
Programming with Big Data in R

George Ostrouchov

Oak Ridge National Laboratory and University of Tennessee

Future Trends in Nuclear Physics Computing
March 16-18, 2016

Thomas Jefferson National Accelerator Facility
Newport News, VA

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

Introduction to R and HPC

Why R?: Programming with Data

Chambers.
Computational
Methods for
Data Analysis.
Wiley, 1977.

Becker, Chambers,
and Wilks. The
New S Language.
Chapman & Hall,
1988.

Chambers and
Hastie. Statistical
Models in S.
Chapman & Hall,
1992.

Chambers.
Programming
with Data.
Springer, 1998.

Chambers.
Software for Data
Analysis:
Programming
with R. Springer,
2008.

Thanks to Dirk Eddelbuettel for this slide idea and to John Chambers for providing the high-resolution scans of the covers of his
books.

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

Introduction to R and HPC

Popularity?

IEEE Spectrum’s 2014 Ranking of Programming Languages

See: http://spectrum.ieee.org/static/interactive-the-top-programming-languages#index

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

http://spectrum.ieee.org/static/interactive-the-top-programming-languages#index

An Example: knitr document produced with RStudio IDE
Data: 1,653 start and end timestamps for GPU offload periods.
Want 1-ahead prediction of start and end to run other codes.

ts <- read.table("sorted1node.txt", header=TRUE)
library(dplyr)
ts <- mutate(ts, idle = end - start, busy = start - lag(end))
head(ts)

start end idle busy
1 56114210457 56114211289 832 NA
2 56114300920 56114311544 10624 89631
3 56114373143 56114373943 800 61599
4 56117433146 56117436858 3712 3059203
5 56117469818 56117470650 832 32960
6 56117507098 56117517081 9983 36448

dim(ts)

[1] 1653 4

library(ggplot2)
ggplot(ts, aes(idle)) + geom_histogram()

0

250

500

750

1000

0 50000 100000 150000
idle

co
un

t

ggplot(ts, aes(idle)) + geom_histogram() + scale_x_log10()

0

100

200

300

400

1e+03 1e+04 1e+05
idle

co
un

t

ggplot(ts, aes(busy)) + geom_histogram() + theme_bw()

0

500

1000

1500

0.0e+00 5.0e+07 1.0e+08 1.5e+08
busy

co
un

t

ggplot(ts, aes(busy)) + geom_histogram() + scale_x_log10() + theme_bw()

0

100

200

300

400

1e+04 1e+06 1e+08
busy

co
un

t

ggplot(ts, aes(busy, idle, color=start)) + geom_point() + scale_x_log10() +
scale_y_log10()

1e+03

1e+04

1e+05

1e+04 1e+06 1e+08
busy

id
le

5.65e+10

5.70e+10

5.75e+10

5.80e+10

5.85e+10
start

ggplot(ts, aes(busy, idle, color=start)) + geom_path() + geom_point() +
scale_x_log10() + scale_y_log10()

1e+03

1e+04

1e+05

1e+04 1e+06 1e+08
busy

id
le

5.65e+10

5.70e+10

5.75e+10

5.80e+10

5.85e+10
start

Successive busy idle periods cluster around several values. Markov chain . . . probably sparse . . .
Write my own?

Turns out that most of this already exists in the package rEMM (One of 7,000+ CRAN packages!)

ts_log <- transmute(ts, lidle = log10(idle), lbusy = log10(busy))
library(rEMM)
emm <- build(EMM(threshold = 0.2, measure="euclidean"), ts_log)
plot(emm)

1
2

3
4

5

6
7

8
9

10

11

12 13

14

15

16

17

18

19

20

21

22

23

24
25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Markov transition graph after seeing all the data.

