

Phases of QCD Matter

2007 JLab Users' Meeting

~150

MeV

Heavy Ion
Collisions

Quark-Gluon Plasma

Critical
Point

Universe

Color
Superconductor

CFL

Neutron Stars?

Wacuum

Nuclei

Crystalline
Color Superconductor

Carl A. Gagliardi Texas A&M University

RHIC: the Relativistic Heavy Ion Collider

- Search for and study the Quark-Gluon Plasma
- Explore the partonic structure of the proton
- Determine the partonic structure of nuclei

What we expected: lattice QCD at finite temperature

Critical energy density: $\varepsilon_C = (6 \pm 2)T_C^4$

 $T_C \sim 175 \text{ MeV} \Rightarrow \epsilon_C \sim 1 \text{ GeV/fm}^3$

What we found: four fundamental new discoveries

- Enormous collective motion of the medium, consistent with near-zero viscosity hydrodynamic behavior
 - Very fast thermalization
 - A "perfect liquid"
- Jet quenching in the dense matter
 - Densities up to 100 times cold nuclear matter and 15 times the critical density from lattice calculations
- Anomalous production of baryons relative to mesons
 - Strongly enhanced yields of baryons relative to mesons
 - Scaling of yields and collective motion with the number of valence quarks
 - Hadrons form by constituent quark coalescence
- Indications of gluon saturation in heavy nuclei
 - Relatively low multiplicities in Au+Au collisions
 - Suppressed particle production in d+Au collisions

Collective motion: "elliptic flow"

Initial coordinate-space anisotropy

Final momentum-space anisotropy

$$\frac{dN}{d\phi} \propto 1 + 2v_2 \cos[2(\phi - \Psi_R)] + 2v_4 \cos[4(\phi - \Psi_R)] + ...$$
 Anisotropy self-quenches, so v₂ is sensitive to early times

Elliptic flow in the hydrodynamic regime

- Hydrodynami zero viscosity
- Elliptic flow sa
- Very rapid thermalization (<1 fm/c)
- Very strong interactions
- A "perfect liquid" ?

d EOS and near-- ~ 1.5 GeV/c

Hard scattering at RHIC and NLO pQCD

At 200 GeV, pQCD does a very good job describing high-p_T yields in p+p

Hard partonic collisions and energy loss in dense matter

- Embed the hard scattering from a nucleon-nucleon collision into a Au+Au collision
- The final products will interact with the medium

$R_{AA}(p_T) = \frac{d^2N^{AA}/dp_Td\eta}{T_{AA}d^2\sigma^{NN}/dp_Td\eta}$

Jet quenching at RHIC

- In central Au+Au collisions:
 - Strong suppression of inclusive hadron production
 - Photons are not suppressed
 - Disappearance of the away-side jet
- d+Au looks like p+p
- Medium density up to 100 times normal nuclear matter

Baryon yields vs. meson yields

In central Au+Au collisions, baryons are substantially overproduced relative to mesons at intermediate p_⊤

Baryon flow vs. meson flow

- Hadronization through quark coalescence
 Constituent quarks flow

Low multiplicity in central Au+Au

- Multiplicities well described by Color Glass Condensate model
- Evidence for saturated gluon fields in the Au nucleus?

Forward particle production in d+Au collisions

- Sizable suppression of charged hadron yield in forward d+Au
- Evidence for a saturated gluon field in the Au nucleus?
- Several other mechanisms have also been proposed

Where do we go from here?

- We've learned stunning things over the past six years!
- Now we need to develop a detailed, quantitative understanding of the dense, strongly interacting matter that's been created
 - Thermalization mechanism?
 - Equation of state?
 - Viscosity?
 - QCD critical point?
 - **–**

- RHIC detector and luminosity upgrades
- Significant advances in theory
- Complementary measurements at higher (LHC) and lower (FAIR) energies

RHIC detector upgrades

STAR **PHENIX**

Hadron Blind Detector

DAQ & TPC electronics Time of Flight barrel

ongoing

Muon Trigger Silicon Vertex Barrel (VTX)

Heavy Flavor Tracker Barrel Silicon Tracker Forward Tracker

in preparation { Forward Silicon Forward EM Calorimeter

RHIC accelerator upgrades

EBIS ion source

- Replaces 35 year old Tandems
- Improved reliability, lower ops costs
- Enables new beams: U+U, pol. ³He
- In progress, commissioned and operational in 2010

Electron cooling

- Increase Au+Au luminosity by factor of 10 ⇒ RHIC II
- TPC: \$95M (FY07\$)
- Technically driven schedule: construction start ~2010

Thermalization: heavy quark pebble in QGP stream

- Heavy quarks are pushed around by the dense medium
- Vertex detectors are essential for precise D and B measurements

Energy density and equation of state

- Jets as a tomographic probe to map the medium
 - Compare light-quark, heavy-quark, and gluon jet interactions
 - Calibrate with γ+jet coincidences
 - γ/π^0 ratio favors direct photons at RHIC
 - Will be done at both RHIC and LHC
 - How will the plasmas differ?

Very high energy jets -- the LHC playground

- LHC annual jet yields significant to >200 GeV
- Full jet reconstruction possible over the combinatoric background

Detailed studies of jet modifications practical

How does the medium respond to a jet?

- Jets deposit their energy in the medium
- How does it react?

