New Insights from AdS/CFT and JLAB Tests of QCD

Stan Brodsky, SLAC

- Although we know the QCD Lagrangian, we have only begun to understand its remarkable properties and features.
- Novel QCD Phenomena: hidden color, color transparency, strangeness asymmetry, intrinsic charm, anomalous heavy quark phenomena, anomalous spin effects, single-spin asymmetries, odderon, diffractive deep inelastic scattering, dangling gluons, shadowing, antishadowing ...

> Truth is stranger than fiction, but it is because Fiction is obliged to stick to possibilities. - Mark Twain

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT
3

Key Novel Physics Issues for JLab 12

- Hidden Color of Nuclear Wavefunctions
- Dynamics of Charm at Threshold
- Dynamics at x near I : helicity retention
- QCD at the Amplitude Level - Light-Front Wavefunctions -- Connection to AdS/QCD
- Mapping out the spin and flavor structure of hadrons
- Initial- and Final- State Interactions
- Color transparency --Recent JLab success
A.W. Thomas:

After 35 years:

Miserable Lack of Knowledge of Valence d-Quarks

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT
Stan Brodsky, SLAC

At RHIC with W production

$A_{L}^{W^{+}} \approx \frac{\Delta u\left(x_{1}\right) \bar{d}\left(x_{2}\right)-\Delta \bar{d}\left(x_{1}\right) u\left(x_{2}\right)}{u\left(x_{1}\right) \bar{d}\left(x_{2}\right)+\bar{d}\left(x_{1}\right) u\left(x_{2}\right)}$
At JLab with 12 GeV upgrade

$10^{-2} 10^{-1} \quad x$
Stops below $\mathbf{x}=0.5$ AND needs valence $\mathbf{d}(\mathbf{x})$

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Stan Brodsky, SLAC

Perturbative QCD Analysis of
 Structure Functions at $x \sim 1$

- Struck quark faroff shell $k_{F}^{2} \propto \frac{-k_{1}^{2}}{1-x}$
- Lowest order connected diagrams dominate
- Helicity retention at large x
- DGLAP evolution quenched

$$
\xi\left(Q^{2}, Q_{0}^{2}\right)=\frac{1}{4 \pi} \int_{Q_{0}^{2}}^{Q^{2}} d \ell^{2} \frac{\alpha_{s}\left(\ell^{2}\right)}{\ell^{2}}
$$

$$
\xi\left(Q^{2}, Q_{0}^{2}\right)=\frac{1}{4 \pi} \int_{Q_{0}^{2}}^{Q^{2}} d \ell^{2} \frac{\alpha_{s}\left(\ell^{2}\right)}{\ell^{2}+\frac{k_{1}^{2}}{1-x}}
$$

- Exclusive-Inclusive Connection

$$
q^{+}(x) \propto(1-x)^{3}
$$

$q^{-}(x) \propto(1-x)^{5} \log ^{2}(1-x)$
From nonzero orbital angular momentum

Avakian, sjb, Deur, Yuan

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

$$
q^{+}(x) \propto(1-x)^{3}
$$

$$
q^{-}(x) \propto(1-x)^{5} \log ^{2}(1-x)
$$

Avakian, sjb, Deur, Yuan

Similar to Ji, Balitsky, Yuan's PQCD analysis of $F_{2}\left(Q^{2}\right) / F_{1}\left(Q^{2}\right)$

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT
9

Light-Front Wavefunctions

Fixed $\tau=t+z / c$

$$
P^{+}=P^{0}+P^{z}
$$

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad \vec{P}_{\perp} \quad \sum_{i}^{n} x_{i}=1
$$

Invariant under boosts! Independent of $\left.P^{\mu}\right|^{\sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}}$

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Stan Brodsky, SLAC

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents

The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Intrinsic heavy quarks, $\quad \bar{s}(x) \neq s(x)$

$$
\bar{u}(x) \neq \bar{d}(x)
$$

Light-Front QCD

 Heisenberg Equation$$
H_{L C}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle
$$

Pauli, Pinsky, sjb
JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT
12

Angular Momentum on the Light-Front

$$
\begin{gathered}
J^{z}=\sum_{i=1}^{n} s_{i}^{z}+\sum_{j=1}^{n-1} l_{j}^{z} . \quad \text { LF Fock state by Fock State } \\
l_{j}^{z}=-\mathrm{i}\left(k_{j}^{1} \frac{\partial}{\partial k_{j}^{2}}-k_{j}^{2} \frac{\partial}{\partial k_{j}^{1}}\right) \quad \text { n-I orbital angular momenta }
\end{gathered}
$$

Nonzero Anomalous Moment -->Nonzero orbital angular momentum

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 13

$$
\begin{aligned}
& \frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times \\
& {\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\downarrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
& \mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp} \\
& \mathbf{k}_{\perp j}^{\prime}=\mathbf{k}_{\perp j}+\left(1-x_{j}\right) \mathbf{q}_{\perp}
\end{aligned}
$$

Must have $\Delta \ell_{z}= \pm 1$ to have nonzero $F_{2}\left(q^{2}\right)$
Same matrix elements appear in Sivers effect

- connection to quark anomalous moments

JLab Users Meeting
June 19, 2007 QCD @ Jlab \& AdS/CFT

Anomalous gravitomagnetic moment $B(0)$
Okun et al: $\mathcal{B}(O)$ Must vanish because of
Equivalence Theorem

Hwang, Schmidt, sjb;
Holstein et al

$$
B(0)=0
$$

Each Fock State

QCD @ Jlab \& AdS/CFT

Remarkable Features of

Hadron Structure

- Valence quarks carry less than half of the proton's spin and momentum
- Non-zero quark orbital angular momentum
- Asymmetric sea: $\bar{u}(x) \neq \bar{d}(x)$ relation to meson cloud
- Non-symmetric strange and antistrange sea $\bar{s}(x) \neq s(x)$
- Intrinsic charm and bottom at high x
- Hidden-Color Fock states of the Deuteron

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 16

Stan Brodsky,
SLAC

Measure strangeness distribution from DIS at JLab12

$$
\bar{s}(x) \neq s(x) \quad e p \rightarrow e^{\prime} K X
$$

- Non-symmetric strange and antistrange sea
- Non-perturbative input; e.g $|u u d s \bar{s}>\simeq| \wedge(u d s) K^{+}(\bar{s} u)>$
- Crucial for interpreting NuTeV anomaly

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT 17

Stan Brodsky,
SLAC

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via Light-Front Wavefunctions

JLab Users Meeting
June 19, 2007
QCD @ Jlab \& AdS/CFT

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

QCD @ J1ab \& AdS/CFT

Light-Front Wavefunctions

$$
\begin{aligned}
& F . T .<0\left|\psi\left(y_{1}\right) \psi\left(y_{2}\right) \psi\left(y_{3}\right)\right| p>\left.\right|_{\tau_{i}=0} \\
& x_{i} P^{+}, x_{i} \vec{P}_{\perp}+\vec{k}_{\perp i} \\
& \sum_{i}^{n} x_{i}=1 \\
& \sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp} \\
& \text { Fixed } \tau=t+z / c \\
& \xrightarrow{ } \\
& P^{+}=P^{0}+P^{z} \\
& \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
\end{aligned}
$$

Invariant under boosts! Independent of p^{μ}

JLab Users Meeting June 19, 2007 QCD @ Jlab \& AdS/CFT

Stan Brodsky, SLAC

Hadronization at the Amplitude Level

Higher Fock State Coalescence $\mid u u d s \bar{s}>$
Asymmetric Hadronization! $\quad D_{s \rightarrow p}(z) \neq D_{s \rightarrow \bar{p}}(z)$
B-Q Ma, sjb

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT

$$
D_{s \rightarrow p}(z) \neq D_{s \rightarrow \bar{p}}(z)
$$

$$
A_{s}^{p \bar{p}}(z)=\frac{D_{s \rightarrow p}(z)-D_{s \rightarrow \bar{p}}(z)}{D_{s \rightarrow p}(z)+D_{s \rightarrow \bar{p}}(z)}
$$

Consequence of $s_{p}(x) \neq \bar{s}_{p}(x) \quad|u u d s \bar{s}>\simeq| K^{+} \wedge>$

Intrinsic Heavy-Quark Fock States

- Rigorous prediction of QCD, OPE
- Color-Octet Colo-Octet Fock State!

- Probability $\quad P_{Q \bar{Q}} \propto \frac{1}{M_{Q}^{2}} \quad P_{Q \bar{Q} Q \bar{Q}} \sim \alpha_{s}^{2} P_{Q \bar{Q}} \quad P_{c \bar{c} / p} \simeq 1 \%$
- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production (Kopeliovich, Schmidt, Soffer, sjb)
- Severely underestimated in conventional parameterizations of heavy quark distributions (Pumplin, Tung)
- Many empirical tests

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT

Stan Brodsky,
SLAC

DGLAP / Photon-Gluon Fusion: factor of 30 too small
JLab Users Meeting June 19, 2007 QCD @ J1ab \& AdS/CFT

Stan Brodsky, SLAC

Hoyer, Peterson, Sakai, sjb

$<p\left|\frac{G_{\mu \nu}^{3}}{m_{Q}^{2}}\right| p>\mathrm{Vs} .<p\left|\frac{F_{\mu \nu}^{4}}{m_{\ell}^{4}}\right| p>$
$\mid u u d c \bar{c}>$ Fluctuation in Proton QCD: Probability $\frac{\sim \Lambda_{Q C D}^{2}}{M_{Q}^{2}}$
$\mid e^{+} e^{-} \ell^{+} \ell^{-}>$Fluctuation in Positronium QED: Probability $\frac{\sim\left(m_{c} \alpha\right)^{4}}{M_{\ell}^{4}}$

OPE derivation - M.Polyakov et al.
$c \bar{c}$ in Color Octet

Distribution peaks at equal rapidity (velocity)
Therefore heavy particles carry the largest mo-

$$
\widehat{x}_{i}=\frac{m_{\perp i}}{\sum_{j}^{n} m_{\perp j}}
$$ mentum fractions

High xcharm!

