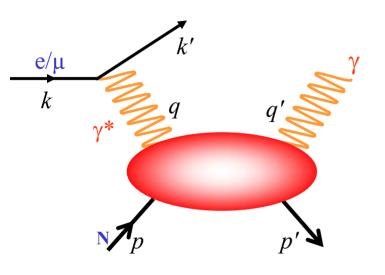
The 12 GeV program to measure Generalized Parton Distributions



$$Q^{2} = -q^{2} = -(k - k')^{2}$$

$$t = (p - p')^{2} = (q' - q)^{2}$$

$$x_{B} = \frac{Q^{2}}{2p \cdot q}$$

Deeply Virtual Compton Scattering is one of the key reactions, indeed the simplest one,

to determine

Generalized Parton Distributions experimentally.

Deeply Virtual Meson Production is indispensable to disentangle the 4 GPDs and their flavor decomposition

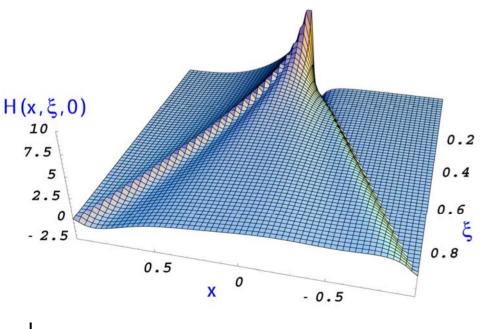
Generalized Parton Distributions: a richer concept of nucleon structure

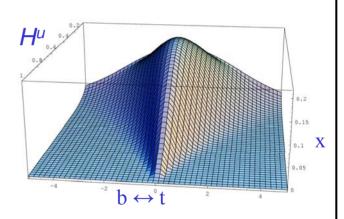
 $H, \tilde{H}, E, \tilde{E} (x, \xi, t)$

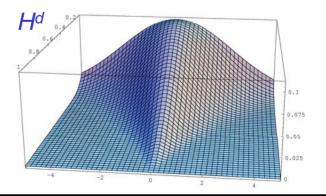
 $x - \xi$ correlations

x-t correlations

 $F{H(x,0,t)}$

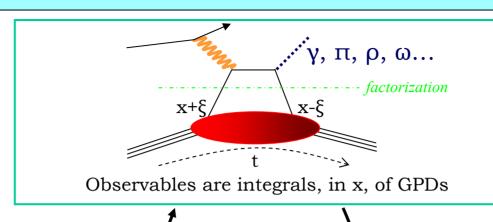






(M. Vanderhaeghen)

GPD: relation with observables & sum rules



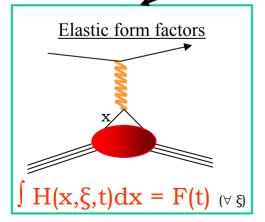
Lattice QCD (moments)

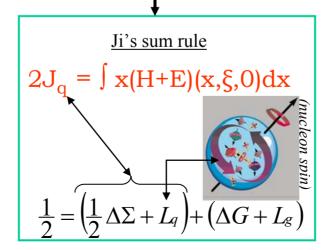
Models

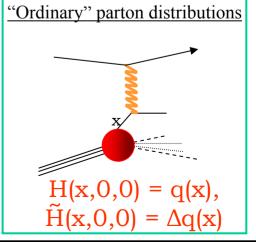
Parameterizations

H, \tilde{H} , E, \tilde{E} (x, ξ ,t)

Deconvolution





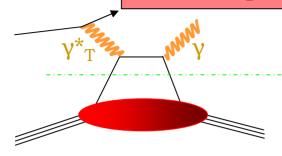


Classification of nucleon GPDs

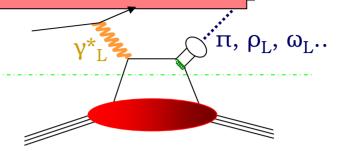
(Chiral-even GPDs only are considered here)

