pd(ml.GetV(2),b5));

3/2/16

IVIIL/VFU 2124 DIl

Parallel Computing - David Lawrence

GPU = Graphics Processing Unit

* Driven by gaming industry where high frame rates of
complex environments was required

* Many cores (few x10*-3) used in lockstep to calculate
same algorithm with different inputs

* Programmed via special API
— CUDA, OpenCL, OpenGL

3/2/16

GPU — Example CUDA code . +

Standard C Code

6 saopy(int n, float a, \

float *x, float *y)

{
for (int 7 = 0; 1 < n; ++1)
yii] a*x[1] + yl1];

}

int N = 1<<20;

SaxW(N. 2-oo x, Y):

)

CPU GPU
MULTIPLE CORES THOUSANDS OF CORES
C with CUDA extensions

global \
Cd saxpy(int n, float a,

float *x, float *y)
{

int 1 = blockidx.x*blockDim.x + threadldx.x:
iF G <n) v a*x[i1] + yli];

}

int N = 1<<20;
cudmemcpy(x, d x, N, cudaMemcpyHost ToDevice);
cudmemcpy(y, dy, N, cudiMemcpyHost ToDevice);

J256555(N, 2.0, x, y);

saxpy << <1000
\ud.ﬁcﬂ(py(dy, vy, N, cuddluquOeviceTotbst)/

3/2/16 Parallel Computing - David Lawrence 6

MIC = Many Integrat

ed Cores

e Xeon Phi = Intel’s MIC system
— 60 cores, 1GHz on a PCle x16 card
— 512 bit wide vectors
— Original project: Larrabee
* Attempt to make GPU from older x86 design
e Linux variant runs on MIC card independent of host OS
— MIC system is based on 2.4 Linux kernel
— File system not automatically shared
e MIC cards can be configured to mount host’s filesystem via NFS
* Must use intel-provided cross-compiler to build
executables

— Could not build sim-recon because ROOT was needed
— Could not build ROOT because libX11-devel was needed

3/2/16 Parallel Computing - David Lawrence 7

Performance using JANA TestSpeed plugin

| Multi-threaded JANA Teston MIC |
400 —__

g [E T T T]" T E T T T T E T] T T T E T T _I
z — : & : v v ww : -
£ 350 — i o : R A gt i —
- — : & = : Y Ywyw ',a"’ . LI —
2 300/ MIC : Y Yy w:’.’,\".‘o:;ﬁ. ~
® — 5 5 - 5 -
2 250 = i F . f —
S — F 183HZ _ 4o sy ; i —
< — : 384z V" ¢t : : —
£ 200 : : : : -
2 P i i i —
> — : : : : —
w — : . i i —
e : : : -

100 = : : : : =

— A‘.“fn: hyperthreads ; one hyperthread i two hyperthreads : three hyperthreads =

50 — . : E -]

00 1 1 1 1 50 I | 1 1 1 100 1 I | 1 1 150 1 1 I | 1 200 1 1 1 I | 250 1 1 1

Number of processing threads

| Multi-threaded JANA Test on HOST |
4500 T T T T T T T T T T T T T

CHENE e PRI MM
D00 o Bgit S =
o E 9°°§'i_._.—¢=‘" é E
D 3500 = e : =
— — %" . 48.38Hz _ 22.0% 0 —
4 — o i 219.80Hz 207 ; —
] 3000 — = ' : —
Q — J B ' —
2 — “' E : —
o 2500 = s : : —
E E ,Ar" ; ; E
> 2000 — A 8 A —
w — 4 F i =
1500 = oy ; ; =

— . F : =

1000 — o B - —

— & no hyperthreads . one hyperthread i —]

500 = u ; ; =

= : : =

% 5 10 15 20 25 30 35 40

Number of processing threads

Multi-Threading vs. Multi-Process

Multi-threaded

Uses same memory space

Uses less RAM

Minimizes disk head thrashing

Less overhead in process
management

Multi-process

Uses special shared memory
segments or other message passing
protocol

Independent program contexts

Simpler to debug single thread
program crashes

Less expertise required by novice
programmers

Historical Cost of Computer Memory and Storage

1.00E+09 &
- .
1.00E+08 + =
1.00E+07 - o g
F s .
1.00E+06 = . mCore
= -‘l‘
I A AlCson
1.00E+05 = boards
E % =SIMMs
1.00E+04 ‘?J 5 “‘
F 8] o X +T @ DIMMs
1.00E+03 o
E o o O Big Drives
§ F +Floppy
= 1.00E+01 + Drives
2 ; X Small Drives
= 1.00E+00 -
E E = Flash
K Memory
S 1.00E01 ¢
E #s3D
1.00E-02 +
1.00E-03 -
i Sh.
1.00E-04 %73 £
= /) NSk
1.00E-05 + /YO
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
copyright 2001, 2015, John C. McCallum .
3/2/16py 9 ! Parallel Computing - DVt Lawrence 10

Historical Cost of Computer Memory and Storage

1.00E+09

1.00E+08 >

4 00C.07 |’F|iP-F‘°PS

Crucial 8GB Kit (4GBx2) DDR3 1066 MT/s (PC3-8500) CL7 SODIMM 204-Pin Notebook Mem-

sz00 Qry Modules CT2CP51264BC1067 http://camelcamelcamel.com/product/BO01TMX5YWI
-- $784.31