Add Markov node locations on top of the log scale busy-idle space:

ggplot(ts, aes(busy, idle, color=start)) + geom_path() + geom_point() +
scale_x_log10() + scale_y_log10() +
geom_point(aes(10^lbusy, 10^lidle), data.frame(cluster_centers(emm)), col="red")

1e+03

1e+04

1e+05

1e+04 1e+06 1e+08
busy

id
le

5.65e+10

5.70e+10

5.75e+10

5.80e+10

5.85e+10
start

Looks promising!

pr_idle <- function(ts, threshold, lambda, measure = "euclidean")
{

emm <- build(EMM(threshold, measure, lambda = lambda), ts_log[1:5,])
ts$idle_p <- ts$busy_p <- NA
for(i in 6:nrow(ts_log))

{
pred_data <- cluster_centers(emm)[predict(emm, n=1),]
ts$idle_p[i] <- 10^(pred_data["lidle"])
ts$busy_p[i] <- 10^(pred_data["lbusy"])
emm <- build(emm, ts_log[i,])

}
ts

}

ts <- pr_idle(ts, threshold=0.1, lambda=0.01)

Prediction proceeds one pair of busy, idle at a time, predicting the next pair, then updating the Markov
states and probabilities for actual values observed.

library(reshape2)
ts_melt <- melt(ts, value.name="observed", measure.vars=c("idle", "busy"))
ts_melt <- mutate(ts_melt, predicted=ifelse(variable == "idle", idle_p, busy_p))
ggplot(ts_melt, aes(start, predicted/observed)) + geom_point() + scale_y_log10() +

stat_quantile(quantiles=c(.75, .25), col="blue") +
stat_quantile(quantiles=c(.95, .05), col="red") + facet_grid(~variable)

idle busy

1e−03

1e+00

1e+03

5.6e+10 5.7e+10 5.8e+10 5.6e+10 5.7e+10 5.8e+10
start

pr
ed

ic
te

d/
ob

se
rv

ed

This is a lightweight algorithm in R (~2 seconds total for all predictions). It can be made more lightweight
(100x ?) by implementing in C or C++ and by updating less often.

Introduction to R and HPC

Resources for Learning R

RStudio IDE
http://www.rstudio.com/products/rstudio-desktop/

Task Views: http://cran.at.r-project.org/web/views

Book: The Art of R Programming by Norm Matloff:
http://nostarch.com/artofr.htm

Advanced R: http://adv-r.had.co.nz/ and ggplot2
http://docs.ggplot2.org/current/ by Hadley Wickham

R programming for those coming from other languages: http:

//www.johndcook.com/R_language_for_programmers.html

aRrgh: a newcomer’s (angry) guide to R, by Tim Smith and Kevin
Ushey: http://tim-smith.us/arrgh/

Mailing list archives: http://tolstoy.newcastle.edu.au/R/

The [R] stackoverflow tag.

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

http://www.rstudio.com/products/rstudio-desktop/
http://cran.at.r-project.org/web/views
http://nostarch.com/artofr.htm
http://adv-r.had.co.nz/
http://docs.ggplot2.org/current/
http://www.johndcook.com/R_language_for_programmers.html
http://www.johndcook.com/R_language_for_programmers.html
http://tim-smith.us/arrgh/
http://tolstoy.newcastle.edu.au/R/

Introduction to R and HPC

Why R?: Programming with Big Data

Wei-Chen Chen1

George Ostrouchov2,3,4

Pragneshkumar Patel3

Drew Schmidt4

1FDA
Washington, DC, USA
2Computer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge TN, USA

3Joint Institute for Computational Sciences
University of Tennessee, Knoxville TN, USA
4Business Analytics and Statistics
University of Tennessee, Knoxville TN, USA

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

pbdR Cluster Computer Architectures

HPC Cluster with NVRAM and Parallel File System

Today’s HPC Cluster Parallel
File System

Disk
Storage
Servers

Compute Nodes I/O Nodes

Login Nodes Your Laptop

B
ig

 D
at

a

“Little Data”

Solid State
Disk

Multicore

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

pbdR The pbdR Project

ppppppbbbbbbddddddRRRRRR Interfaces to Libraries: Sustainable Path

Local Memory

Co-Processor

GPU: Graphical Processing Unit

MIC: Many Integrated Core

Interconnection Network

PROC
+ cache

PROC
+ cache

PROC
+ cache

PROC
+ cache

Mem Mem Mem Mem

Distributed Memory

Memory

CORE
+ cache

CORE
+ cache

CORE
+ cache

CORE
+ cache

Network

Shared Memory

Trilinos

PETSc

PLASMA

DPLASMALibSci (Cray)
MKL (Intel)

ScaLAPACK
PBLAS
BLACS

cuBLAS (NVIDIA)

MAGMA

PAPI

Tau

MPI
mpiP

fpmpi

NetCDF4

ADIOSACML (AMD)

CombBLAS

cuSPARSE (NVIDIA)

pbdDMATpbdDMATpbdDMAT
pbdDMAT

pbdBASE
pbdSLAP

ZeroMQ

Profiling

I/O

Learning

Released Under Development

pbdADIOS

pbdNCDF4

pbdPAPI

pbdPROF pbdPROF pbdPROF

pbdMPI

pbdDEMO

pbdCS
pbdZMQ

Why use HPC libraries?