Legend	Forward limit			Operator at quark level
GPD				
Operator at nucleon level	Corresponding form factor			
	q(x)		_	Vector γ ⁻ _{αβ}
Н		E		Quark helicity independent (or « unpolarized ») GPDs
Vector	$F_{1}(t)$	Tensor	$F_2(t)$	
	$\Delta q(x)$		_	Axial vector $\gamma^5 \gamma^{-}_{\alpha\beta}$
$\widetilde{\mathbf{H}}$		$\overset{\sim}{\mathbf{E}}$		Quark helicity dependent (or « polarized ») GPDs
Pseudo-vector	$g_A(t)$	Pseudo-scalar	$h_A(t)$	
Target helicity conserved		Target helicity not con	nserved	

How to measure GPD's? Step 1: identify sensitive reactions



Factorization theorems



DVCS (Virtual Compton)

- Sensitive to all H, E, \widetilde{H} and \widetilde{E}
- Beam spin asymmetry $\rightarrow H(p)$ or E(n) at $x = \pm \xi$
- Target spin asymmetry (long.) $\rightarrow \widetilde{H}$ at $x = \pm \xi$,
- Target spin asymmetry (transv.) \rightarrow also E
- Beam charge asymmetry $\rightarrow H$
- leading order (twist-2) contribution
 dominates down to relatively low Q²
- Cross sections:

DVCS/BH increases when energy increases

DVMP (Meson production)

- Pseudoscalar mesons $\rightarrow \widetilde{H}, \widetilde{E}$
- Vector mesons \rightarrow *H*, *E* (the GPDs entering Ji's sum rule)
- Different mesons → flavor decomposition of GPDs,
- Cross sections: necessary to extract σ_L ($\sim 1/Q^6$)
- Ratios $\sigma_L(\eta)/\sigma_L(\pi^0)$, $\sigma_L(\rho)/\sigma_L(\omega)$
- Asymmetries, e.g. with transverse polarized target $A_{UT}(\pi) \sim \widetilde{H}^{\bullet}\widetilde{E}, \ A_{UT}(\rho) \sim H^{\bullet}E$
- Such ratios and asymmetries may be less sensitive to higher-twist contributions.

How to measure GPDs?

Step 2: how close is leading order to experiment?

This is where we are

Experiment:

Test scaling laws (test of factorization, of dominance of handbag diagram)

e.g. for DVCS BSA:
$$\langle \sin \Phi \rangle \sim 1/Q$$
, $\langle \sin 2\Phi \rangle \sim 1/Q^2$

OK as of $\sim 2 \text{ GeV}^2$

for DVMP : $d\sigma_I/dt \sim 1/Q^6$

- theoretical expectation: scaling at higher Q^2
- is ρ apparent success (at the 50% level) real?
- → precision experiments, truly exclusive.

JLab (Hall A & CLAS) dedicated DVCS experiments (2004-2005)

represent a quantitative and qualitative jump

C. Muñoz Camacho et al., PRL 97, 262002; F.X. Girod et al, in preparation

Theory:

Calculate deviations from leading order, especially in DVMP

May other models (e.g. Regge, color dipole) mimic the handbag contribution? If yes, what do we learn from this duality?

How to measure GPDs? Step 3: from DVCS to GPDs - and to J

- Use model-independent formalism to extract (combinations of) GPDs at given kinematics.

(caution: the existing formalism contains approximations of order

 $[4M^2x_B^2/Q^2]^{3/2}$ which should be fixed – D. Mueller)

- Comparison of given GPD model (e.g. VGG) with experiment,

Extract (model-dependent) information, e.g. on J_w , J_d

- Fit of parameterized GPDs with constraints:

forward limit, elastic form factors, polynomiality, positivity bounds

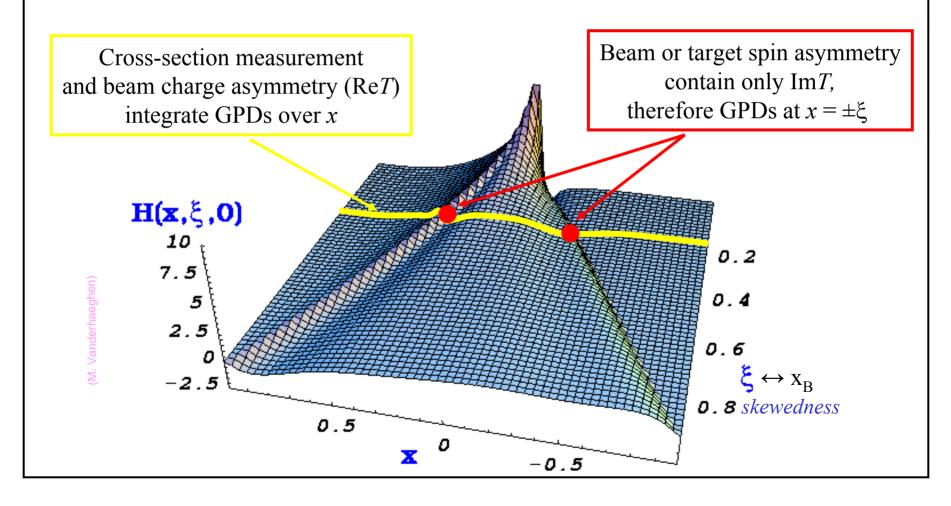
(exists at small x_B , but not yet in the valence sector)