Charm at Threshold

- New QCD physics in proton-proton elastic scattering at the charm threshold
- Anomalously large charm photoproduction at threshold?
- Octoquark resonances?
- Color Transparency disappears at charm threshold
- Huge transversity correlation at charm threshold

"Exclusive Transversity"

Spin-dependence at large- $P_{T}\left(90^{\circ}{ }_{c m}\right)$: Hard scattering takes place only with spins $\uparrow \uparrow$

Coincidence?: Quenching of Color Transparency

Coincidence?: Charm and Strangeness Thresholds

JLab Users Meeting June 19, 2007

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT

Nuclear transparency in $90_{\text {c.m. }}^{\circ}$ quasielastic $A(p, 2 p)$ reactions
J. Aclander, ${ }^{7}$ J. Alster, ${ }^{7}$ G. Asryan, ${ }^{1, *}$ Y. Averiche, ${ }^{5}$ D. S. Barton, ${ }^{1}$ V. Baturin, ${ }^{2, \dagger}$ N. Buktoyarova, ${ }^{1, \dagger}$ G. Bunce, A. S. Carroll, ${ }^{1,+}$ N. Christensen, ${ }^{3,8}$ H. Courant, ${ }^{3}$ S. Durrant, ${ }^{2}$ G. Fang, ${ }^{3}$ K. Gabriel, ${ }^{2}$ S. Gushue, ${ }^{1}$ K. J. Heller, ${ }^{3}$ S. Heppelmann, ${ }^{2}$ I. Kosonovsky, ${ }^{7}$ A. Leksanov, ${ }^{2}$ Y. I. Makdisi, ${ }^{1}$ A. Malki, ${ }^{7}$ I. Mardor, ${ }^{7}$ Y. Mardor, ${ }^{7}$ M. L. Marshak, ${ }^{3}$ D. Martel, ${ }^{4}$
E. Minina, ${ }^{2}$ E. Minor, ${ }^{2}$ I. Navon, ${ }^{7}$ H. Nicholson, ${ }^{8}$ A. Ogawa, ${ }^{2}$ Y. Panebratsev, ${ }^{5}$ E. Piasetzky, ${ }^{7}$ T. Roser, ${ }^{1}$ J. J. Russell, ${ }^{4}$ A. Schetkovsky, ${ }^{2, \dagger}$ S. Shimanskiy, ${ }^{5}$ M. A. Shupe, ${ }^{3, \|}$ S. Sutton, ${ }^{8}$ M. Tanaka, ${ }^{1,5}$ A. Tang, ${ }^{6}$ I. Tsetkov, ${ }^{5}$ J. Watson, ${ }^{6}$ C. White, ${ }^{3}$ J-Y. Wu, ${ }^{2}$ and D. Zhalov ${ }^{2}$

Key Experiment at JLab

Open Charm Photoproduction

$$
\gamma d \rightarrow p \wedge_{c} D^{-}
$$

Resonances or Threshold Enhancement needed to explain Krisch Effect

Stan Brodsky, SLAC

Spin, Coherence at heavy quark thresholds

OCD
Schwinger-Sommerfeld Enhancement at Heavy Quark Threshold
Hebecker, Kuhn, sib
S. J. Brodsky and G. F. de Teramond, "Spin Correlations, QCD Color Transparency And Heavy Quark Thresholds In Proton Proton Scattering," Phys. Rev. Lett. 60, 1924 (1988).

$$
P \stackrel{\rightharpoonup}{P} \rightarrow Q \bar{Q} X
$$

Strong distortion at threshold Preen O

$$
\sqrt{\delta_{T h}^{2}}=3+2 \cong 5 \mathrm{GeV} \quad P P \rightarrow C \bar{C} x
$$

8 quarks in s-wave odd parity!

$$
\therefore \quad J=L=S=1 \quad f(p p
$$

$$
B=2
$$

resonance near threshoce?

$$
\begin{aligned}
\frac{d \sigma}{d t}(p p & \rightarrow p p) \\
\sqrt{s} & \sim 5 \mathrm{cmeN}
\end{aligned}
$$

$A_{N N}=I$ fo $J=1=S=1$ paps ont,
expect increase or ANN at $\begin{aligned} & \sqrt{5}=3,5,12 \text { Ger } \\ & \operatorname{Ocin}=90^{\circ}\end{aligned}$

JLab Users Meeting June 19, 2007

Key QCD Experiment at GSI

Open Charm

$$
\bar{p} p \rightarrow \bar{\Lambda}_{c}(\overline{c u d}) D^{0}(\bar{c} u) p
$$

Total open charm cross section at threshold

$$
\sigma(p p \rightarrow c X) \simeq 1 \mu b
$$

\qquad
needed to explain Krisch $A_{N N}$

Compare with strangeness channels

$$
p p \rightarrow \wedge(s u d) K^{+}(\bar{s} u) p
$$

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT
32

Stan Brodsky,
SLAC
$\gamma p \rightarrow J / \psi p$

Chudakov, Hoyer, Laget, sjb

(a)

Leading twist contribution

(b)

Dominant near threshold

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Leading Hadron Production from Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks Produce $J / \psi, \Lambda_{c}$ and other Charm Hadrons at High x_{F}

The variation of the cross-section of the reaction $\gamma D \rightarrow p n J / \psi$ against the neutron momentum $|\vec{n}|$, at fixed t. Solid line: quasi-free contribution. Dashed line: contribution of a hidden-color component when its probability is 0.1%. Dash-dotted curve: the same for a probability of 1%.

Hidden color contribution

Deuteron Light-Front Wavefunction

Fixed $\tau=t+z / c$

$$
P^{+}=P^{0}+P^{z}
$$

Weak binding:

$$
\psi_{d}\left(x_{i}, \vec{k}_{\perp i}\right)=\psi_{d}^{b o d y} \times \psi_{n} \times \psi_{p} \quad \sum_{i}^{n} x_{i}=1
$$

Two color-singlet combinations of three $3_{C} \square^{\sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}}$

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Stan Brodsky, SLAC

Properties of Deuteron LightFront Wavefunction

- Cluster Decomposition Theorem for relativistic systems
- Factorization of LFWF in weak binding limit
- Reduced Nuclear Form Factor
- No Wigner Boosts - Melosh factors built in
- Low energy theorems
- $\psi_{d}\left(x_{i}, \vec{k}_{\perp i}\right)=\psi_{d}^{b o d y} \times \psi_{n} \times \psi_{p}$

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT

Stan Brodsky,
SLAC

Weak binding:

Cluster

decomposition on the LF

$$
\begin{aligned}
z_{i}= & \frac{\boldsymbol{x}_{i}}{y}, \quad \mathbf{k}_{1 i}^{\prime}=\mathbf{k}_{1 i}-z_{i} \boldsymbol{l}_{\perp} \quad(i=1,2,3), \\
z_{j}= & \frac{x_{j}}{1-y}, \quad \mathbf{k}_{1 j}^{\prime}=\mathbf{k}_{1 j}-z_{j} \boldsymbol{l}_{\perp} \quad(j=4,5,6), \quad \vec{\ell}_{\perp}=\sum_{i=1}^{3} x_{i} \\
& \boldsymbol{\Psi}_{\boldsymbol{d}}\left(\boldsymbol{x}_{\boldsymbol{i}}, \mathbf{k}_{\perp i}\right)=\boldsymbol{\psi}_{\boldsymbol{d}}^{\mathrm{body}}\left(\boldsymbol{y}, \boldsymbol{l}_{\perp}\right) \boldsymbol{\psi}_{N}\left(z_{i}, \mathbf{k}_{1 i}^{\prime}\right) \boldsymbol{\psi}_{N}\left(\boldsymbol{z}_{j}, \mathbf{k}_{\perp j}^{\prime}\right) .
\end{aligned}
$$

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT

Evolution of 5 color-singlet Fock states

$\Psi_{n}^{\mathbf{d}}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$

$$
\begin{aligned}
\sum_{i}^{n} \vec{k}_{\perp i} & =\overrightarrow{0}_{\perp} \\
\sum_{i}^{n} x_{i} & =1
\end{aligned}
$$

$$
\Phi_{n}\left(x_{i}, Q\right)=\int^{k_{\perp i}^{2}<Q^{2}} \Pi^{\prime} d^{2} k_{\perp j} \psi_{n}\left(x_{i}, \vec{k}_{\perp j}\right)
$$

5×5 Matrix Evolution Equation for deuteron distribution amplitude
JLab Users Meeting June 19, 2007 QCD @ Jlab \& AdS/CFT

Quantum Chromodynamic Predictions for the Deuteron Form Factor

$$
\begin{align*}
& F_{d}\left(Q^{2}\right)=\int_{0}^{1}[d x][d y] \varphi_{d}^{\dagger}(y, Q) \\
& \times T_{H}{ }^{6 a+\gamma^{*} \rightarrow 6 a}(x, y, Q) \varphi_{d}(x, Q) \tag{1}
\end{align*}
$$

where the hard-scattering amplitude

$$
\begin{align*}
T_{H}^{6 a+\gamma^{*} \rightarrow 6 q}= & {\left[\alpha_{s}\left(Q^{2}\right) / Q^{2}\right]^{5} t(x, y) } \\
\times & {\left[1+O\left(\alpha_{s}\left(Q^{2}\right)\right)\right] } \tag{2}
\end{align*}
$$

gives the probability amplitude for scattering six quarks collinear with the initial to the final deuteron momentum and

$$
\begin{equation*}
\varphi_{d}\left(x_{i}, Q\right) \propto \int^{k_{\perp i}<Q}\left[d^{2} k_{\perp}\right] \psi_{q q q ~ q q q}\left(x_{i}, \overrightarrow{\mathrm{k}}_{\perp i}\right) \tag{3}
\end{equation*}
$$

Ji, Lepage, sjb

FIG. 1. The general structure of the deuteron form factor at large Q^{2}.

QCD @ Jlab \& AdS/CFT

Elastic electron-deuteron scattering

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 41

QCD Prediction for

Deuteron Form Factor

$$
F_{d}\left(Q^{2}\right)=\left[\frac{\alpha_{s}\left(Q^{2}\right)}{Q^{2}}\right]^{5} \sum_{m, n} d_{m n}\left(\ln \frac{Q^{2}}{\Lambda^{2}}\right)^{-\gamma_{n}^{d}-\gamma_{m}^{d}}\left[1+\boldsymbol{O}\left(\alpha_{s}\left(Q^{2}\right), \frac{m}{Q}\right)\right]
$$

Define "Reduced" Form Factor

$$
f_{d}\left(Q^{2}\right) \equiv \frac{F_{d}\left(Q^{2}\right)}{F_{N}^{2}\left(Q^{2} / 4\right)}
$$

Same large momentum transfer behavior as pion form factor

FIG. 2. (a) Comparison of the asymptotic QCD pre$f_{d}\left(Q^{2}\right) \sim \frac{\alpha_{s}\left(Q^{2}\right)}{Q^{2}}\left(\ln \frac{Q^{2}}{\Lambda^{2}}\right)^{-(2 / 5) c_{F} / \beta}$ diction $f_{d}\left(Q^{2}\right) \propto\left(1 / Q^{2}\right)\left[\ln \left(Q^{2} / \Lambda^{2}\right)\right]^{-1-(2 / 5)} C_{F} / \beta$ with final data of Ref. 10 for the reduced deuteron form factor, where $F_{N}\left(Q^{2}\right)=\left[1+Q^{2} /\left(0.71 \mathrm{GeV}^{2}\right)\right]^{-2}$. The normalization is fixed at the $Q^{2}=4 \mathrm{GeV}^{2}$ data point. (b) Comparison of the prediction $\left[1+\left(Q^{2} / m_{0}^{2}\right)\right] f_{d}\left(Q^{2}\right) \propto\left[\ln \left(Q^{2} /\right.\right.$

June 19, 2007
$\left.\left.\Lambda^{2}\right)\right]^{-1-(2 / 5) C_{F} / \beta}$ with the above data. The value $m_{0}{ }^{2}$ $=0.28 \mathrm{GeV}^{2}$ is used (Ref. 8).