Many science communities are invested in their API.

Data analysis uses much of the same basic math as simulation science

The libraries represent 30+ years of parallel algorithm research

They’re tested. They’re fast. They’re scalable.

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

pbdR pbdMPI

pbdMPI: a High Level Interface to MPI

API is simplified: defaults in control objects.

S4 methods: extensible to complex R objects.

Additional error checking

Array and matrix methods without serialization: faster than Rmpi.

pbdMPI (S4) Rmpi
allreduce mpi.allreduce

allgather mpi.allgather, mpi.allgatherv, mpi.allgather.Robj
bcast mpi.bcast, mpi.bcast.Robj
gather mpi.gather, mpi.gatherv, mpi.gather.Robj
recv mpi.recv, mpi.recv.Robj
reduce mpi.reduce

scatter mpi.scatter, mpi.scatterv, mpi.scatter.Robj
send mpi.send, mpi.send.Robj

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

pbdR pbdMPI

SPMD: Copies of One Code Run Asynchronously

A simple SPMD allreduce

allreduce.r

1 library(pbdMPI , quiet = TRUE)

2

3 ## Your local computation

4 n <- comm.rank() + 1

5

6 ## Now "Reduce" and give the result to all

7 all_sum <- allreduce(n) # Sum is default

8

9 text <- paste("Hello: n is", n, "sum is", all_sum)

10 comm.print(text , all.rank=TRUE)

11

12 finalize ()

Execute this batch script via:

1 mpirun -np 2 Rscript allreduce.r

Output:

1 COMM.RANK = 0

2 [1] "Hello: n is 1 sum is 3"

3 COMM.RANK = 1

4 [1] "Hello: n is 2 sum is 3"

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

pbdR pbdMPI: Machine Learning: Random Forest

Machine Learning Example: Random Forest

Example: Letter Recognition data from package mlbench (20,000 × 17)

1 [,1] lettr capital letter

2 [,2] x.box horizontal position of box

3 [,3] y.box vertical position of box

4 [,4] width width of box

5 [,5] high height of box

6 [,6] onpix total number of on pixels

7 [,7] x.bar mean x of on pixels in box

8 [,8] y.bar mean y of on pixels in box

9 [,9] x2bar mean x variance

10 [,10] y2bar mean y variance

11 [,11] xybar mean x y correlation

12 [,12] x2ybr mean of x^2 y

13 [,13] xy2br mean of x y^2

14 [,14] x.ege mean edge count left to right

15 [,15] xegvy correlation of x.ege with y

16 [,16] y.ege mean edge count bottom to top

17 [,17] yegvx correlation of y.ege with x

P. W. Frey and D. J. Slate (Machine Learning Vol 6/2 March 91): ”Letter Recognition Using Holland-style Adaptive Classifiers”.

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

pbdR pbdMPI: Machine Learning: Random Forest

Example: Random Forest Code
(build many simple models, use model averaging to predict)

Serial Code 4 rf s.r

1 library(randomForest)

2 library(mlbench)

3 data(LetterRecognition) # 26 Capital Letters Data 20,000 x 17

4 set.seed(seed =123)

5 n <- nrow(LetterRecognition)

6 n_test <- floor (0.2*n)

7 i_test <- sample.int(n, n_test) # Use 1/5 of the data to test

8 train <- LetterRecognition[-i_test ,]

9 test <- LetterRecognition[i_test ,]

10

11 ## train random forest

12 rf.all <- randomForest(lettr ~ ., train , ntree =500,

norm.votes=FALSE)

13

14 ## predict test data

15 pred <- predict(rf.all , test)

16 correct <- sum(pred == test$lettr)

17 cat("Proportion Correct:", correct/(n_test), "\n")

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

pbdR pbdMPI: Machine Learning: Random Forest

Example: Random Forest Code
(Split learning by blocks of trees. Split prediction by blocks of rows.)