What is the "best" parameterization (double distributions, Mellin-Barnes moments, etc...)?

GPD and **DVCS**

(at leading order:)

$$T \sim \int_{-1}^{+1} \frac{H(x,\xi,t)}{x \pm \xi - i\varepsilon} dx + \dots \sim \mathcal{P} \int_{-1}^{+1} \frac{H(x,\xi,t)}{x \pm \xi} dx - i\pi H(\pm \xi,\xi,t) + \dots$$



Scale dependence and finite Q^2 corrections (real world \neq Bjorken limit)

GPD evolution

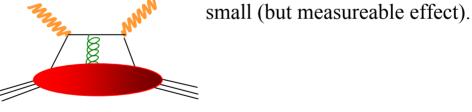
Dependence on factorization scale μ :

$$\mu \frac{\partial}{\partial \mu} H(x, \xi, t; \mu) = \int K(x, y, \xi; \alpha_S(\mu)) H(y, \xi, t; \mu) dy$$
Kernel known to NLO

Evolution of hard scattering amplitude

O(1/Q)

- (Gauge fixing term)
- Twist-3: contribution from γ_L^* may be expressed in terms of derivatives of (twist-2) GPDs.
- Other contributions such as

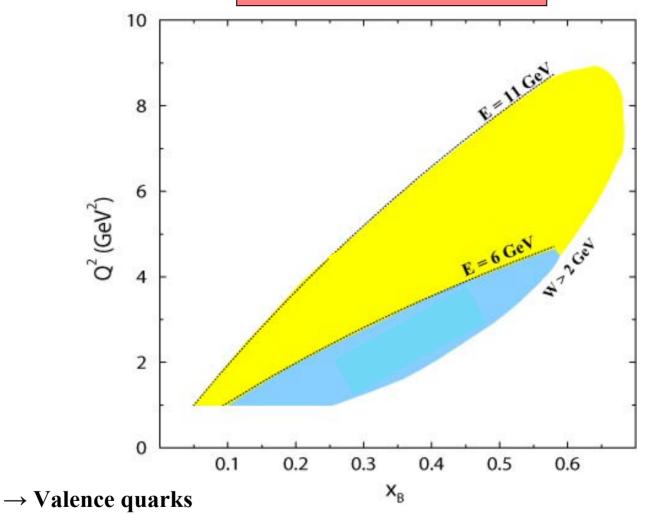


$O(1/Q^2)$

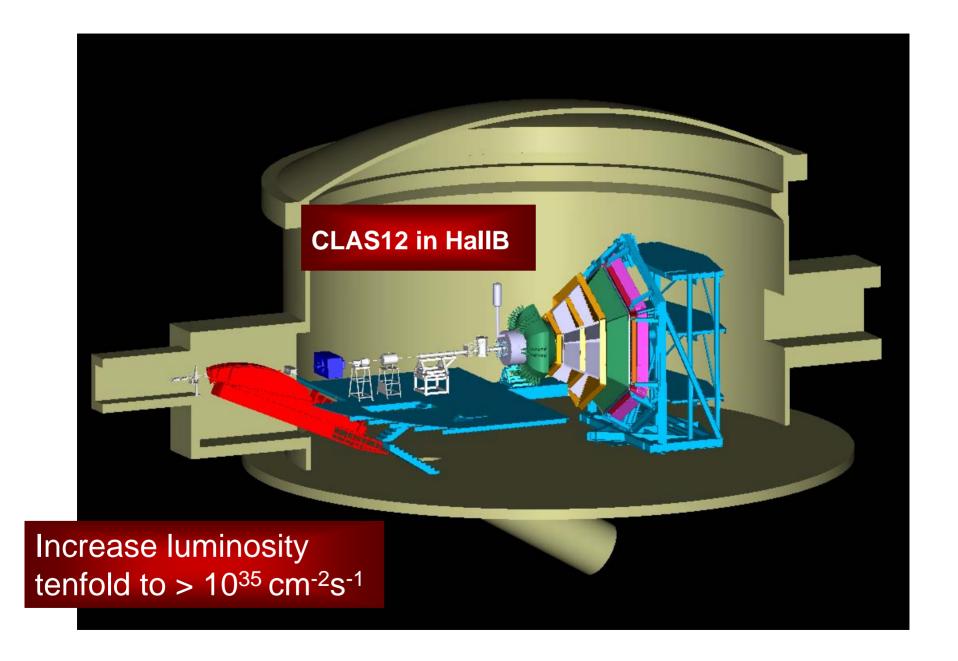
- "Trivial" kinematical corrections, of order $\frac{t}{Q^2}$, $\frac{M^2}{Q^2}$
- Quark transverse momentum effects (modification of quark propagator)

$$\frac{1}{x + \xi - i\varepsilon} \to \frac{1}{x + \xi + k_{\perp}^2 / Q^2 - i\varepsilon}$$

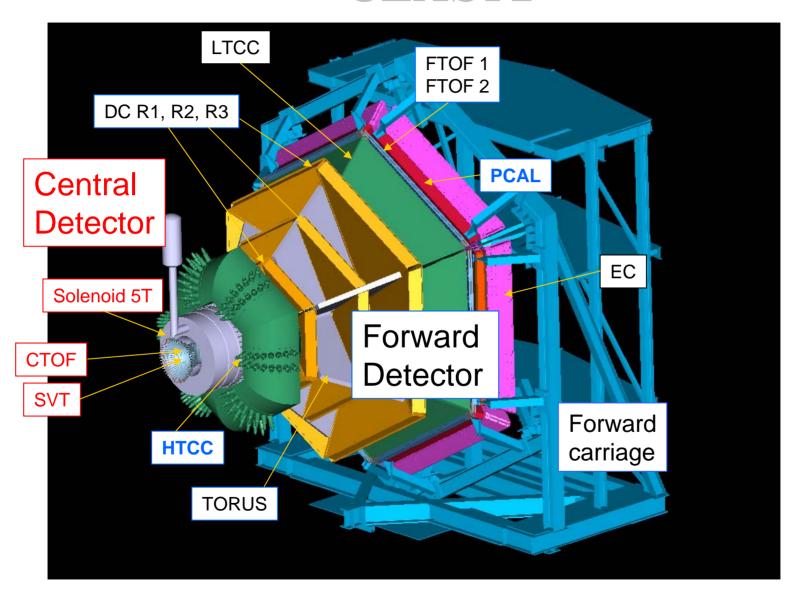
- Other twist-4



- \rightarrow High x_B behaviour (important for GPD moments \leftrightarrow LQCD, J)
- → Sea quarks (and gluons): overlap with HERMES & COMPASS
- \rightarrow Extended Q² range for detailed scaling laws, and a must for DVMP

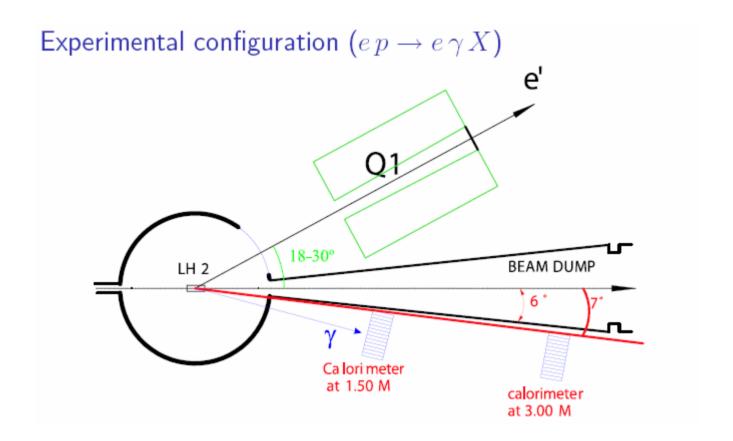


CLAS12



Challenges: integration of (forward angle) inner calorimeter in tight space, radiation damage