- Large Magnitude: Evidence for Hidden Color in the Deuteron

Hidden Color in QCD

Lepage, Ji, sjb

- Deuteron six-quark wavefunction
- 5 color-singlet combinations of 6 color-triplets -only one state is |n p>
- Components evolve towards equality at short distances
- Hidden color states dominate deuteron form factor and photodisintegration at high momentum transfer
- Predict

$$
\frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{-}\right) \simeq \frac{d \sigma}{d t}(\gamma d \rightarrow p n) \text { at high } Q^{2}
$$

Structure of
 Deuteron in
 QCD

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 45

Lepage, Jj, sib

The evolution equation for six-quark systems in which the constituents have the light-cone longitudenat momentum fractions $x_{i}(i=1,2, \ldots, 6)$ can be obtained from a generalization of the proton (threequark) case. ${ }^{2}$ A nontrivial extension is the calculation of the color factor, C_{d}, of six-quark systems ${ }^{5}$ (see below). Since in leading order only pairwise interactions, with transverse momentum Q, occur between quarks, the evolution equation for the six-quark system becomes $\left\{[d y]=\delta\left(1-\sum_{i=1}^{6} y_{i}\right) \prod_{i=1}^{6} d y_{i}\right.$ $C_{F}=\left(n_{c}{ }^{2}-1\right) / 2 n_{c}=\frac{4}{3}, \beta=11-\frac{2}{3} n_{f}$, and n_{f} is the effective number of flavors $\}$

$$
\prod_{k=1}^{6} x_{k}\left[\frac{\partial}{\partial \xi}+\frac{3 C_{F}}{\beta}\right] \tilde{\Phi}\left(x_{i}, Q\right)=-\frac{C_{d}}{\beta} \int_{0}^{1}[d y] V\left(x_{i}, y_{i}\right) \tilde{\Phi}\left(y_{i}, Q\right)
$$

$$
\xi\left(Q^{2}\right)=\frac{\beta}{4 \pi} \int_{Q_{0}{ }^{2}}^{Q^{2}} \frac{d k^{2}}{k^{2}} \alpha_{s}\left(k^{2}\right) \sim \ln \left(\frac{\ln \left(Q^{2} / \Lambda^{2}\right)}{\ln \left(Q_{0}{ }^{2} / \Lambda^{2}\right)}\right)
$$

$$
V\left(x_{i}, y_{i}\right)=2 \prod_{k=1}^{6} x_{k} \sum_{i \neq j}^{6} \theta\left(y_{i}-x_{i}\right) \prod_{l \neq i, j}^{6} \delta\left(x_{l}-y_{i}\right) \frac{y_{j}}{x_{j}}\left(\frac{\delta_{h_{i} \tilde{h}_{j}}}{x_{i}+x_{j}}+\frac{\Delta}{y_{i}-x_{i}}\right)
$$

where $\delta_{h_{i} \bar{h}_{j}}=1(0)$ when the helicities of the constituents $\{i, j\}$ are antiparallel (parallel). The infrared singularity at $x_{i}=y_{i}$ is cancelled by the factor $\Delta \tilde{\Phi}\left(y_{i}, Q\right)=\tilde{\Phi}\left(y_{i}, Q\right)-\tilde{\Phi}\left(x_{i}, Q\right)$ since the deuteron is a color singlet.

Hidden Color of Deuteron

Deuteron six-quark state has five color - singlet configurations, only one of which is $n-p$.

Asymptotic Solution has Expansion

$$
\psi_{[6]\{33\}}=\left(\frac{1}{9}\right)^{1 / 2} \psi_{N N}+\left(\frac{4}{45}\right)^{1 / 2} \psi_{\Delta \Delta}+\left(\frac{4}{5}\right)^{1 / 2} \psi_{C C}
$$

Look for strong transition to Delta-Delta

$$
\gamma d \rightarrow n p
$$

P.Rossi et al, P.R.L. 94, 012301 (2005)
$\gamma d \rightarrow(u u d d d u s \bar{s}) \rightarrow n p$ at $s=9 \mathrm{GeV}^{2}$
Fit of do/dt data for the central angles and $P_{T} \geq 1.1 \mathrm{GeV} / \mathrm{c}$ with

$$
A^{-11}
$$

For all but two of the fits

$$
\chi^{2} \leq 1.34
$$

- Better χ^{2} at 55° and 75° if different data sets are renormalized to each other
- No data at $P_{T} \geq 1.1 \mathrm{GeV} / \mathrm{c}$ at forward and backward angles
-Clear s ${ }^{-11}$ behaviour for last 3 points at 35°

Data consistent with CCR

- Remarkable Test of Quark Counting Rules
- Deuteron Photo-Disintegration $\gamma \mathrm{d} \rightarrow \mathrm{np}$

$$
\begin{aligned}
& \frac{d \sigma}{d t}=\frac{F(t / s)}{s^{n} t o t^{-2}} \\
& n_{t o t}=1+6+3+3=13
\end{aligned}
$$

Scaling characteristic of scale-invariant theory at short distances

Conformal symmetry
Hidden color: $\quad \frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{-}\right) \simeq \frac{d \sigma}{d t}(\gamma d \rightarrow p n)$
at high p_{T}
Ratio predicted to approach 2:5

Deuteron Photodisintegration and Dímensional Counting
P.Rossi et al, P.R.L. 94, 012301 (2005)

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT
50

PQCD and AdS/CFT:
$s^{n_{t o t}-2 \frac{d \sigma}{d t}}(A+B \rightarrow C+D)=$ $\mathrm{F}_{A+B \rightarrow C+D}\left(\theta_{C M}\right)$

$$
n_{t o t}-2=
$$

$$
(1+6+3+3)-2=11
$$

$$
\gamma d \rightarrow(u u d d d u s \bar{s}) \rightarrow n p
$$

$$
\text { at } s \simeq 9 \mathrm{GeV}^{2}
$$

$$
\gamma d \rightarrow(u u d d d u c \bar{c}) \rightarrow n p
$$

$$
\text { at } s \simeq 25 \mathrm{GeV}^{2}
$$

Stan Brodsky, SLAC

Test of Hidden Color in Deuteron Photodisintegration

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT

Test of Hidden Color in Deuteron Photodisintegration

$$
R=\frac{\frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{--}\right)}{\frac{d \sigma}{d t}(\gamma d \rightarrow p n)}
$$

Ratio predicted to approach 2:5

Possible contribution from pion charge exchange at small t.
Ratio should grow with transverse momentum as the hidden color component of the deuteron grows in strength.

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Antv-Deuteron Production at the Amplitude Level

Combinatoric Advantage for Hidden-Color Fock States

$$
\Upsilon \rightarrow g g g \rightarrow q \bar{q} q \bar{q} q \bar{q} q \bar{q} q \bar{q} q \bar{q} \rightarrow \bar{d} X
$$

Compare Antu-Deuteron production with double anti-baryon production

$$
\Upsilon \rightarrow g g g \rightarrow q \bar{q} q \bar{q} q \bar{q} q \bar{q} q \bar{q} q \bar{q} \rightarrow \bar{p} \bar{n} X
$$

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT
Stan Brodsky, SLAC

Key Test of Hidden Color

- CLEO measurement: Upsilon decay to antideuteron

$$
\gamma \rightarrow g g g \longrightarrow \bar{d} X
$$

- Is ratio of deuteron production to production of anti-nucleon pairs determined by standard Nuclear Physics?

$$
R=\frac{\Gamma(\Upsilon \rightarrow \bar{d} X)}{\Gamma(\Upsilon \rightarrow \bar{p} \bar{n} X)}
$$

Standard contribution: Need to integrate double differential distribution

$$
\left.\int d^{2} k_{\perp} \int_{0}^{1} d x\right)\left|\psi \frac{d}{\bar{n}}\left(x, k_{\perp}\right)\right|^{2} \times \frac{d \sigma}{d^{3} p_{\bar{n}} d^{3} p_{\bar{p}}}(\Upsilon \rightarrow \bar{n} \bar{p} X)
$$

JLab Users Meeting June 19, 2007

QCD @ J1ab \& AdS/CFT 54

Stan Brodsky,
SLAC

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Physics of Rescattering

- Diffractive DIS: New Insights into Final State Interactions in QCD
- Origin of Hard Pomeron
- Structure Functions not Probability Distributions!
- T-odd SSAs, Shadowing, Antishadowing
- Diffractive dijets/ trijets, doubly diffractive Higgs
- Novel Effects: Color Transparency, Color Opaqueness, Intrinsic Charm, Odderon

Final-State Interactions Produce

PseudoT-Odd (Sívers Effect)

- Leading-Twist Bjorken Scaling!
$\mathbf{i} \vec{S} \cdot \vec{p}_{j e t} \times \vec{q}$
- Requires nonzero orbital angular momentum of quark
- Arises from the interference of Final-State QCD Coulomb phases in S- and P- waves; Wilson line effect; gauge independent
- Relate to the quark contribution to the target proton anomalous magnetic moment and final-state QCD phases
- QCD phase at soft scale

- New window to QCD coupling and running gluon mass in the IR
- QED S and P Coulomb phases infinite -- difference of phases finite

Conformal window Infrared fixed-point

$$
\beta\left(Q^{2}\right)=\frac{d \alpha_{s}\left(Q^{2}\right)}{d \log Q^{2}} \rightarrow 0
$$

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Stan Brodsky, SLAC

Predictionfor Single-Spin Asymmetry

> Hwang, Schmidt, sjb

can interfere

and produce a T-odd effect! (also need $L_{z} \neq 0$)

Hermes coll., A. A irapetian et al., Phys. Rev. Lett. 94 (2005) 012002.

Sivers asymmetry from HERMES

- First evidence for non-zero Sivers function!
- \Rightarrow presence of non-zero quark orbital angular momentum!
- Positive for π^{+}...

Consistent with zero for π^{-}...
Gamberg: Hermes data compatible with BHS model

Schmidt, Lu: Hermes charge pattern follow quark contributions to anomalous moment
JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 60

Stan Brodsky, SLAC

A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target

The COMPASS Collaboration
hep-ex/0610068

Sivers SSA cancels on an isospin zero target -gluon contribution to the Sivers asymmetry small small gluon contribution to orbital angular momentum of nucleon

Gardner, sjb

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Recent COMPASS data on deuteron: small Sivers effect

- The anomalous magnetic moment, the Sivers function, and the generalized parton distribution E can all be connected to matrix elements involving the orbital angular momentum of the nucleon's constituents.
- The SSA can be generated by either a quark or gluon mechanism, and the isospin structure of the two mechanisms is distinct. The approximate cancellation of the SSA measured on a deuterium target suggests that the gluon mechanism, and thus the orbital angular momentum carried by gluons in the nucleon, is small.
- Studies of the SSA in ϕ or $K^{+} K^{-}$production, via $\gamma^{*} g \rightarrow s \bar{s} \rightarrow \phi+X$ or $\gamma^{*} g \rightarrow s \bar{s} \rightarrow K^{+} K^{-}+X$ should provide additional constraints on the gluon mechanism.
Gardner, sjb

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 62

Stan Brodsky, SLAC

Predict Opposite Sign SSA in DY!

