Probing the Nuclear and Nucleon Spin Structure at the Upgraded HI7S Facility

GDH

Mohammad W. Ahmed¹

¹Duke University & Triangle Universities Nuclear Laboratory

June 19, 2007

Duke University & TUNL

Ahmed

Sample of experiments at the *Upgraded* High Intensity γ -Ray Source (HI γ S) aimed at studying the spin structure

GDH

- Determination of the Gerasimov-Drell-Hearn (GDH) Sum Rule for Deuteron (2.25 - 140 MeV) and ³He
- A Compton scattering program to study the electromagnetic and spin polarizabilities of the nucleon (50 - 120 MeV)

What is GDH Sum Rule ?

Start with Compton scattering amplitude with $f(\omega)$ and $g(\omega)$ amplitudes:

$$f(\omega) = \frac{-e^2}{4\pi m} + (\alpha + \beta)\omega^2 + O(\omega^4)$$

$$g(\omega) = \frac{-e^2\kappa^2}{8\pi m^2}\omega + \gamma\omega^3 + O(\omega^5)$$

$$I^{GDH} = \int_{\omega_{th}}^{\infty} (\sigma_P(\omega) - \sigma_A(\omega))\frac{d\omega}{\omega}$$

$$= 4\pi^2 e^2 \frac{\kappa^2}{M^2} S, \qquad (1)$$

Ground State Static Property \longrightarrow Dynamical Structure of the Target

NIN

Ahmed

GDH sum rule determination is a test of many fundamental assumptions. The consistancy of the GDH sum rule can be used to search for new Physics

GDH

Duke University & TUNL

Ahmed

GDH Integral for Deuteron

The D has a small anomalous magnetic moment ($\kappa_d = -0.143^{-1}$).

$$I_{D}^{GDH} = 0.652\mu b$$
(2)

$$I_{D}^{GDH} = \int_{\omega_{th}}^{\omega_{\pi}} GDH_{D} + \int_{\omega_{\pi}}^{\infty} GDH_{D}$$
(3)

$$I_{D}^{GDH} = \int_{\omega_{th}}^{\omega_{\pi}} GDH_{D} + \int_{\omega_{\pi}}^{\infty} GDH_{p} + \int_{\omega_{\pi}}^{\infty} GDH_{n}$$
(3)

$$I_{D}^{GDH} = \int_{\omega_{th}}^{\omega_{\pi}} GDH_{D} + 204\mu b + 232\mu b$$

¹P. Mohr and B. Taylor, Rev. of Mod. Phys., 72, 351-(2000)

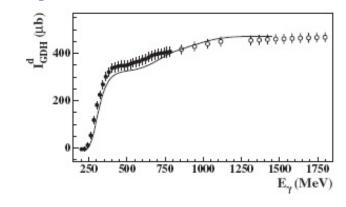
June 20, 2007, JLab Users Meeting

a 200 <u>__</u>200 ບ້າ 150' . Ч **ి 200** 100 -400 50 -600 -800 -1000 -50 -1200 -100 -1400 -1600 -150 -1800 -200 2×10² Ε_γ (MeV) Predictions by H. Arenhövel ² for I_D^{GDH} . Contributions of various channels to the finite GDH Integral³ gives an I_D^{GDH} of 27 μ b.

²Phys. Lett. B407, 1-7 (1997) ³AFS, PRL 93, 202301 (2004)

Duke University & TUNL

Global Efforts on the GDH_D


$$\int_{\omega_{th}}^{\omega_{\pi}} GDH_D \longrightarrow HI\gamma S$$
$$\int_{\omega_{\pi}}^{\infty} GDH_D \longrightarrow LEGS, Mainz, Bonn$$

GDH

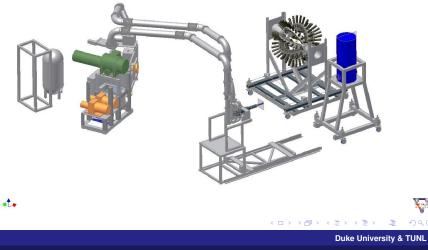
At High Intensity γ -ray Source (HI γ S) we will begin to measure the part of the GDH_D below the pion production threshold using Polarized Frozen Spin Target (HIFROST), Blowfish neutron detector array, and circularly polarized γ -rays in 2008.