Hall A



DVCS experiments at (or up to) 11 GeV

Polarized beam	Target	Sensitive to GPD	Hall
X	U	H possibly E at high t	A, B
-	L	$H\&\widetilde{H}$	В
-	T	E	В
X	n (d) U	E	A, B

Approved experiments

+ other ideas: positron beam \to beam charge asymmetry \leftrightarrow H measurement of proton recoil polarization \leftrightarrow H, \widetilde{H} , E

+ DDVCS?

DVCS and GPDs: beam spin asymmetry

(The imaginary part of the) DVCS-BH interference generates a

Beam-spin cross-section difference: $\Delta \sigma_{LU} = (\sigma^+ - \sigma^-)/2 = \Gamma \cdot [s_1^I \sin \Phi + \dots]$

$$S_1^I \propto \underline{F_1(t) \cdot \mathsf{H}} + \frac{x_B}{2 - x_B} [F_1(t) + F_2(t)] \cdot \widetilde{\mathsf{H}} - \frac{t}{4M^2} F_2(t) \cdot \mathsf{E}$$

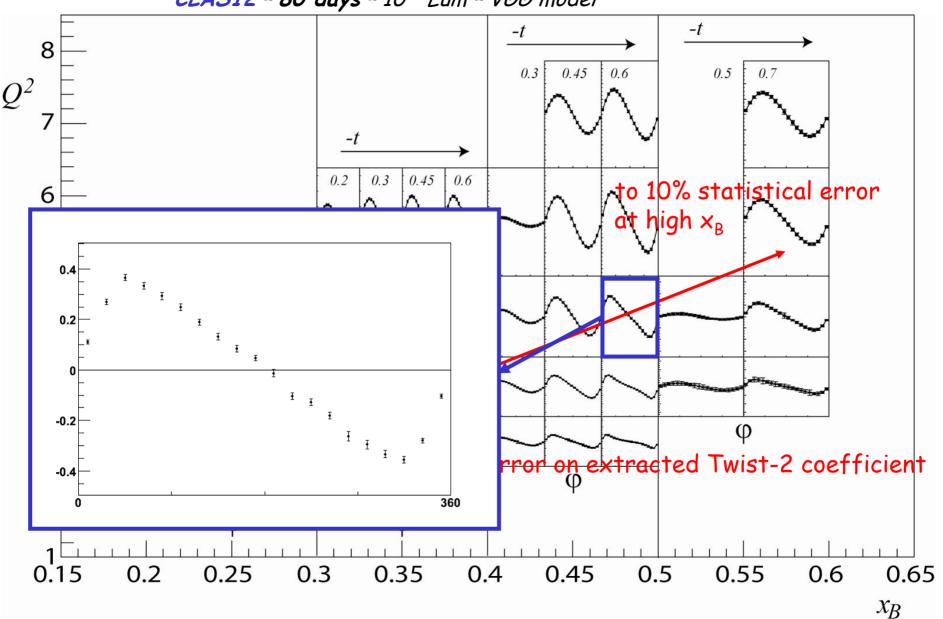
$$(\mathsf{H}, \widetilde{\mathsf{H}}, \mathsf{E}, \widetilde{\mathsf{E}}) = \pi \sum_{q} e_{q}^{2} \Big[GPD^{q}(\xi, \xi, t) \pm GPD^{q}(-\xi, \xi, t) \Big]$$