Collins;

Single Spin Asymmetry In the Drell Yan Process
$\vec{S}_{p} \cdot \overrightarrow{\vec{p}} \times \vec{q}_{\gamma^{*}}$
Quarks Interact in the Initial State
Interference of Coulomb Phases for S and P states
Produce Single Spin Asymmetry [Siver's Effect]Proportional
to the Proton Anomalous Moment and α_{s}.
Opposite Sign to DIS! No Factorization
JLab Users Meeting
June 19, 2007
QCD @ Jlab \& AdS/CFT

DY $\cos 2 \phi$ correlation at leading twist from double ISI

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Anomalous effect from Double ISI in Massive Lepton Production

- Leading Twist, valence quark dominated
- Violates Lam-Tung Relation!
- Not obtained from standard PQCD subprocess analysis
- Normalized to the square of the single spin asymmetry in semiinclusive DIS
- No polarization required
- Challenge to standard picture of PQCD Factorization

QCD @ Jlab \& AdS/CFT
66

Stan Brodsky, SLAC

Double Initial-State Interactions

Drell-Yan planar correlations

generate anomalous $\cos 2 \phi \quad$ Boer, Hwang, sjb

$$
\begin{array}{r}
\frac{1}{\sigma} \frac{d \sigma}{d \Omega} \propto\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right) \\
\text { PQCD Factorization (Lam Tung): } 1-\lambda-2 \nu=0
\end{array}
$$

$$
\pi N \rightarrow \mu^{+} \mu^{-} X \mathrm{NAlO}_{+}
$$

Violates Lam-Tung relation!

Model: Boer,

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Problem for factorization when both ISI and FSI occur

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions

John Collins, Jian-Wei Qiu . ANL-HEP-PR-07-25, May 2007.

The exchange of two extra gluons, as in this graph, will tend to give non-factorization in unpolarized cross sections.

"andaving gurg

- Diffractive DIS
- Non-Unitary Correction to DIS: Structure functions are not probability distributions
- Nuclear Shadowing, Antishadowing- Not in Target WF
- Single Spin Asymmetries -- opposite sign in DY and DIS
- DY $\cos 2 \phi$: distribution at leading twist from double ISI-- not given by PQCD factorization -- breakdown of factorization!
- Wilson Line Effects not I even in LCG
- Must correct hard subprocesses for initial and final-state soft gluon attachments
- Corrections to Handbag Approximation in DVCS!

Hoyer, Marchal, Peigne, Sannino, sjb

JLab Users Meeting June 19, 2007

QCD @ J1ab \& AdS/CFT

Remarkable observation at HERA

Fraction r of events with a large rapidity gap, are
diffractive!
$\eta_{\max }<1.5$, as a function of Q_{DA}^{2} for two ranges of x_{DA}. No acceptance corrections have been applied.
M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993).

JLab Users Meeting June 19, 2007 QCD @ Jlab \& AdS/CFT

DDIS

- In a large fraction ($\sim 10-15 \%$) of DIS events, the proton escapes intact, keeping a large fraction of its initial momentum
- This leaves a large rapidity gap between the proton and the produced particles
- The t-channel exchange must be color singlet $\rightarrow \mathrm{a}$ pomeron??

Diffractive Deep Inelastic Lepton-Proton
Scattering

Diffractive Structure Function $F_{2}{ }^{D}$

Diffractive inclusive cross section
$\frac{\mathrm{d}^{3} \sigma_{N C}^{\text {diff }}}{\mathrm{d} x_{\mathbb{P}} \mathrm{d} \beta \mathrm{d} Q^{2}} \propto \frac{2 \pi \alpha^{2}}{x Q^{4}} F_{2}^{D(3)}\left(x_{\mathbb{P}}, \beta, Q^{2}\right)$
$F_{2}^{D}\left(x_{\mathbb{P}}, \beta, Q^{2}\right)=f\left(x_{\mathbb{P}}\right) \cdot F_{2}^{\mathbb{P}}\left(\beta, Q^{2}\right)$
extract DPDF and $x g(x)$ from scaling violation
Large kinematic domain $3<Q^{2}<1600 \mathrm{GeV}^{2}$
Precise measurements sys 5%, stat 5-20\%

Final-State Interaction Produces Dúffractive DIS

Quark Rescattering

Hoyer, Marchal, Peigne, Sannino, SJB (BHM

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB
$1-2005$
$8711 A 18$

Low-Nussinov model of Pomeron

JLab Users Meeting June 19, 2007

QCD @ J1ab \& AdS/CFT

Final State Interactions in QCD

Feynman Gauge
Light-Cone Gauge
Result is Gauge Independent

QCD Mechanism for Rapidity Gaps

Reproduces lab-frame color dipole approach

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Integration over on-shell domain produces phase i
Need Imaginary Phase to Generate Pomeron
Need Imaginary Phase to Generate T-Odd Single-Spin Asymmetry
Physics of FSI not in Wavefunction of Target

JLab Users Meeting June 19, 2007

QCD @ J1ab \& AdS/CFT 78

Nuclear Shadowing in QCD

Shadowing depends on understanding leading twistdiffraction in DIS
Nuclear Shadowing not included in nuclear LFWF !
Dynamical effect due to virtual photon interacting in nucleus

JLab Users Meeting
June 19, 2007
QCD @ J1ab \& AdS/CFT
79

Shadowing depends on understanding leading-twist-diffraction in DIS

Integration over on-shell domain produces phase i Need Imaginary Phase to Generate Pomeron

Need Imaginary Phase to Generate TOdd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 80

Stan Brodsky, SLAC

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_{B} :
$1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}$.

If the scattering on nucleon N_{1} is via pomeron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \bar{q} flux reaching N_{2}.
\rightarrow Shadowing of the DIS nuclear structure functions.

Observed HERA DDIS produces nuclear shadowing

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT
8I

Origin of Regge Behavior of Deep Inelastic Structure Functions

Antiquark interacts with target nucleus at energy $\widehat{s} \propto \frac{1}{x_{b j}}$

Regge contribution: $\sigma_{\bar{q} N} \sim \widehat{s}^{\alpha_{R}-1}$

Nonsinglet Kuti-Weisskoff $F_{2 p}-F_{2 n} \propto \sqrt{x}_{b j}$
 at small $x_{b j}$.

Shadowing of $\sigma_{\bar{q} M}$ produces shadowing of nuclear structure function.

Landshoff, Polkinghorne, Short
Close, Gunion, sjb
Schmidt, Yang, Lu, sjb

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT
82

Now-singlet 10^{-2} Reggeon
Exchange
JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 83

The one-step and two-step processes in DIS on a nucleus.

If the scattering on nucleon N_{1} is via $C=-$ Reggeon or Odderon exchange, the one-step and two-step amplitudes are constructive in phase, enhancing the \bar{q} flux reaching N_{2}
\rightarrow Antishadowing of the
DIS nuclear structure functions

> H. J. Lu, sjb
> Schmidt, Yang, sjb

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Reggeon
 Exchange

Phase of two-step amplitude relative to one step:
$\frac{1}{\sqrt{2}}(1-i) \times i=\frac{1}{\sqrt{2}}(i+1)$
Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of $\gamma^{*}, Z^{0}, W^{ \pm}$

Predicted nuclear shadowing and and antishadowing at $Q^{2}=1 \mathrm{GeV}^{2}$

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT
86
S. J. Brodsky, I. Schmidt and J. J. Yang, "Nuclear Antishadowing in Neutrino Deep Inelastic Scattering," Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].
Stan Brodsky, SLAC

- Shadowing: Destructive Interference of Two-Step and One-Step Processes Pomeron Exchange
- Antishadowing: Constructive Interference of Two-Step and One-Step Processes! Reggeon and Odderon Exchange
- Antishadowing is Not Universal!

Electromagnetic and weak currents: different nuclear effects !
Potentially significant for NuTeV Anomaly\}

Jian-Jun Yang
Ivan Schmidt
Hung Jung Lu
sjb

Shadowing and Antishadowing of DIS Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, "Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,"
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 88

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 89

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau=t+z / c$

$$
\psi\left(x, k_{\perp}\right) \underset{\substack{s=\frac{t}{p} \\ p+1}}{ }
$$

Invariant under boosts. Independent of P^{μ}

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Antu-de Sitter Space

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Stan Brodsky, SLAC

Applications of AdS/CFT to QCD

in collaboration with Guy de Teramond
JLab Users Meeting June 19, 2007 QCD @ Jlab \& AdS/CFT

> New work:
> Grigoryan, Radysuhkin

AdS/CFT Predictions for Meson LFWF $\psi\left(x, b_{\perp}\right)$

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT

Goal:

- Use AdS/CFT to provide an approximate, covariant, and analytic model of hadron structure with confinement at large distances, conformal behavior at short distances
- Analogous to the Schrodinger Equation for Atomic Physics
- AdS/QCD Holographic Model

AdS/CFT: Anti-de Sitter Space / Conformal Field Theory

Maldacena:

$\operatorname{Map} A d S_{5} \times S_{5}$ to conformal $N=4$ SUSY

- QCD is not conformal; however, it has manifestations of a scale-invariant theory: Bjorken scaling, dimensional counting for hard exclusive processes
- Conformal window: $\alpha_{s}\left(Q^{2}\right) \simeq$ const at small Q^{2}
- Use mathematical mapping of the conformal group $\mathbf{S O}(4,2)$ to AdS5 space

Conformal window Infrared fixed-point

$$
\beta\left(Q^{2}\right)=\frac{d \alpha_{s}\left(Q^{2}\right)}{d \log Q^{2}} \rightarrow 0
$$

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT
95

Stan Brodsky, SLAC

IR Fixed-Point for QCD?

- Dyson-Schwinger Analysis: QCD Coupling has IR Fixed Point Alkofer, Fischer, von Smekal et al.
- Evidence from Lattice Gauge Theory Furui, Nakajima
- Define coupling from observable: indications of IR fixed point for QCD effective charges
- Confined or massive gluons: Decoupling of QCD vacuum polarization at small Q^{2}

$$
\Pi\left(Q^{2}\right) \rightarrow \frac{\alpha}{15 \pi} \frac{Q^{2}}{m^{2}} \quad Q^{2} \ll 4 m^{2}
$$

- Justifies application of AdS/CFT in strong-coupling conformal window

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Deur, Korsch, et al: Effective Charge from Bjorken Sum Rule

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Conformal behavior: $Q^{2} F_{\pi}\left(Q^{2}\right) \rightarrow$ const
$Q^{4} F_{1}\left(Q^{2}\right) \rightarrow$ const

Determination of the Charged Pion Form Factor at Q2=1.60 and 2.45 ($\mathrm{GeV} / \mathrm{c}$)2.
By Fpi2 Collaboration (T. Horn et al.). Jul 2006. 4pp. e-Print Archive: nucl-ex/0607005
G. Huber

Generalized parton distributions from nucleon form-factor data. M. Diehl (DESY), Th. Feldmann (CERN), R. Jakob, P. Kroll (Wuppertal U.) .