June 20, 2007, JLab Users Meeting

I^{GDH} Above Pion Production Threshold⁴

⁴J. Ahrens *et al.* Phys. Rev. Lett. 97, 202303 (2006)

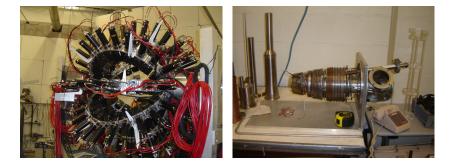
Duke University & TUNL


NUN

June 20, 2007, JLab Users Meeting

Ahmed

GDH


NUNL

June 20, 2007, JLab Users Meeting

Blowfish : 88-cell neutron detector array, 25 % of 4π coverage HIFROST : 10 cm long target, T = 50 mK, Polarization \sim 80 %

GDH

Duke University & TUNL

Ahmed

Meanwhile ...

$$\sigma_{P} - \sigma_{A} = \frac{\pi \lambda^{2}}{2} [-|M1(^{1}S_{0})|^{2}$$

$$-|E1(^{3}P_{0})|^{2} - \frac{3}{2}|E1(^{3}P_{1})|^{2} + \frac{5}{2}|E1(^{3}P_{2})|^{2}$$

$$-\frac{3}{2}|E2(^{3}D_{1})|^{2} - \frac{5}{6}|E2(^{3}D_{2})|^{2} + \frac{7}{3}|E2(^{3}D_{3})|^{2}],$$
(4)

GDH

If all *P*- wave amplitudes are set to be equal and likewise for the *D*-waves, then:

$$\sigma_P - \sigma_A = \frac{\pi \lambda^2}{2} [-|M1(^1 S_0)|^2]$$
 (5)

Duke University & TUNL

NIN

Ahmed

Compare it to Photodisintegration of Unpolarized Deuteron Using Linearly Polarized γ -Rays : Measurement of the Analyzing Power $(\Sigma(\theta))$

$$\sigma(\theta,\phi) = \frac{\lambda^2}{6} \left[\frac{1}{4} |S|^2 + \frac{27}{8} |P|^2 \sin^2 \theta (1 + \cos 2\phi)\right], \quad (6)$$

$$\Sigma(\theta) = \frac{\frac{27}{8} |P|^2 \sin^2 \theta}{\frac{1}{4} |^1 S_0|^2 + \frac{27}{8} |P|^2 \sin^2 \theta}. \quad (7)$$

Therefore, $|{}^{1}S_{0}|^{2}$ (M1) fractional contribution to the total cross section can be extracted from the $\Sigma(\theta)$ measurement.

By multiplying the fractional M1 contribution to the theoretical total cross section we can obtain absolute $\sigma(M1)$

Duke University & TUNL

But Recall ...

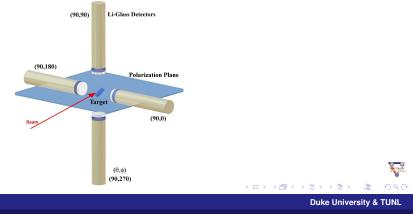
$$\sigma_{P} - \sigma_{A} = \frac{\pi \lambda^{2}}{2} [-|M1(^{1}S_{0})|^{2}] \text{ and,}$$

$$\sigma(M1) = \frac{\pi \lambda^{2}}{6} [|M1(^{1}S_{0})|^{2}]$$

$$\longrightarrow \sigma_{P} - \sigma_{A} = -3\sigma(M1)$$
(8)

Measurement of $\Sigma(\theta)$ (hence the $\sigma(M1)$) in Deuteron Photodisintegration is an indirect determination of the GDH_D Sum Rule Integrand !