or an asymmetry:
$$A_{LU} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$

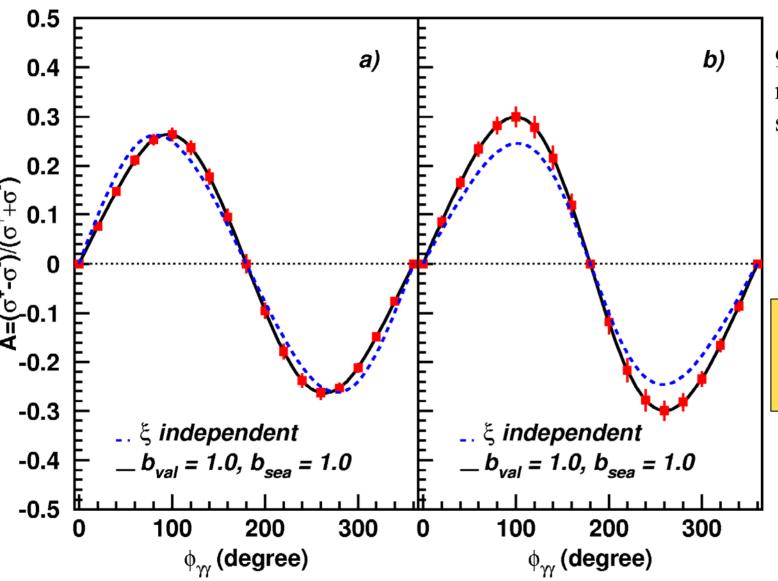
The sinusoidal behaviour is characteristic of the interference BH-DVCS

Beam Spin Asymmetry

CLAS12 - 80 days - 1035 Lum - VGG model



DVCS/BH projected for CLAS12 at 11 GeV

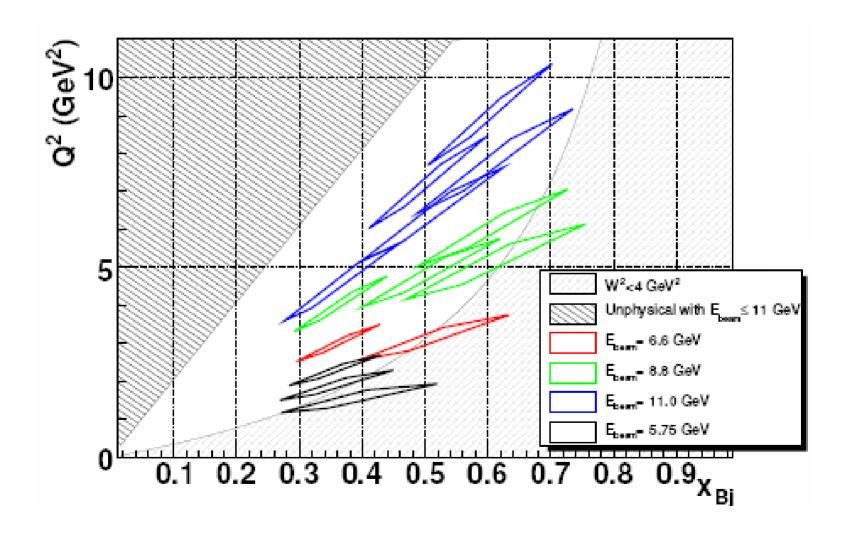


972 data points measured simultaneously

Q², x_B, t ranges measured simultaneously.

A(Q², x_B ,t) $\Delta \sigma_{LU}$ (Q², x_B ,t) σ (Q², x_B ,t)

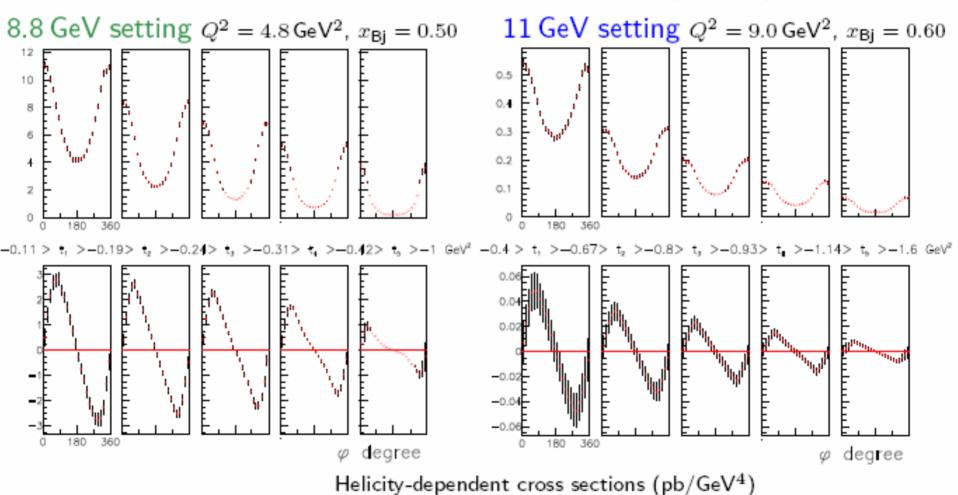
DVCS/BH projected for Hall A



DVCS/BH projected for Hall A

Cross sections

Helicity-independent cross sections (pb/GeV⁴)



Asymmetries and/or cross sections? $A_{LU}, \Delta\sigma_{LU}, \sigma$

An evidence: there is more information in numerator and denominator than in their ratio.