DESY-04-146, CERN-PH-04-154, WUB-04-08, Aug 2004. 68pp.
Published in Eur.Phys.J.C39:1-39,2005
e-Print Archive: hep-ph/0408173

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Conformal Theories are invariant under the Poincare and conformal transformations with

$$
\mathbf{M}^{\mu \nu}, \mathbf{P}^{\mu}, \mathbf{D}, \mathbf{K}^{\mu}
$$

the generators of $\operatorname{SO}(4,2)$

SO $(4,2)$ has a mathematical representation on AdS_{5}

Scale Transformations

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z .
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

AdS/CFT

- Use mapping of conformal group $\mathrm{SO}_{(4,2)}$ to AdS_{5}
- Scale Transformations represented by wavefunction $\psi(z)$ in 5th dimension $\quad x_{\mu}^{2} \rightarrow \lambda^{2} x_{\mu}^{2} \quad z \rightarrow \lambda z$
- Holographic model: Confinement at large distances and conformal symmetry in interior $0<z<z_{0}$
- Match solutions at small z to conformal dimension of hadron wavefunction at short distances $\psi(z) \sim z^{\Delta}$ at $z \rightarrow 0$
- Truncated space simulates "bag" boundary conditions

$$
\psi\left(z_{0}\right)=0 \quad z_{0}=\frac{1}{\Lambda_{Q C D}}
$$

Identify hadron by its interpolating operator at z -- >o

of baryon

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 102
de Teramond, sjb
Stan Brodsky, SLAC

- Polchinski \& Strassler: AdS/CFT builds in conformal symmetry at short distances; counting rules for form factors and hard exclusive processes; non-perturbative derivation
- Goal: Use AdS/CFT to provide an approximate model of hadron structure with confinement at large distances, conformal behavior at short distances
- de Teramond, sjb: AdS/QCD Holographic Model: Initial "semiclassical" approximation to QCD. Predict light-quark hadron spectroscopy, form factors.
- Karch, Katz, Son, Stephanov: Linear Confinement
- Mapping of AdS amplitudes to 3+ I Light-Front equations, wavefunctions
- Use AdS/CFT wavefunctions as expansion basis for diagonalizing $\mathrm{H}^{\mathrm{LF}} \mathrm{QCD}^{\text {; variational methods }}$

$$
\Phi(\mathrm{z})=\mathrm{z}^{3 / 2} \phi(\mathrm{z})
$$

AdS Schrodinger Equation for bound state of two scalar constituents

$$
\left[-\frac{\mathrm{d}^{2}}{\mathrm{dz}} \mathrm{z}^{2}+\mathrm{V}(\mathrm{z})\right] \phi(\mathrm{z})=\mathrm{M}^{2} \phi(\mathrm{z})
$$

Truncated space

$$
\mathrm{V}(\mathrm{z})=-\frac{1-4 \mathrm{~L}^{2}}{4 \mathrm{z}^{2}} \quad \phi\left(\mathrm{z}=\mathrm{z}_{0}=\frac{1}{\Lambda_{\mathrm{c}}}\right)=0 .
$$

Alternative: Harmonic oscillator confinement

$$
\mathrm{V}(\mathrm{z})=-\frac{1-4 \mathrm{~L}^{2}}{4 \mathrm{z}^{2}}+\kappa^{4} \mathbf{z}^{2} \quad \text { Karch, et al. }
$$

Derived from variation of A ction in $A d S_{5}$

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 104

Stan Brodsky, SLAC

Match fall-off at small z to conformal twist dimension at short distances

- Pseudoscalar mesons: $\mathcal{O}_{3+L}=\bar{\psi} \gamma_{5} D_{\left\{\ell_{1} \ldots\right.} \ldots D_{\left.\ell_{m}\right\}} \psi \quad$ ($\Phi_{\mu}=0$ gauge).
- 4- d mass spectrum from boundary conditions on the normalizable string modes at $z=z_{0}$, $\Phi\left(x, z_{o}\right)=0$, given by the zeros of Bessel functions $\beta_{\alpha, k}: \mathcal{M}_{\alpha, k}=\beta_{\alpha, k} \Lambda_{Q C D}$
- Normalizable AdS modes $\Phi(z)$

Meson orbital and radial AdS modes for $\Lambda_{Q C D}=0.32 \mathrm{GeV}$.

Light meson orbital spectrum $\Lambda_{Q C D}=0.32 \mathrm{GeV}$
Guy de Teramond SJB

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 106

Baryon Spectrum

- Baryon: twist-three, dimension $\frac{9}{2}+L$

$$
\mathcal{O}_{\frac{9}{2}+L}=\psi D_{\left\{\ell_{1}\right.} \ldots D_{\ell_{q}} \psi D_{\ell_{q+1}} \ldots D_{\left.\ell_{m}\right\}} \psi, \quad L=\sum_{i=1}^{m} \ell_{i}
$$

Wave Equation: $\left[z^{2} \partial_{z}^{2}-3 z \partial_{z}+z^{2} \mathcal{M}^{2}-\mathcal{L}_{ \pm}^{2}+4\right] f_{ \pm}(z)=0$
with $\mathcal{L}_{+}=L+1, \mathcal{L}_{-}=L+2$, and solution

$$
\Psi(x, z)=C e^{-i P \cdot x} z^{2}\left[J_{1+L}(z \mathcal{M}) u_{+}(P)+J_{2+L}(z \mathcal{M}) u_{-}(P)\right]
$$

- 4- d mass spectrum $\Psi\left(x, z_{o}\right)^{ \pm}=0 \quad \Longrightarrow \quad$ parallel Regge trajectories for baryons !

$$
\mathcal{M}_{\alpha, k}^{+}=\beta_{\alpha, k} \Lambda_{Q C D}, \quad \mathcal{M}_{\alpha, k}^{-}=\beta_{\alpha+1, k} \Lambda_{Q C D}
$$

- Ratio of eigenvalues determined by the ratio of zeros of Bessel functions !

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT
107

Prediction from AdS/QCD

Only one parameter!

Entire light quark baryon spectrum

Fig: Predictions for the light baryon orbital spectrum for $\Lambda_{Q C D}=0.25 \mathrm{GeV}$. The 56 trajectory corresponds to L even $P=+$ states, and the $\mathbf{7 0}$ to L odd $P=-$ states.

Guy de Teramond SJB

- $S U(6)$ multiplet structure for N and Δ orbital states, including internal spin S and L.

$S U(6)$	S	L	Baryon State
56	$\frac{1}{2}$	0	$N{ }^{\frac{1}{2}+}{ }^{(939)}$
	$\frac{3}{2}$	0	$\Delta \frac{3}{2}^{+}(1232)$
70	$\frac{1}{2}$	1	$N \frac{1}{2}^{-}(1535) N \frac{3}{2}^{-}(1520)$
	$\frac{3}{2}$	1	$N \frac{1}{2}^{-}(1650) N \frac{3}{2}^{-}(1700) N{ }^{5}{ }^{-}{ }^{(1675)}$
	$\frac{1}{2}$	1	$\Delta \frac{1}{2}^{-}(1620) \Delta \frac{3}{2}^{-}(1700)$
56	$\frac{1}{2}$	2	$N{ }^{\frac{3}{2}}{ }^{+}(1720) N{ }^{\frac{5}{2}}{ }^{+}(1680)$
	$\frac{3}{2}$	2	$\Delta \frac{1}{2}^{+}(1910) \Delta \frac{3}{2}^{+}(1920) \Delta \frac{5}{2}^{+}(1905) \Delta \frac{7}{2}^{+}(1950)$
70	$\frac{1}{2}$	3	$N \frac{5}{2}^{-} \quad N \frac{7}{2}^{-}$
		3	$N \frac{3}{2}^{-} \quad N \frac{5}{2}^{-} \quad N \frac{7}{2}^{-}(2190) N \frac{9}{2}^{-}(2250)$
	$\frac{1}{2}$	3	$\Delta \frac{5}{7}^{-}(1930) \Delta \frac{7}{2}^{-}$
56	$\frac{1}{2}$	4	$N \frac{7}{2}^{+} \quad N{ }^{\frac{9}{2}}{ }^{+}(2220)$
	$\frac{3}{2}$	4	$\Delta \frac{5}{2}+\quad \Delta \frac{7}{2}^{+} \quad \Delta \frac{9}{2}{ }^{+} \quad \Delta \frac{11}{2}{ }^{+}(2420)$
70	$\frac{1}{2}$	5	$N \frac{9}{2}^{-} \quad N \frac{11}{2}-$
	$\frac{3}{2}$	5	$N \frac{7}{2}^{-} \quad N \frac{9}{2}^{-} \quad N \frac{11}{2}^{-}(2600) N \frac{13}{2}^{-}$

Pion orbital and radial modes in a soft wall model.

Zeropion mass

$$
\text { Pion Regge Trajectory } \quad \kappa=0.59 \mathrm{GeV}
$$

JLab Users Meeting June 19, 2007

QCD @ J1ab \& AdS/CFT

 110
Non-Conformal Extension of Algebraic Integrability

- Consider the generator (short-distance Coulombic and long-distance linear potential)

$$
\Pi_{\nu}(\zeta)=-i\left(\frac{d}{d \zeta}-\frac{\nu+\frac{1}{2}}{\zeta}-\kappa^{2} \zeta\right)
$$

and its adjoint Π_{ν}^{\dagger} with commutation relations

$$
\left[\Pi_{\nu}(\zeta), \Pi_{\nu}^{\dagger}(\zeta)\right]=\frac{2 \nu+1}{\zeta^{2}}-2 \kappa^{2}
$$

- Light-cone hamiltonian Hamiltonian $H_{L C}=\Pi_{\nu}^{\dagger} \Pi_{\nu}+C$ is positive definite $\langle\phi| H_{L C} \mid \phi \geq 0$ for $\nu^{2} \geq 0$, and $C \geq-4 \kappa^{2}$.
- Orbital and radial excited states are constructed from the ladder operators from $\nu=0$ state

$$
\phi_{L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Identify the zero mode ($C=-4 \kappa^{2}$) with the pion $\mathcal{M}^{2}=4 \kappa^{2}(n+L)$.
- Similar model with background dilaton: Karch, Katz, Son and Stephanov (2006).
- Baryon: twist-dimension $3+L \quad(\nu=L+1)$

$$
\mathcal{O}_{3+L}=\psi D_{\left\{\ell_{1}\right.} \ldots D_{\ell_{q}} \psi D_{\ell_{q+1}} \ldots D_{\left.\ell_{m}\right\}} \psi, \quad L=\sum_{i=1}^{m} \ell_{i}
$$

- Define the zero point energy (identical as in the meson case) $\mathcal{M}^{2} \rightarrow \mathcal{M}^{2}-4 \kappa^{2}$:

$$
\mathcal{M}^{2}=4 \kappa^{2}(n+L+1)
$$

Proton Regge Trajectory $\kappa=0.49 \mathrm{GeV}$

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 112

Quark or string model?

E. Klempt

What are the forces between quarks in baryons?