Duke University & TUNL

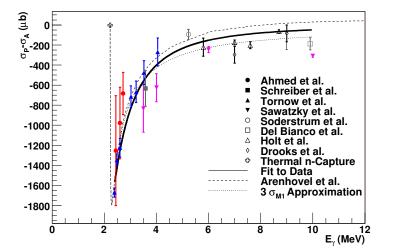

June 20, 2007, JLab Users Meeting

Ahmed

GDH

 $\Sigma(90^{\circ}) = \frac{Yield_{Hor} - Yield_{Ver}}{Yield_{Hor} + Yield_{Ver}}$

A Photodisintegration Experiment at $HI\gamma S$


June 20, 2007, JLab Users Meeting

Analysis of Other Experiments to Extract $\sigma(M1)$

Experiment	Measurement				
$\vec{\gamma} d \rightarrow np^5$	Analyzing Power				
$ec{\gamma} d { ightarrow} np^6$	Analyzing Power				
$ec{\gamma} d { ightarrow} np^7$	Analyzing Power				
$ec{\gamma} d { ightarrow} np^8$	Analyzing Power & Angular Cross Section				
$\gamma d \rightarrow \vec{n} p^9$	Neutron Polarization				
\vec{n} p \rightarrow d γ^{10}	Radiative Capture				

⁵Schreiber *et al.*, Phys. Rev. C61, 061604R (2000)
⁶Tornow *et al.*, Phys. Lett. B574, 8-13 (2003)
⁷Del Bianco *et al.*, Phys. Rev. Lett. 47, 1118 (1981)
⁸Sawatzky *et al.*⁹Holt *et al.* Phys. Rev. Lett, 50, 577 (1983)
¹⁰Soderstrum *et al.* Phys. Rev. C35, 1246 (1987)

GDH

NNL

Duke University & TUNL

Ahmed

GDH

The GDH_D Integral

Fit to Data	Theory	$-3\sigma_{M1}$ approximation	
-587^{+168}_{-134}	-518	-632	

Table: An indirect measurement of the GDH sum rule integrand for the deuteron.All value are obtained by integrating the GDH integrand from E_{γ} = 2.39 MeV to 10 MeV.

It is now even more important to directly measure the part between 10 MeV up to pion threshold to look for the large positive contribution as predicted by the theory. This measurement will start in early 2008.

Compton Scattering at $HI\vec{\gamma}S$

Remember · · · When expanding Compton scattering amplitude in the energy of the photon,

 $O(\omega^0) \rightarrow$ charge, mass $O(\omega^1) \rightarrow$ anomalous magnetic moment $O(\omega^2) \rightarrow$ nucleon response to E & M dipole field $O(\omega^3) \rightarrow$ internal spin structure

$$\begin{aligned} H_{eff}^{(2)} &= -4\pi [\frac{1}{2} \alpha_{E1} \vec{E}^2 + \frac{1}{2} \beta_{M1} \vec{H}^2] \\ H_{eff}^{(3)} &= -4\pi [\frac{1}{2} \gamma_{E1E1} \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) \frac{1}{2} \gamma_{M1M1} \vec{\sigma} \cdot (\vec{H} \times \dot{\vec{H}}) \\ &- \gamma_{M1E2} E_{ij} \sigma_i H_j + \gamma_{E1M2} H_{ij} \sigma_i E_j] \end{aligned}$$

June 20, 2007, JLab Users Meeting

GDH

$$ChPT^{11} \longrightarrow \mathcal{O}(p^3)$$

$$\begin{aligned} \alpha_{E1}^{\rho} &= 10\beta_{M1}^{\rho} \\ &= \frac{5\alpha g_{A}^{2}}{96\pi f_{\pi}^{2} m_{\pi}} \\ &= 12.2 \times 10^{-4} \text{fm}^{3} \end{aligned}$$