Parallel Code 4 rf p.r

1 library(randomForest)

2 library(mlbench)

3 data(LetterRecognition)

4 comm.set.seed(seed =123, diff=FALSE) # same training data

5 n <- nrow(LetterRecognition)

6 n_test <- floor (0.2*n)

7 i_test <- sample.int(n, n_test) # Use 1/5 of the data to test

8 train <- LetterRecognition[-i_test ,]

9 test <- LetterRecognition[i_test ,][get.jid(n test),]

10

11 comm.set.seed(seed=1e6*runif(1), diff=TRUE)

12 my.rf <- randomForest(lettr ~ ., train , ntree =500%/%comm.size(),

norm.votes=FALSE)

13 rf.all <- do.call(combine, allgather(my.rf))

14

15 pred <- predict(rf.all , test)

16 correct <- allreduce(sum(pred == test$lettr))

17 comm.cat("Proportion Correct:", correct/(n_test), "\n")

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

pbdR pbdDMAT

Dense Matrix and Vector Operations

A matrix is mapped to a processor grid shape

[
0 1 2 3 4 5

]

(a) 1 × 6

[
0 1 2
3 4 5

]

(b) 2 × 3




0 1
2 3
4 5




(c) 3 × 2




0
1
2
3
4
5




(d) 6 × 1

Table: Processor Grid Shapes with 6 Processors

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

pbdR pbdDMAT

ppppppbbbbbbddddddRRRRRR No change in syntax. Data redistribution functions.

1 x <- x[-1, 2:5]

2 x <- log(abs(x) + 1)

3 x.pca <- prcomp(x)

4 xtx <- t(x) %*% x

5 ans <- svd(solve(xtx))

The above (and over 100 other functions) runs on 1 core with R
or 10,000 cores with ppppppbbbbbbddddddRRRRRR ddmatrix class

1 > showClass("ddmatrix")

2 Class "ddmatrix" [package "pbdDMAT"]

3 Slots:

4 Name: Data dim ldim bldim ICTXT

5 Class: matrix numeric numeric numeric numeric

1 > x <- as.rowblock(x)

2 > x <- as.colblock(x)

3 > x <- redistribute(x, bldim=c(8, 8), ICTXT = 0)

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

pbdR RandSVD

Truncated SVD from random projections1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PROBABILISTIC ALGORITHMS FOR MATRIX APPROXIMATION 227

Prototype for Randomized SVD
Given an m × n matrix A, a target number k of singular vectors, and an
exponent q (say, q = 1 or q = 2), this procedure computes an approximate
rank-2k factorization UΣV ∗, where U and V are orthonormal, and Σ is
nonnegative and diagonal.
Stage A:
1 Generate an n× 2k Gaussian test matrix Ω.
2 Form Y = (AA∗)qAΩ by multiplying alternately with A and A∗.
3 Construct a matrix Q whose columns form an orthonormal basis for

the range of Y .
Stage B:
4 Form B = Q∗A.
5 Compute an SVD of the small matrix: B = ŨΣV ∗.
6 Set U = QŨ .
Note: The computation of Y in step 2 is vulnerable to round-off errors.
When high accuracy is required, we must incorporate an orthonormalization
step between each application of A and A∗; see Algorithm 4.4.

The theory developed in this paper provides much more detailed information
about the performance of the proto-algorithm.

• When the singular values of A decay slightly, the error ‖A − QQ∗A‖ does
not depend on the dimensions of the matrix (sections 10.2–10.3).

• We can reduce the size of the bracket in the error bound (1.8) by combining
the proto-algorithm with a power iteration (section 10.4). For an example,
see section 1.6 below.

• For the structured random matrices we mentioned in section 1.4.1, related
error bounds are in force (section 11).

• We can obtain inexpensive a posteriori error estimates to verify the quality
of the approximation (section 4.3).

1.6. Example: Randomized SVD. We conclude this introduction with a short
discussion of how these ideas allow us to perform an approximate SVD of a large data
matrix, which is a compelling application of randomized matrix approximation [113].