Confinement potential Coulomb
Instanton induced interactions Goldstone exchange

String model favored: $M^{2}=C(n+L)$ Agrees with Soft Wall AdS/QCD

String-like flux tube of gluon field

Parity doublets

E. Klempt
$2430(40) \quad 11 / 2^{+} \quad 9 / 2^{+} \quad 7 / 2^{+} \quad 5 / 2^{+}$
9/2 $\quad 7 / 2^{-} \quad 5 / 2^{-} \quad 3 / 2^{-}$

$2400(125)$	$2400(125)$	$2350(100)$	$2300(100)$	$2400(125)$

$2210(60)$	$7 / 2^{-}$	$5 / 2^{-}$	$3 / 2^{-}$	$1 / 2^{-}$	$7 / 2^{+}$	$5 / 2^{+}$	$3 / 2^{+}$
$2200(80)$			212^{+}				
		$2150(100)$	$2220(125)$				

1932(33) $7 / 2^{+} \quad 5 / 2^{+} \quad 3 / 2^{+} \quad 1 / 2^{+}$

| $1959(15)$ | $1910(30)$ | $1920(80)$ | $1910(40)$ | $1940(30)$ | $1940(100)$ | $1890(50)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1624(4)

1232

Hadron Form Factors from AdS/CFT

- Propagation of external perturbation suppressed inside AdS. $J(Q, z)=z Q K_{1}(z Q)$
- At large Q^{2} the important integration region
is $z \sim 1 / Q$.

$$
F\left(Q^{2}\right)_{I \rightarrow F}=\int \frac{d z}{z^{3}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z)
$$

$$
\mathbf{J}(\mathrm{Q}, \mathbf{z}), \quad \boldsymbol{\Phi}(\mathbf{z})
$$

Polchinski, Strassler de Teramond, sjb

- Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small $z, \Phi^{(n)}$ scales as $\Phi^{(n)} \sim z^{\Delta_{n}}$. Thus:

$$
F\left(Q^{2}\right) \rightarrow\left[\frac{1}{Q^{2}}\right]^{\tau-1}, \begin{gathered}
\text { Dimensional Quark Counting Rules: } \\
\text { General result from } \\
\text { AdS/CFT }
\end{gathered}
$$

where $\tau=\Delta_{n}-\sigma_{n}, \sigma_{n}=\sum_{i=1}^{n} \sigma_{i}$. The twist is equal to the number of partons, $\tau=n$.

Spacelike pion form factor from AdS/CFT

Data Compilation from Baldini, Kloe and Volmer
\qquad Harmonic Oscillator Confinement
Truncated Space Confinement
One parameter - set by pion decay constant

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 116
de Teramond, sjb See also: Radyushkin Stan Brodsky, SLAC

$$
\begin{aligned}
& F\left(Q^{2}\right)=R^{3} \int_{0}^{\infty} \frac{d z}{z^{3}} \Phi_{P^{\prime}}(z) J(Q, z) \Phi_{P}(z) . \\
& \Phi(z)=\frac{\sqrt{2} \kappa}{R^{3 / 2}} z^{2} e^{-\kappa^{2} z^{2} / 2} . \\
& F\left(Q^{2}\right)=1+\frac{Q^{2}}{4 \kappa^{2}} \exp \left(\frac{Q^{2}}{4 \kappa^{2}}\right) E i\left(-\frac{Q^{2}}{4 \kappa^{2}}\right) \quad E i(-x)=\int_{\infty}^{x} e^{-t} \frac{d t}{t} . \\
& \text { Space-like Pion } \\
& \text { Form Factor } \\
& \text { Identical Results for both } \\
& \text { confinement models } \\
& \text { JLab Users Meeting } \\
& \text { June 19, } 2007 \\
& J(Q, z)=z Q K_{1}(z Q) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Stan Brodsky, SLAC }
\end{aligned}
$$

Spacelike and Timelike Pion form factor from AdS/CFT

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT 118
G. de Teramond, sjb

Harmonic
Oscillator Confinement scale set by pion decay constant

$$
\kappa=0.38 \mathrm{GeV}
$$

Spacelike and Timelike Pion form factor from AdS/CFT

$$
F_{\pi}\left(q^{2}\right)
$$

G. de Teramond, sjb

Harmonic Oscillator
Confinement
$\kappa=0.38 \mathrm{GeV}$
Analytic continue to timelike momenta and introduce width $q^{2} \rightarrow q^{2}+i \epsilon \rightarrow q^{2}+i M \Gamma$

Fit to height, predict width
$\Gamma_{\rho}=111 \mathrm{MeV}$
$\Gamma_{\rho}^{e x p}=150.3 \pm 1.6 \mathrm{MeV}$

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT

Nucleon Form Factors

- Consider the spin non-flip form factors in the infinite wall approximation

$$
\begin{aligned}
& F_{+}\left(Q^{2}\right)=g_{+} R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left|\psi_{+}(z)\right|^{2} \\
& F_{-}\left(Q^{2}\right)=g_{-} R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left|\psi_{-}(z)\right|^{2}
\end{aligned}
$$

where the effective charges g_{+}and g_{-}are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^{z}=+1 / 2$. The two AdS solutions $\psi_{+}(z)$ and $\psi_{-}(z)$ correspond to nucleons with $J^{z}=+1 / 2$ and $-1 / 2$.
- For $S U(6)$ spin-flavor symmetry

$$
\begin{aligned}
F_{1}^{p}\left(Q^{2}\right) & =R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left|\psi_{+}(z)\right|^{2} \\
F_{1}^{n}\left(Q^{2}\right) & =-\frac{1}{3} R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left[\left|\psi_{+}(z)\right|^{2}-\left|\psi_{-}(z)\right|^{2}\right]
\end{aligned}
$$

where $F_{1}^{p}(0)=1, F_{1}^{n}(0)=0$.

- Large Q power scaling: $F_{1}\left(Q^{2}\right) \rightarrow\left[1 / Q^{2}\right]^{2}$.
G. de Teramond, sjb $F_{1}^{p}\left(Q^{2}\right)$

$$
F_{1}\left(Q^{2}\right)_{I \rightarrow F}=\int \frac{d z}{z^{3}} \Phi_{F}^{\uparrow}(z) J(Q, z) \Phi_{I}^{\uparrow}(z)
$$

Data analysis from: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Dirac Neutron Form Factor

G. de Teramond, sjb
(Valence Approximation)
Preliminary

$$
Q^{4} F_{1}^{n}\left(Q^{2}\right)\left[\mathrm{GeV}^{4}\right]
$$

Prediction for $Q^{4} F_{1}^{n}\left(Q^{2}\right)$ for $\Lambda_{\mathrm{QCD}}=0.21 \mathrm{GeV}$ in the hard wall approximation. Data analysis from Diehl (2005).

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Hadronic Form Factor in Space and Time-Like Regions

- The form factor in AdS/QCD is the overlap of the normalizable modes dual to the incoming and outgoing hadron Φ_{I} and Φ_{F} and the non-normalizable mode J, dual to the external source (hadron spin σ):

$$
\begin{aligned}
F\left(Q^{2}\right)_{I \rightarrow F} & =R^{3+2 \sigma} \int_{0}^{\infty} \frac{d z}{z^{3+2 \sigma}} e^{(3+2 \sigma) A(z)} \Phi_{F}(z) J(Q, z) \Phi_{I}(z) \\
& \simeq R^{3+2 \sigma} \int_{0}^{z_{o}} \frac{d z}{z^{3+2 \sigma}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z)
\end{aligned}
$$

- $J(Q, z)$ has the limiting value 1 at zero momentum transfer, $F(0)=1$, and has as boundary limit the external current, $A^{\mu}=\epsilon^{\mu} e^{i Q \cdot x} J(Q, z)$. Thus:

$$
\lim _{Q \rightarrow 0} J(Q, z)=\lim _{z \rightarrow 0} J(Q, z)=1
$$

- Solution to the AdS Wave equation with boundary conditions at $Q=0$ and $z \rightarrow 0$:

$$
J(Q, z)=z Q K_{1}(z Q)
$$

Polchinski and Strassler, hep-th/0209211; Hong, Yong and Strassler, hep-th/0409118.

Light-Front Representation of Two-Body Meson Form Factor

- Drell-Yan-West form factor

$$
F\left(q^{2}\right)=\sum_{q} e_{q} \int_{0}^{1} d x \int \frac{d^{2} \vec{k}_{\perp}}{16 \pi^{3}} \psi_{P^{\prime}}^{*}\left(x, \vec{k}_{\perp}-x \vec{q}_{\perp}\right) \psi_{P}\left(x, \vec{k}_{\perp}\right)
$$

- Fourrier transform to impact parameter space \vec{b}_{\perp}

$$
\psi\left(x, \vec{k}_{\perp}\right)=\sqrt{4 \pi} \int d^{2} \vec{b}_{\perp} e^{i \vec{b}_{\perp} \cdot \vec{k}_{\perp}} \widetilde{\psi}\left(x, \vec{b}_{\perp}\right)
$$

- Find $\left(b=\left|\vec{b}_{\perp}\right|\right)$:

$$
\begin{aligned}
F\left(q^{2}\right) & =\int_{0}^{1} d x \int d^{2} \vec{b}_{\perp} e^{i x \vec{b}_{\perp} \cdot \vec{q}_{\perp}}|\widetilde{\psi}(x, b)|^{2} \\
& =2 \pi \int_{0}^{1} d x \int_{0}^{\infty} b d b J_{0}(b q x)|\widetilde{\psi}(x, b)|^{2}
\end{aligned}
$$

Identical DYW andAdS5 Formulae: Two-parton case

- Change the integration variable $\zeta=\left|\vec{b}_{\perp}\right| \sqrt{x(1-x)}$

$$
F\left(Q^{2}\right)=2 \pi \int_{0}^{1} \frac{d x}{x(1-x)} \int_{0}^{\zeta_{\max }=\Lambda_{\mathrm{QCD}}^{-1}} \zeta d \zeta J_{0}\left(\frac{\zeta Q x}{\sqrt{x(1-x)}}\right)|\widetilde{\psi}(x, \zeta)|^{2}
$$

- Compare with AdS form factor for arbitrary Q. Find:

$$
J(Q, \zeta)=\int_{0}^{1} d x J_{0}\left(\frac{\zeta Q x}{\sqrt{x(1-x)}}\right)=\zeta Q K_{1}(\zeta Q), \quad \zeta \leftrightarrow \mathbf{z}
$$

the solution for the electromagnetic potential in AdS space, and

$$
\widetilde{\psi}\left(x, \vec{b}_{\perp}\right)=\frac{\Lambda_{\mathrm{QCD}}}{\sqrt{\pi} J_{1}\left(\beta_{0,1}\right)} \sqrt{x(1-x)} J_{0}\left(\sqrt{x(1-x)}\left|\vec{b}_{\perp}\right| \beta_{0,1} \Lambda_{Q C D}\right) \theta\left(\vec{b}_{\perp}^{2} \leq \frac{\Lambda_{\mathrm{QCD}}^{-2}}{x(1-x)}\right)
$$

the holographic LFWF for the valence Fock state of the pion $\psi_{\bar{q} q / \pi}$.