Experimental \longrightarrow

 $\alpha_{E1}^{p} = 12.1 \pm 0.3 (\text{stat}) \mp 0.4 (\text{syst}) \pm 0.3 (\text{mod}) \times 10^{-4} \text{fm}^{3}$ Good agreement between ChPT calculation and experimental data for α_{E1}^{p} $\beta_{M1}^{p} = 1.6 \pm 0.4 (\text{stat}) \mp 0.4 (\text{syst}) \pm 0.4 (\text{mod}) \times 10^{-4} \text{fm}^{3}$

¹¹BKM, Phys, Rev, Lett. **67**, 1515 (1991)

(

Ahmed

There are 6 independent structure functions $(A_i(\nu,t))$ in T-Matrix of real Compton scattering. These can be expressed as combinations of γs :

$$\begin{array}{rcl} \gamma_0 &=& \gamma_1 + \gamma_5 \\ \gamma_\pi &=& \gamma_1 - \gamma_5 \\ \gamma_5 &=& -\gamma_2 - \mathbf{2}\gamma_4 \end{array}$$

where;

$$\begin{array}{rcl} \gamma_{M1M1} &\equiv& \gamma_4\\ \gamma_{E1M2} &\equiv& \gamma_3\\ \gamma_{E1E1} &=& -\gamma_1 - \gamma_3\\ \gamma_{M1E2} &=& \gamma_2 + \gamma_4 \end{array}$$

Duke University & TUNL

June 20, 2007, JLab Users Meeting

Duke University & TUNL

The Spin Polarizabilities

γ	P ¹²	Ν	P ¹³	N	Exp _p	Exp _n
γ_0	-3.9	-0.9			$-1.0 \pm 0.08 \pm 0.10$	\sim -0.38
γ_{π}	-36.6	51			$\textbf{-37.7} \pm \textbf{1.8}$	59 ± 4
γ_1	1.1	4.7	1.2	3.8		
γ_2	-1.5	-0.1	1.5	1.9		
γ_3	0.2	0.3	0.7	0.5		
γ_4	3.3	2.3	0.4	0.4		

Table: Predictions for γ s by Judith McGovern and Gellas, Hemmert, Meißner. Experimental Data is from Mainz, J. Ahrens, PRL, 87, (2001). Units of γ are 10⁻⁴ fm⁴

¹²J. McGovern, CD2006 ¹³GHM, PRL, 85, 14 (2000)

Ahmed

Experimental Program at the Upgraded HI $\vec{\gamma}$ S Facility

Following quantities are planned to be measured :

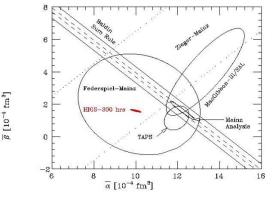
- α_E^p , and β_M^p ;
- α_E^n , and β_M^n ;
- γ^{p} , and γ^{n} ;

ロ > < 酉 > < 言 > < き > < き > く

Duke University & TUNL

Ahmed

α_{E}^{p} , and β_{M}^{p} (100 - 120 MeV, Early 2009)


Method : 100 % Linearly Polarized Beam on Unpolarized Proton Target

$$\left[\frac{d\sigma_{\perp}}{d\Omega} - \frac{d\sigma_{\perp}^{pt}}{d\Omega}\right]^{\frac{1}{2}} - \cos\theta \left[\frac{d\sigma_{\parallel}}{d\Omega} - \frac{d\sigma_{\parallel}^{pt}}{d\Omega}\right]^{\frac{1}{2}} = +\bar{\alpha}\sin^2\theta \left(\frac{E_{\gamma}}{hc}\right)^2,$$

$$\cos\theta \left[\frac{d\sigma_{\perp}}{d\Omega} - \frac{d\sigma_{\perp}^{pt}}{d\Omega}\right]^{\frac{1}{2}} - \left[\frac{d\sigma_{\parallel}}{d\Omega} - \frac{d\sigma_{\parallel}^{pt}}{d\Omega}\right]^{\frac{1}{2}} = -\bar{\beta}\sin^2\theta \left(\frac{E_{\gamma}}{hc}\right)^2,$$