The two-stage randomized method offers a natural approach to SVD compu-
tations. Unfortunately, the simplest version of this scheme is inadequate in many
applications because the singular spectrum of the input matrix may decay slowly. To
address this difficulty, we incorporate q steps of a power iteration, where q = 1 or
q = 2 usually suffices in practice. The complete scheme appears in the box labeled
Prototype for Randomized SVD. For most applications, it is important to incorporate
additional refinements, as we discuss in sections 4 and 5.

The Randomized SVD procedure requires only 2(q + 1) passes over the matrix,
so it is efficient even for matrices stored out-of-core. The flop count satisfies

TrandSVD = (2q + 2) k Tmult +O(k
2(m+ n)),

where Tmult is the flop count of a matrix–vector multiply with A or A∗. We have the
following theorem on the performance of this method in exact arithmetic, which is a
consequence of Corollary 10.10.

Theorem 1.2. Suppose that A is a real m × n matrix. Select an exponent q
and a target number k of singular vectors, where 2 ≤ k ≤ 0.5min{m,n}. Execute the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

244 N. HALKO, P. G. MARTINSSON, AND J. A. TROPP

Algorithm 4.3: Randomized Power Iteration
Given an m× n matrix A and integers � and q, this algorithm computes an
m× � orthonormal matrix Q whose range approximates the range of A.
1 Draw an n× � Gaussian random matrix Ω.
2 Form the m× � matrix Y = (AA∗)qAΩ via alternating application

of A and A∗.
3 Construct an m× � matrix Q whose columns form an orthonormal

basis for the range of Y , e.g., via the QR factorization Y = QR.
Note: This procedure is vulnerable to round-off errors; see Remark 4.3. The
recommended implementation appears as Algorithm 4.4.

Algorithm 4.4: Randomized Subspace Iteration
Given an m× n matrix A and integers � and q, this algorithm computes an
m× � orthonormal matrix Q whose range approximates the range of A.
1 Draw an n× � standard Gaussian matrix Ω.
2 Form Y0 = AΩ and compute its QR factorization Y0 = Q0R0.
3 for j = 1, 2, . . . , q

4 Form Ỹj = A∗Qj−1 and compute its QR factorization Ỹj = Q̃jR̃j .

5 Form Yj = AQ̃j and compute its QR factorization Yj = QjRj .
6 end
7 Q = Qq.

Algorithm 4.3 targets the fixed-rank problem. To address the fixed-precision
problem, we can incorporate the error estimators described in section 4.3 to obtain
an adaptive scheme analogous with Algorithm 4.2. In situations where it is critical to
achieve near-optimal approximation errors, one can increase the oversampling beyond
our standard recommendation � = k + 5 all the way to � = 2k without changing
the scaling of the asymptotic computational cost. A supporting analysis appears in
Corollary 10.10.

Remark 4.3. Unfortunately, when Algorithm 4.3 is executed in floating-point
arithmetic, rounding errors will extinguish all information pertaining to singular
modes associated with singular values that are small compared with ‖A‖. (Roughly,
if machine precision is µ, then all information associated with singular values smaller
than µ1/(2q+1) ‖A‖ is lost.) This problem can easily be remedied by orthonormalizing
the columns of the sample matrix between each application of A and A∗. The result-
ing scheme, summarized as Algorithm 4.4, is algebraically equivalent to Algorithm 4.3
when executed in exact arithmetic [93, 125]. We recommend Algorithm 4.4 because
its computational costs are similar to those of Algorithm 4.3, even though the former
is substantially more accurate in floating-point arithmetic.

4.6. An Accelerated Technique for General Dense Matrices. This section de-
scribes a set of techniques that allow us to compute an approximate rank-� factor-
ization of a general dense m× n matrix in roughly O(mn log(�)) flops, in contrast to
the asymptotic cost O(mn�) required by earlier methods. We can tailor this scheme
for the real or complex case, but we focus on the conceptually simpler complex case.
These algorithms were introduced in [138]; similar techniques were proposed in [119].