- The variable $\zeta, 0 \leq \zeta \leq \Lambda_{Q C D}^{-1}$, represents the scale of the invariant separation between quarks and is also the holographic coordinate $\zeta=z$!

$$
\begin{gathered}
L F(3+1) \\
\psi\left(x, \vec{b}_{\perp}\right)
\end{gathered}
$$

Holography: Unique mapping derived from equality of LF and $A d S$ formula for current matrix elements

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT
$\mathbf{I 2 7}$

Holography: Map AdS/CFT to 3+1 LF Theory

Relativistic LF radial equation Frame Independent

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)} \\
\zeta^{2}=x(1-x) \mathrm{b}_{\perp}^{2} . \\
\uparrow_{\vec{b}_{\perp}}
\end{gathered}
$$

Effective conformal potential:
$V(\zeta)=-\frac{1-4 L^{2}}{4 \zeta^{2}} . \quad$ Induced by
$4 \zeta^{2}$. conformal metric

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

AdS/CFT Predictions for Meson LFWF $\psi\left(x, b_{\perp}\right)$

JLab Users Meeting
June 19, 2007

QCD @ J1ab \& AdS/CFT
129

Prediction from AdS/CFT: Meson LFWF

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 130

Stan Brodsky, SLAC

AdS/CFT Prediction for Meson LFWF

Two-parton holographic LFWF in impact space $\widetilde{\psi}(x, \zeta)$ for $\Lambda_{Q C D}=0.32 \mathrm{GeV}$: (a) ground state $L=0, k=1$; (b) first orbital exited state $L=1, k=1$; (c) first radial exited state $L=0, k=2$. The variable ζ is the holographic variable $z=\zeta=\left|b_{\perp}\right| \sqrt{x(1-x)}$.

The front form

JLab Users Meeting June 19, 2007

QCD @ J1ab \& AdS/CFT

$$
\begin{aligned}
& {\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)} \\
& \xrightarrow[\underbrace{}_{\vec{b}_{\perp}}]{ }{ }_{(1-x)}^{x} \\
& \zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \quad \text { Holographic Variable } \\
& -\frac{d}{d \zeta^{2}} \equiv \frac{k_{\perp}^{2}}{x(1-x)} \quad \text { LF Kinetic Energy in } \begin{array}{c}
\text { momentum space }
\end{array}
\end{aligned}
$$

Conjecture for mesons with massive quarks
$-\frac{d}{d \zeta^{2}} \rightarrow-\frac{d}{d \zeta^{2}}+\frac{m_{a}^{2}}{x}+\frac{m_{b}^{2}}{1-x} \equiv \frac{k_{\perp}^{2}+m_{a}^{2}}{x}+\frac{k_{\perp}^{2}+m_{b}^{2}}{1-x}$

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 133

Stan Brodsky, SLAC

N-parton case

- Define effective single particle transverse density by (Soper, Phys. Rev. D 15, 1141 (1977))

$$
F\left(q^{2}\right)=\int_{0}^{1} d x \int d^{2} \vec{\eta}_{\perp} e^{i \vec{\eta}_{\perp} \cdot \vec{q}_{\perp}} \tilde{\rho}\left(x, \vec{\eta}_{\perp}\right)
$$

- From DYW expression for the FF in transverse position space:

$$
\tilde{\rho}\left(x, \vec{\eta}_{\perp}\right)=\sum_{n} \prod_{j=1}^{n-1} \int d x_{j} d^{2} \vec{b}_{\perp j} \delta\left(1-x-\sum_{j=1}^{n-1} x_{j}\right) \delta^{(2)}\left(\sum_{j=1}^{n-1} x_{j} \vec{b}_{\perp j}-\vec{\eta}_{\perp}\right)\left|\psi_{n}\left(x_{j}, \vec{b}_{\perp j}\right)\right|^{2}
$$

- Compare with the the form factor in AdS space for arbitrary Q :

$$
F\left(Q^{2}\right)=R^{3} \int_{0}^{\infty} \frac{d z}{z^{3}} e^{3 A(z)} \Phi_{P^{\prime}}(z) J(Q, z) \Phi_{P}(z)
$$

- Holographic variable z is expressed in terms of the average transverse separation distance of the spectator constituents $\vec{\eta}=\sum_{j=1}^{n-1} x_{j} \vec{b}_{\perp j}$

$$
z=\sqrt{\frac{x}{1-x}}\left|\sum_{j=1}^{n-1} x_{j} \vec{b}_{\perp j}\right|
$$

E791 FNAL Düffractive DúJet

Gunion, Frankfurt, Mueller, Strikman, sjb Frankfurt, Miller, Strikman
Two-gluon exchange measures the second derivative of the pion light-front wavefunction

JLab Users Meeting June 19, 2007

QCD @ J1ab \& AdS/CFT
135

E791 Diffractive Di-Jet transverse momentum distribution

Two Components

High Transverse momentum dependence $k_{T}^{-6.5}$ consistent with $P Q C D$, ERBL Evolution

Gaussian component similar to AdS/CFT HO LFWF

JLab Users Meeting
June 19, 2007
@ Jlab \& AdS/CFT
136

A(π, dijet) data from FNAL

Coherent π^{+}diffractive dissociation with $500 \mathrm{GeV} / \mathrm{c}$ pions on Pt and C .

Fit to $\sigma=\sigma_{0} \mathbf{A}^{\alpha}$
$\alpha>0.76$ from pion-nucleus total cross-section.

Aitala et al., PRL 864773 (2001)
L. L. Frankfurt, G. A. Miller, and M. Strikman, Found. Of Phys. 30 (2000) 533

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT
137

Stan Brodsky, SLAC

Kawtar Hafidi

Kopeliovich et al., PRC 65 (2002) 035201

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT 138

Summary and outlook

4 The preliminary CLAS results show a clear evidence of CT in ρ^{0} electroproduction on nuclei

- CLAS results show a nice agreement with the theoretical model by Kopeliovich et al.
- The 11 GeV measurements will extend both the \mathbf{Q}^{2} and the ℓ_{c} range considerably allowing for rich input to the theory for the calculation of the vector meson formation time and its interaction in the nuclear medium

Important tests of CT in meson electroproduction DVMP

Stan Brodsky, SLAC

$$
F_{\pi}\left(Q^{2}\right)=\int_{0}^{1} d x \phi_{\pi}(x) \int_{0}^{1} d y \phi_{\pi}(y) \frac{16 \pi C_{F} \alpha_{V}\left(Q_{V}\right)}{(1-x)(1-y) Q^{2}}
$$

AdS/CFT: Increases PQCD leading twist prediction for $F_{\pi}\left(Q^{2}\right)$ by factor $16 / 9$

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT
141

A Unified Description of Hadron Structure

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT
142

Stan Brodsky, SLAC

GPDs \& Deeply Virtual Exclusive Processes - New Insight into Nucleon Structure

Deeply Virtual Compton Scattering (DVCS)

$x-$ quark momentum
fraction
ξ - longitudinal momentum transfer
$\sqrt{-t}$ - Fourier conjugate
to transverse impact
parameter

$H(x, \xi, t), E(x, \xi, t), \ldots$ "Generalized Parton Distributions"
Quark angular momentum (Ji sum rule)

$$
J^{q}=\frac{1}{2}-J^{G}=\frac{1}{2} \int_{-1}^{1} x d x\left[H^{q}(x, \xi, 0)+E^{q}(x, \xi, 0)\right]
$$

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT

Liaht-Front Wave Function Overlap Representation

DVCS/GPD

Diehl, Hwang, sjb, NPB596, 200I See also: Diehl, Feldmann, Jakob, Kroll

DGLAP region

ERBL
$\mathrm{N}=3$ VALENCE QUARK \Rightarrow Light-cone Constituent quark model
$\mathrm{N}=5$ VALENCE QUARK + QUARK SEA \Rightarrow Meson-Cloud model

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT

Example of LFWF representation of GPDs ($\mathrm{n}=>\mathrm{n}$)

Diehl,Hwang, sjb

$$
\begin{aligned}
\frac{1}{\sqrt{1-\zeta}} & \frac{\Delta^{1}-i \Delta^{2}}{2 M} E_{(n \rightarrow n)}(x, \zeta, t) \\
=(\sqrt{1-\zeta})^{2-n} \sum_{n, \lambda_{i}} \int \prod_{i=1}^{n} & \frac{\mathrm{~d} x_{i} \mathrm{~d}^{2} \vec{k}_{\perp i}}{16 \pi^{3}} 16 \pi^{3} \delta\left(1-\sum_{j=1}^{n} x_{j}\right) \delta^{(2)}\left(\sum_{j=1}^{n} \vec{k}_{\perp j}\right) \\
& \times \delta\left(x-x_{1}\right) \psi_{(n)}^{\uparrow \uparrow}\left(x_{i}^{\prime}, \vec{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{(n)}^{\downarrow}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
\end{aligned}
$$

where the arguments of the final-state wavefunction are given by

$$
\begin{array}{lll}
x_{1}^{\prime}=\frac{x_{1}-\zeta}{1-\zeta}, & \vec{k}_{\perp 1}^{\prime}=\vec{k}_{\perp 1}-\frac{1-x_{1}}{1-\zeta} \vec{\Delta}_{\perp} & \text { for the struck quark } \\
x_{i}^{\prime}=\frac{x_{i}}{1-\zeta}, & \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}+\frac{x_{i}}{1-\zeta} \vec{\Delta}_{\perp} & \text { for the spectators } i=2, \ldots, n .
\end{array}
$$

Example of LFWF representation of GPDs ($\left.\mathrm{n}+\mathrm{I}=>\mathrm{n}^{-\mathrm{I}}\right)$

Diehl,Hwang, sjb

$$
\begin{aligned}
& \frac{1}{\sqrt{1-\zeta}} \frac{\Delta^{1}-i \Delta^{2}}{2 M} E_{(n+1 \rightarrow n-1)}(x, \zeta, t) \\
&=(\sqrt{1-\zeta})^{3-n} \sum_{n, \lambda_{i}} \int \prod_{i=1}^{n+1} \frac{\mathrm{~d} x_{i} \mathrm{~d}^{2} \vec{k}_{\perp i}}{16 \pi^{3}} 16 \pi^{3} \delta\left(1-\sum_{j=1}^{n+1} x_{j}\right) \delta^{(2)}\left(\sum_{j=1}^{n+1} \vec{k}_{\perp j}\right) \\
& \times 16 \pi^{3} \delta\left(x_{n+1}+x_{1}-\zeta\right) \delta^{(2)}\left(\vec{k}_{\perp n+1}+\vec{k}_{\perp 1}-\vec{\Delta}_{\perp}\right) \\
& \times \delta\left(x-x_{1}\right) \psi_{(n-1)}^{\uparrow \uparrow}\left(x_{i}^{\prime}, \vec{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{(n+1)}^{\downarrow}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \delta_{\lambda_{1}-\lambda_{n+1}},
\end{aligned}
$$

where $i=2, \ldots, n$ label the $n-1$ spectator partons which appear in the final-state hadron wavefunction with

$$
x_{i}^{\prime}=\frac{x_{i}}{1-\zeta}, \quad \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}+\frac{x_{i}}{1-\zeta} \vec{\Delta}_{\perp}
$$

Link to DIS and Elastic Form Factors

$$
\begin{aligned}
& \text { DIS at } \quad \xi=t=0 \\
& H^{q}(x, 0,0)=q(x), \quad-\bar{q}(-x) \\
& \widetilde{H}^{q}(x, 0,0)=\Delta q(x), \Delta \bar{q}(-x)
\end{aligned}
$$

Form factors (sum rules)