Duke University & TUNL

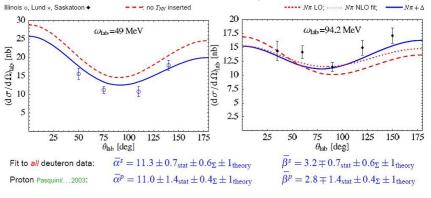
Ahmed

300 hours with 10⁷ γ /s, 80 mg/cm² target will yield¹⁴ \sim 5 % errors on both α^{p} and β^{p}

¹⁴Calculations by B. Norum

Ahmed

June 20, 2007, JLab Users Meeting

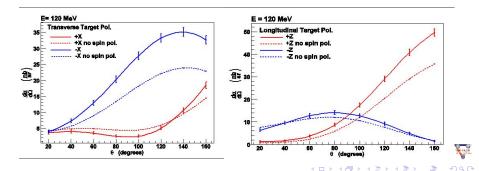

Duke University & TUNL

NUN

α_E^n , and β_M^n (50 -80 MeV, Early 2008)

Method: Un-Polarized Beam on Unpolarized Deuteron Target

GDH



Duke University & TUNL

Ahmed

γ^{p} (120 MeV, 2009)

Method: Circular Polarized Beam on Transversed and Longitudinal Polarized Proton Target

June 20, 2007, JLab Users Meeting

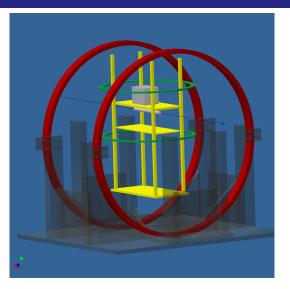
A 200 hour run (100 hrs at both target polarizations) at 120 MeV and 10⁷ γ /s , and using the present values of γ_0 and γ_{π} , will give¹⁵ γ_{E1E1} and γ_{M1M1} to 5 % level and γ_{E1M2} and γ_{M1E2} to ~ 30 %.

GDH

¹⁵PI: Rory Miskimen

Ahmed

June 20, 2007, JLab Users Meeting


Duke University & TUNL

γ^{n} (120 MeV, 2009)

Method: Circular Polarized Beam on Transversed Polarized $^{3}\mathrm{He}$ Target 16

- ▶ New theoretical calculations by Choudhury, Nogga, and Phillips on ${}^3\vec{H}e(\vec{\gamma},\gamma')$
- Extraction of spin polarizabilities
- Haiyan Gao has bulit a high pressure spin-polarized ³He target. Target thickness is ~ 10²² atoms/cm² with a length of 40 cm.
- ▶ With $2 \times 10^7 \gamma$ /sec and the polarized target, a 350 hour run will provide neutron spin polarizabilities with errors of $\sim \pm 0.5 \times 10^{-4} \text{ fm}^4$.

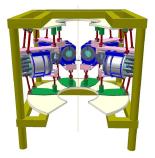
¹⁶PI: H. Gao

WIL

Duke University & TUNL

Ahmed

Maximizing sensitivity \rightarrow e.g., at 90° the longitudinal cross section difference is sensitive to γ_1 , whereas, the transverse polarization cross section is sensitive to γ_4 . Assuming the value of γ_0 fixed by Mainz at 13 %, the HI γ S projected measurements are :


•Proton projec uncerta	ted	•Neutron HIγS projected uncertainties	
•γ ^p 1=1.1	±0.25	•γ ⁿ 1=3.7	±0.40
•γ ^p 2=-1.5	±0.36	•γ ⁿ 2=-0.1	±0.50
•γ ^p ₃ =0.2	±0.24	•γ ⁿ 3=0.4	±0.50
•γ ^p 4=3.3	±0.11	•γ ⁿ ₄ =2.3	±0.35

Duke University & TUNL

Ahmed

The HINDA Array: 8 Nal Core Detectors with Segmented Shields

GDH

Duke University & TUNL

Ahmed

.1