Need precise cross sections at selected kinematics to determine contributing terms, and to firmly anchor future fits.

Precise asymmetries over a wide kinematical range will constrain the kinematical dependences of all terms.

All the observables will contribute significantly to a future global fit.

DVCS Target Spin Asymmetries

$$\mathbf{A}_{UL} \propto \underline{F_1 \cdot \widetilde{\mathbf{H}}} + \frac{x_B}{2 - x_B} \left[F_1 + F_2 \right] \cdot \left[\underline{\mathbf{H}} + \frac{x_B}{2} \mathbf{E} \right] - \frac{x_B}{2 - x_B} \left[\frac{x_B}{2} F_1 + \frac{t}{4M^2} F_2 \right] \cdot \widetilde{\mathbf{E}}$$

The contributions from H and \widetilde{H} are about equal

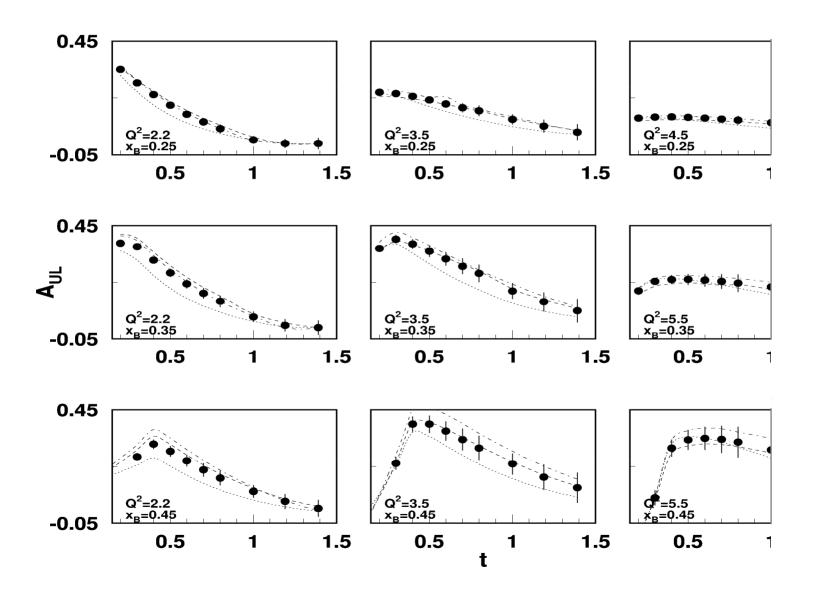
See CLAS data (S. Chen et al., PRL 97, 262002).

$$A_{UT} \propto \frac{t}{2M^2} \{ F_1 \cdot \mathsf{E} - F_2 \cdot \mathsf{H} \} + x_B^2 \{ \cdots \}$$

Very sensitive to J (HERMES preliminary data).

CLAS studying the feasability of a transverse polarized target, NH_3 or HD (see also ρ production).