$\int_{d} d x \sum_{q}\left[H^{q}(x, \xi, t)\right]=F_{1}(t)$ Dirac f.f.
$\int_{1}^{1} d x \sum_{q}\left[E^{q}(x, \xi, t)\right]=F_{2}(t)$ Pauli f.f.
$\int_{-1}^{1} d x \widetilde{H}^{q}(x, \xi, t)=G_{A, q}(t), \int_{-1}^{1} d x \widetilde{E}^{q}(x, \xi, t)=G_{P, q}(t)$

Verified using LFWFs
Diehl,Hwang, sjb

Quark angular momentum (Ji's sum rule)

$$
J^{q}=\frac{1}{2}-J^{G}=\frac{1}{2} \int_{-1}^{1} x d x\left[H^{q}(x, \xi, 0)+E^{q}(x, \xi, 0)\right]
$$

Space-time picture of DVCS

$$
\sigma=\frac{1}{2} x^{-} P^{+}
$$

The position of the struck quark differs by x^{-}in the two wave functions
Measure x^{-}distribution from DVCS:
Take Fourier transform of skewness, $\xi=\frac{Q^{2}}{2 p . q}$ the longitudinal momentum transfer

S. J. Brodsky ${ }^{a}$, D. Chakrabarti ${ }^{b}$, A. Harindranath ${ }^{c}$, A. Mukherjee ${ }^{d}$, J. P. Vary ${ }^{e, a, f}$

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT

Stan Brodsky, SLAC
S. J. Brodsky ${ }^{a}$, D. Chakrabarti ${ }^{b}$, A. Harindranath ${ }^{c}$, A. Mukherjee ${ }^{d}$, J. P. Vary $^{e, a, f}$

Hadron Optics
$A\left(\sigma, \vec{b}_{\perp}\right)=\frac{1}{2 \pi} \int d \xi e^{i \frac{1}{\xi} \xi \sigma} \widetilde{A}\left(\xi, \vec{b}_{\perp}\right)$

$$
\sigma=\frac{1}{2} x^{-} P^{+} \quad \xi=\frac{Q^{2}}{2 p \cdot q}
$$

The Fourier Spectrum of the DVCS amplitude in σ space for different fixed values of $\left|b_{\perp}\right|$.

GeV units

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

GPDs \& Deeply Virtual Exclusive Processes - New Insight into Nucleon Structure

Deeply Virtual Compton Scattering (DVCS)

x - quark momentum
fraction
ξ - longitudinal momentum transfer

$\sqrt{-\dagger}-$ Fourier conjugate to transverse impact parameter

$H(x, \xi, t), E(x, \xi, t), \ldots$ "Generalized Parton Distributions"
Corrections to Handbag aproximation -- not gauge invariant! Wilson line: SSA and Diffractive in DIS

Cat's ears
Real Compton: PQCD not handbag
JLab Users Meeting
QCD @ Jlab \& AdS/CFT
150

Unconventional Wisdom

- Significant corrections to handbag diagram for Compton scattering and DVCS
- J=o Fixed Pole
- Regge constraint from DIS for DVCS
- Anti-shadowing is flavor dependent
- Hidden color
- Quenching of DGLAP at large x

Constituent Counting Rules

$$
n_{t o t}=n_{A}+n_{B}+n_{C}+n_{D}
$$

Fixed t / s or $\cos \theta_{c m}$

Farrar \& sjb; Matveev, Muradyan, Tavkhelidze

Conformal symmetry and $P Q C D$ predict leading-twist scating behavior of fixed-CM angle exclusive amplitudes

Characteristic scale of QCD: 300 MeV
Many new J-PARC, GSI, J-Lab, Belle, Babar tests

Leading-Twist PQCD Factorization for
form factors, exclusive amplitudes Lepage, sjb

baryon distribution amplitude

$$
M=\int \Pi d x_{i} d y_{i} \phi_{F}\left(x_{i}, \widetilde{Q}\right) \times T_{H}\left(x_{i}, y_{i}, \widetilde{Q}\right) \times \stackrel{q}{\times} \phi_{I}\left(y_{i}, \widetilde{Q}\right)
$$

If $\alpha_{s}\left(\widetilde{Q}^{2}\right) \simeq$ constant
$Q^{4} F_{1}\left(Q^{2}\right) \simeq$ constant

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT
153

Features of Hard Exclusive Processes in PQCD

- Factorization of perturbative hard scattering subprocess $M=\int T_{H} \times \Pi \phi_{i}$ amplitude and nonperturbative distribution amplitudes
- Dimensional counting rules reflect conformal invariance: $\quad M \sim \frac{f\left(\theta_{C M}\right)}{Q^{N_{\text {tot }}-4}}$
- Hadron helicity conservation: $\sum_{\text {initial }} \lambda_{i}^{H}=\sum_{\text {final }} \lambda_{j}^{H}$
- Color transparency Mueller, sjb;
- Hidden color Ji, Lepage, sjb;
- Evolution of Distribution Amplitudes

Lepage, sjb; Efremov, Radyushkin

Test of PQCD Scaling

Constituent counting rules

Farrar, sib; Muradyan, Matveev, Tavkelidze

$$
\begin{aligned}
& \mathrm{s}^{7} d \sigma / d t\left(\gamma p \rightarrow \pi^{+} n\right) \sim \text { const } \\
& \text { fixed } \theta_{C M} \text { scaling }
\end{aligned}
$$

PQCD and AdS/CFT:

$$
\begin{aligned}
& s^{n_{t o t}-2 \frac{d \sigma}{d t}}(A+B \rightarrow C+D)= \\
& \mathrm{F}_{A+B \rightarrow C+D}\left(\theta_{C M}\right)
\end{aligned}
$$

$$
s^{7} \frac{d \sigma}{d t}\left(\gamma p \rightarrow \pi^{+} n\right)=F\left(\theta_{C M}\right)
$$

$$
n_{t o t}=1+3+2+3=9
$$

Conformal invariance

QCD @ Jlab \& AdS/CFT

Conformal Invariance:

$$
\frac{d \sigma}{d t}(\gamma p \rightarrow M B)=\frac{F\left(\theta_{c m}\right)}{s^{7}}
$$

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Compton-Scattering Cross Section on the Proton at High Momentum Transfer

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT
157

Stan Brodsky, SLAC

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} t}=\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} t}\right)_{\mathrm{KN}}\left[f_{V} \mathrm{R}_{\mathrm{V}}^{2}(t)+f_{A} \mathrm{R}_{\mathrm{A}}^{2}(t)\right]
$$

Agrees with $P Q C D$

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Ratio of Real Compton-Scattering Cross Section
to Electron -Proton Scattering at Fixed CM Angle
JLab E99-114 Results: RCS/ep

JLab Users Meeting June 19, 2007

QCD @ J1ab \& AdS/CFT

Fig. 5. Cross section for (a) $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$, (b) $\gamma \gamma \rightarrow K^{+} K^{-}$in the c.m. angular region $\left|\cos \theta^{*}\right|<0.6$ together with a W^{-6} dependence line derived from the fit of $s\left|R_{M}\right|$. (c) shows the cross section ratio. The solid line is the result of the fit for the data above 3 GeV . The errors indicated by short ticks are statistical only.

JLab Users Meeting June 19, 2007

QCD @ J1ab \& AdS/CFT
160

Stan Brodsky, SLAC

Power fall-off consistent with PQCD

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Stan Brodsky, SLAC

PQCD: $\frac{d \sigma}{d\left|\cos \theta^{*}\right|}\left(\gamma \gamma \rightarrow M^{+} M^{-}\right) \approx \frac{16 \pi \alpha^{2}}{s} \frac{\left|F_{M}(s)\right|^{2}}{\sin ^{4} \theta^{*}}$,

4. Angular dependence of the cross section, $\sigma_{0}^{-1} d \sigma / d\left|\cos \theta^{*}\right|$, for the $\pi^{+} \pi^{-}$(closed circles) and $K^{+} K^{-}$(open circles) processes. The curves are $1.227 \times \sin ^{-4} \theta^{*}$. The errors are statistical only.

Measurement of the $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$and $\gamma \gamma \rightarrow K^{+} K^{-}$processes at energies of $2.4-4.1 \mathrm{GeV}$

JLab Users Meeting June 19, 2007

QCD @ J1ab \& AdS/CFT 162

Neutralpair angular distribution sensitive to AdS/CFT distribution!

$$
\phi_{\pi}^{A d S / Q C D}(x) \propto[x(1-x)]^{1 / 2}
$$

Equal rates for neutral and charged rates in handbag model

(a): $\phi_{\pi}(x) \propto x(1-x)$
(b): $\phi_{\pi}(x) \propto[x(1-x)]^{1 / 4}$
(c): $\phi_{\pi}(x) \propto \delta(x-1 / 2)$

JLab Users Meeting June 19, 2007

QCD @ J1ab \& AdS/CFT

Key Experiment at JLab

$$
R_{n / p}^{C o m p t o n}=\frac{\frac{d \sigma}{d t}(\gamma n \rightarrow \gamma n)}{\frac{d \sigma}{d t}(\gamma p \rightarrow \gamma p)}
$$

Measure Compton scattering on neutron

$$
R_{n / p}^{C o m p t o n}=2 / 3
$$

Handbag Approximation (not gauge invariant)

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT

Stan Brodsky, SLAC

Quark-Counting: $\frac{d \sigma}{d t}(p p \rightarrow p p)=\frac{F\left(\theta_{C M}\right)}{s^{10}} \quad n=4 \times 3-2=10$

JLab Users Meeting
June 19, 2007

QCD @ Jlab \& AdS/CFT 165

Boost Invariant 3+1 Light-Front Wave Equations
$J=0,1,1 / 2,3 / 2$ plus L
Hadron Spectra, Wavefunctions, Dynamics

JLab Users Meeting June 19, 2007

QCD @ Jlab \& AdS/CFT

Stan Brodsky, SLAC

New Perspectives on QCD Phenomena from AdS/CFT

- AdS/CFT: Duality between string theory in Anti-de Sitter Space and Conformal Field Theory
- New Way to Implement Conformal Symmetry
- Holographic Model: Conformal Symmetry at Short Distances, Confinement at large distances
- Remarkable predictions for hadronic spectra, wavefunctions, interactions
- AdS/CFT provides novel insights into the quark structure of hadrons

New Perspectives for $Q C D$ from $A d S / C F T$

- LFWFs: Fundamental frame-independent description of hadrons at amplitude level
- Holographic Model from AdS/CFT : Confinement at large distances and conformal behavior at short distances
- Model for LFWFs, meson and baryon spectra: many applications!
- New basis for diagonalizing Light-Front Hamiltonian
- Physics similar to MIT bag model, but covariant. No problem with support $\mathrm{O}<\mathrm{x}<\mathrm{I}$.
- Quark Interchange dominant force at short distances

Features of Light-Front Formalism

- Hidden Color Nuclear Wavefunction
- Color Transparency, Opaqueness
- Intrinsic glue, sea quarks, intrinsic charm
- Simple proof of Factorization theorems for hard processes (Lepage, sjb)
- Direct mapping to AdS/CFT (de Teramond, sjb)
- New Effective LF Equations (de Teramond, sjb)
- Light-Front Amplitude Generator