Double-peaked away-side "jet"

Intermediate-p_T di-hadron distributions show novel structure in central Au+Au collisions

- Mach cone? (Sound velocity of the medium)
- Gluon Cherenkov radiation? (Color dielectric constant)

Explore the dynamics with 3-particle correlations

- Enhancements on the diagonals at $\sim \pi \pm 1.4$ radians?
- Need large-acceptance particle ID to unravel the dynamics
- May be difficult to measure at the LHC due to the large number of "soft" jets present in each head-on Pb+Pb event

Quarkonium – the thermometer

 Classic proposal: quarkonium suppression by color screening.

 Lattice QCD calculations tell us the world is more complicated than we thought! Quarkonium resonances should persist above T_c.

Hierarchy of melting:

State	$J/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$
T_d/T_c	2.10	1.16	1.12	> 4.10	< 1.76	1.60	1.19	1.17

Also recombination: c+c → J/ψ

Current status

- Suppression + regeneration describes PHENIX results well
- Sequential melting also works if you assume the J/ψ doesn't melt
- How to distinguish?
 - Energy dependence
 - J/ψ flow
 - Both need RHIC II luminosity upgrade

Complementarity of RHIC II and LHC

Charmonium

- Mixture of effects at full energy RHIC II, can turn off recombination with longer runs at lower energy
- Recombination at LHC

Bottomonium

- Pure suppression at full energy RHIC II
- Mixture of effects at LHC
- Both RHIC II and LHC will be essential to gain maximal information from either

What is the viscosity? How perfect is our liquid?

A. Nakamura and S. Sakai, hep-lat/0406009

- Lower limit found from AdS/CFT correspondence
 - Strongly coupled supersymmetric gauge theory in 3+1 dimensions
 - Classical string theory near a black hole in 4+1 dimensions
- Other quantities of interest can also be calculated
- Which are "universal"?

Quantifying η/s

0.04

0.03

0.02

0.01

Ω (Error Projection Only)

1.4 1.6 KE_T/n_a (GeV)

Reference Line

Theory:

8.0

0.6

0.05

0.04

0.03

0.02

0.01

0.2

- Need 3-d relativistic, viscous hydrodynamics
- Need realistic Equation of State from lattice QCD

0.2

0.4

p_⊤(GeV)

- **Experiment:**
 - Constrain the initial conditions

Ω (STAR Prelim)

Reference Line

1.4 1.6 KE_T/n_q (GeV)

- Quantify effects of viscous hadron gas final stage
 - Elliptic flow of Ω particularly valuable

Glauber vs Color Glass Condensate

Hirano et al, PLB 636, 299

CGC: Treats the nucleus as a saturated gluon field

- Do we have Glauber matter distribution + perfect liquid, or Color Glass Condensate distribution + viscous matter?
- Is the gluon field in the Au nucleus saturated?
- Forward d+Au collisions provide information about the gluon density in Au at low gluon momentum fractions

Gluon saturation: RHIC-II and LHC

- Two possibilities:
 - RHIC-II explores the onset of saturation; LHC looks deep in the saturation domain
 - RHIC-II is dominated by other effects; LHC observes those other effects in combination with saturation
- In either case, RHIC-II and LHC will be complementary
- Comparisons between p(d)+A and e+A at EIC will test universality

Where is the QCD critical point?

One proposed signature: event-by-event K/π fluctuations. Needs large-acceptance PID.

- The "landmark" on the QCD phase diagram!
- Lattice calculations: between μ_B of <~200 and >~700 MeV.

RHIC can find it if µ_B < 500 MeV

What is the wave function of the proton?

Proton spin:

$$1/2 = 1/2 \Delta \Sigma + \Delta G + L_q + L_g$$

Only ~25%
of the total
"Spin crisis"

- RHIC spin program
 - Gluon polarization underway
 - Orbital motion and transversity in the early exploratory phase
 - Anti-quark polarization needs detector and accelerator improvements (underway now) for first measurements
- All will profit dramatically from the enhanced RHIC II luminosity

Current (2005) results for gluon polarization

- To date, have focused on inclusive measurements with large cross sections (π^0 and jets)
- First significant sample of di-jets (2006) is now being analyzed

Comparisons to one global analysis

- GRSV best fit gluon polarization: $\Delta g = -0.45$ to +0.7 for $(\chi^2 + 1)$
- Uncertainties associated with GRSV functional form not included

Constraining $\Delta G(x)$

- γ +jet permits LO determination of x_1 and x_2
- Can select those events with maximal sensitivity

Measure the same x for different values of Q²

Next step: anti-quark polarization

- These simulations are for the PHENIX muon arms
- STAR will do this with electrons
- Need 500 GeV collisions and upgrades to both PHENIX and STAR

Additional spin measurements in the RHIC II era

Sivers asymmetry A_N for Drell-Yan di-muon and di-electron production

Direct measurement of the contributions Δs , $\Delta \overline{s}$ in charm-tagged W boson production

Conclusion

- RHIC has been a spectacular success!
 - Found a fundamentally new form of thermalized matter in Au+Au collisions
 - Took the first steps on the road to determining:
 - The origin of the proton spin
 - The wave function of heavy nuclei at high energy

 Over the next decade, we need to turn our new qualitative insights into quantitative understanding

Additional evidence for thermalization

- Particle composition consistent with chemical equilibrium among the hadrons
- Largest deviation (K*) arises from its short lifetime within the hadron gas phase

What is the wave function of a heavy nucleus?

Gluon density can't grow forever.

Saturation must set in at forward rapidity when the gluons overlap.

To elucidate the underlying dynamics: large acceptance correlation measurements

Color glass condensate predicts that the back-to-back correlation from p+p should be suppressed