T T T T T

$712 A

$623

$534

$445 -

$355 A

$266

S177

Mar. 2016

Memory Price ($/MB)
Jul. 2009

$88

50 1 1 1 1 1 T 1 1 1

~N ~ A
\\} e@ S &

2009 2010 201 2012 2013 2014 2015 2016

Price type Lowest Higr;é;t
77 O&y
Ao

B 3rd party new $30 (Oct 13, 2012) $784.31 (Jul 22, 2009)

1.00E-05 +

T T T 1717

L S AT
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

copyright 2001, 2015, John C. McCallum .
3/2/16 Parallel Computing - DVt Lawrence 11

-t
o
w

-y
o
N

[IIIIIII

RAM Requirements (MB)

10

107

RAM Requirements for MS Windows by release date

Windows

version

Moore's Law (x2 every 2 years)

[IIIIIII

| IIIIIIII | IIIIIII[

|| IIIIII[

—7,8,10

—Vista

—95

—3.1
—2.10
—1.0

1985

10 20
Year releas

1990 2000 2005 20

David Lawrence, 2016

3/2/16

Parallel Computing - David Lawrence

15
ed

12

Event Rate (Hz)

JANA RAM usage

| RAM usage vs. time I JANA: yp—br 100 events 5/18/2010 DL
ifarml6 - 8core + 8ht 2.8GHz nehalem (x5560)
LB | L | LI r L T T

)
o

JANA rate scaling for CPU intensive task

— 16 threads ES—
.| — 8 threads]
—— 4 threads ' i
—— 2 threads . -
— 1 threads

Integrated rate vs. number of threads January22,2015 0L

2.6GHz Intel Xeon E5-2650 v2 (lvy Bridge, gluon106)
70 LN L Y L L L B NN L L L B L L B L B

RAM usage (GB

60

adsisal YNVF

50

IIIIIIIIIII

60 80 100 120 140
time (sec)

| RAM usage vs. time JANA: yp—b s 100 events 5/18/2010 DL
ifarml6 - 8core + 8ht 2.8GHz nehalem (x5560)

SNOILVHILI HONHIAOD Y001 Yim pa

33.5
B S W SR S S)
% 3
1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 g
20 30 40 50 = 25
Number of processing threads é
2
1.5
1
Multi-threaded GB/thread is about |
. 0.5 -
1/3 that of multi-process Ee
OOI I I2I I I4I I IGI I I8I I I10I I I12I I I14I I I16I I I18

Number of processing threads

3/2/16 Parallel Computing - David Lawrence 13

Distributed Computing

(Let’s just call it “farms”)

large cluster of computers,
housed in same location, and
connected via fast LAN

jobs run independently on
single node (... or maybe not ...)

focuses significant compute
power to dedicated job

“clouds” tend to be made up
of multiples of these
connected via WAN

3/2/16 Parallel Computing - David Lawrence 14

Hall-D L3 and monitoring architecture

(Data flows from left to right)

é J farm manager)

gluon53

N Twemrain T

L3 and monitoring processes |

are decoupled. They could run l’-\ <ad |

on same nodes though if | P I
desired. ER

[

-

F__

__H

gliond6é

o

= 7
N

Mon
Mo ‘
| —farm manager>

Garm Manager

3/2/16 Parallel Computing - David Lawrence

Farms in the Future |

Farms will play a role in
the future due to power =i R
supply and dissipation %

(i.e. You can’t pack too many
teraflops into a small volume
without burning everything

up!)

3/2/16 Parallel Computing - David Lawrence 16

Open Science GRID

* US-based federation of compute
infrastructures for research and academic
communities

3/2/16

17

Open Science GRID

Characteristics of OSG Jobs
The application is a Linux application for the x86 or x86_64
architecture.
The application is single- or multi-threaded but does not
require message passing.
The application has a small runtime between 1 and 24 hours.
The application can handle being unexpectedly killed and
restarted.
The application is built from software that does not require
contact to licensing servers.
The scientific problem can be described as a workflow
consisting of jobs of such kind.
The scientific problem requires running a very large number
of small jobs rather than a few large jobs.

Guifof-88Et 32 ., R F lorig
California
= Gulf of 4
Mexico

What do big LHC Experiments Do?

* CMS

— Initially developed reconstruction algorithms as
single-threaded

— Developed framework that can identify which
algorithms can be run in parallel giving sub-event
level parallelism

* ATLAS
— Single threaded using GAUDI

— Developing GAUDIHive for parallelism at event,
algorithm, and sub-algorithm levels

What do RHIC Experiments Do?

* Who knows?
(Online documentation is quite old)

3/2/16 Parallel Computing - David Lawrence

20

What to plan for? (IMHO)

* Parallelism will play a role. Effective systems will
likely take advantage of multiple technologies

— Tough to tell what emerging technologies will stick
around. (Be careful, but not overly cautious!)

— Spend time on the API. It will allow parts of the
software to be replaced later without rewriting
everything

— Stay away from requiring commercial products
(libraries). Stick with Open Source

— Commit resources to software R&D. Not just at the
beginning, but continuing...

Additional Thoughts (IMLTHO)

* The accessibility of a computing technology
should be inversely proportional to the
developer base (i.e. if you commit everyone to an
obscure or expensive technology, a lot less people we be
able to contribute)

 We have an obligation to next generation
students/scientists to engage them in
technologies that carry them at least a little
way into the future as opposed to holding
them in our past

3/2/16

Backups

Parallel Computing

David Lawrence

23

* Fal
fut
an

* Pal

3/2/16

10

MFlops per Watt

Parallel Computing

David Lawrence

24