The first step toward this accelerated technique is to observe that the bottleneck
in Algorithm 4.1 is the computation of the matrix product AΩ. When the test matrix

Serial R

1 randSVD <− f u n c t i o n (A, k , q=3)
2 {
3 ## Stage A
4 Omega <− matrix(rnorm(n*2*k),
5 nrow=n, ncol=2*k)
6 Y <− A %∗% Omega
7 Q <− qr .Q(qr (Y))
8 At <− t (A)
9 f o r (i i n 1 : q)

10 {
11 Y <− At %∗% Q
12 Q <− qr .Q(qr (Y))
13 Y <− A %∗% Q
14 Q <− qr .Q(qr (Y))
15 }
16
17 ## Stage B
18 B <− t (Q) %∗% A
19 U <− La . svd (B) $u
20 U <− Q %∗% U
21 U[, 1 : k]
22 }

1Halko, Martinsson, and Tropp. 2011. Finding structure with randomness: probabilistic algorithms for constructing
approximate matrix decompositions SIAM Review 53 217–288

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

pbdR RandSVD

Truncated SVD from random projections

Serial R

1 randSVD <− f u n c t i o n (A, k , q=3)
2 {
3 ## Stage A
4 Omega <− m a t r i x (rnorm (n∗2∗k) ,

nrow=n , n c o l=2∗k)
5 Y <− A %∗% Omega
6 Q <− qr .Q(qr (Y))
7 At <− t (A)
8 f o r (i i n 1 : q)
9 {

10 Y <− At %∗% Q
11 Q <− qr .Q(qr (Y))
12 Y <− A %∗% Q
13 Q <− qr .Q(qr (Y))
14 }
15
16 ## Stage B
17 B <− t (Q) %∗% A
18 U <− La . svd (B) $u
19 U <− Q %∗% U
20 U[, 1 : k]
21 }

Parallel pbdR

1 randSVD <− f u n c t i o n (A, k , q=3)
2 {
3 ## Stage A
4 Omega <− ddmatrix(”rnorm”,
5 nrow=n, ncol=2*k)
6 Y <− A %∗% Omega
7 Q <− qr .Q(qr (Y))
8 At <− t (A)
9 f o r (i i n 1 : q)

10 {
11 Y <− At %∗% Q
12 Q <− qr .Q(qr (Y))
13 Y <− A %∗% Q
14 Q <− qr .Q(qr (Y))
15 }
16
17 ## Stage B
18 B <− t (Q) %∗% A
19 U <− La . svd (B) $u
20 U <− Q %∗% U
21 U[, 1 : k]
22 }

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

pbdR RandSVD

From journal to scalable code and scaling data in one day.

●●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128
Cores

S
pe

ed
up

Algorithm ● ●full randomized

30 Singular Vectors from a 100,000 by 1,000 Matrix

●

●
●

●

●
●

●

5

10

15

1 2 4 8 16 32 64 128
Cores

S
pe

ed
up

30 Singular Vectors from a 100,000 by 1,000 Matrix
Speedup of Randomized vs. Full SVD

Speedup relative to 1 core RandSVD speedup relative to full SVD

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

Future Work

Future Work

NSF/DMS: second year of a 3 year grant to

Bring back interactivity via client/server (pbdCS/pbdZMQ)
Simplify parallel data input
Begin DPLASMA integration
Outreach to the statistics community

DOE/SC: In-situ or staging use with simulations

pbdADIOS - HPC I/O

Pending: NSF BIGDATA, Tensor Regression

Pending: Exascale Computing Project, analytics for ParaView/VisIt

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

Future Work

Where to learn more?

http://r-pbd.org/

pbdDEMO vignette

Googlegroup:RBigDataProgramming

ppppppbbbbbbddddddRRRRRR Installations: OLCF, NERSC, SDSC, TACC, IU, BSC Spain,
CSCS Switzerland, IT4I Czech, ISM Japan, and many more

Need access to a cluster computer? From NSF:

XSEDE trial or startup allocation
https://www.xsede.org/web/xup/allocations-overview.
Most resources have ppppppbbbbbbddddddRRRRRR installed

Support
This material is based upon work supported by the National Science Foundation Division of Mathematical Sciences under Grant
No. 1418195.

This work used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

This work also used resources of National Institute for Computational Sciences at the University of Tennessee, Knoxville, which
is supported by the U.S. National Science Foundation.

ppppppbbbbbbddddddRRRRRR Core Team Programming with Big Data in R

http://r-pbd.org/
Google group: RBigDataProgramming
https://www.xsede.org/web/xup/allocations-overview

	Introduction to R and HPC
	pbdR
	Cluster Computer Architectures
	The pbdR Project
	pbdMPI
	pbdMPI: Machine Learning: Random Forest
	pbdDMAT
	RandSVD

	Future Work