Au.: Sensitivity to GPD models - sample of data points - CLAS12



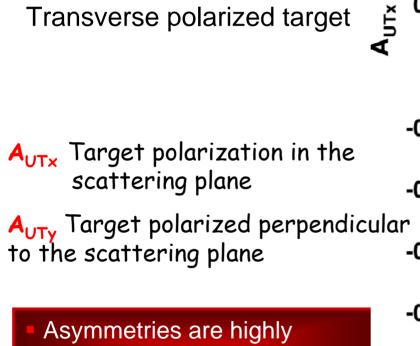
CLAS12 - DVCS/BH Target Asymmetry

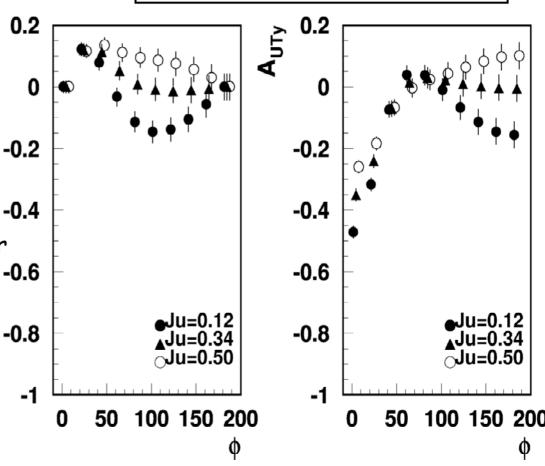
sensitive to the u-quark

contributions to the proton spin.

Sample kinematics

 Q^2 =2.2 GeV², x_B = 0.25, -t = 0.5GeV²





DVCS on the neutron

Beam spin asymmetry

$$\Delta \sigma_{LU} = (\sigma^+ - \sigma^-)/2 = \Gamma \cdot \left[s_1^I \sin \Phi + \ldots \right]$$

$$s_1^I \propto F_1(t) \cdot \mathsf{H} + \frac{x_B}{2 - x_B} [F_1(t) + F_2(t)] \cdot \widetilde{\mathsf{H}} - \frac{t}{4M^2} F_2(t) \cdot \mathsf{E}$$

Main contribution for the proton

Main contribution for the neutron

DVCS $\Delta \sigma_{LU}$ on the neutron shows (within a model) sensitivity to quark angular momentum J

Studies for CLAS12 just started

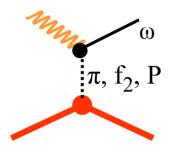
→ Add neutron detection in Central Detector

(modest efficiency)

 \rightarrow Measure all three particles from $e(n) \rightarrow en\gamma$

Deeply virtual meson production: $vector mesons \leftrightarrow H and E$

Meson and Pomeron (or two-gluon) exchange ...



$ ho^0$	$(\sigma), f_2, P$
ω	π , f_2 , P
Ф	Р

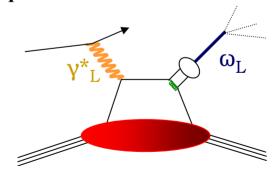
 ω production shown to be dominated by π^0 exchange, for Q² up to 5 GeV²

CLAS, EPJA 24 (2005)

... or scattering at the quark level?

Flavor sensitivity of DVMP on the proton:

ρ^0	2u+d, 9g/4
ω	2u-d, 3g/4



 ρ_L production in qualitative agreement with GPD calculations

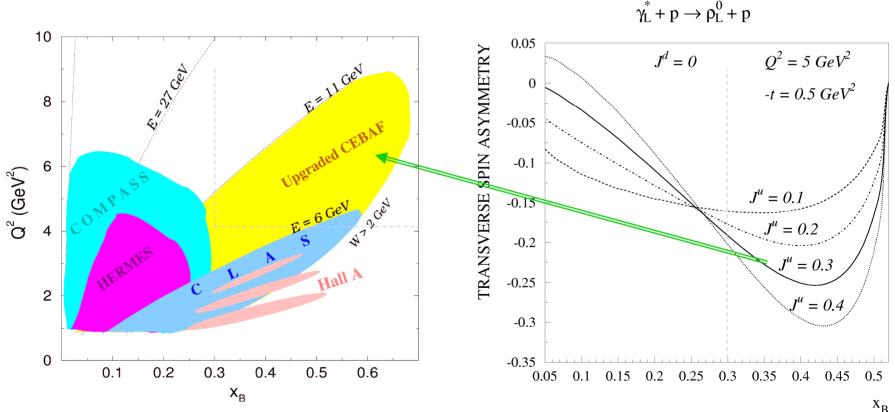
HERMES, EPJC 17 (2002) & CLAS, PLB **605** (2005) + results to come soon

ρ^0/ω production with transverse polarized target

$$A_{UT} \propto \frac{\operatorname{Im}(\hat{P} \otimes \mathcal{D})}{|\hat{P}|^2 (1 - \xi^2) - |\hat{P}|^2 (\xi^2 + t/4M^2) - 2\xi^2 \operatorname{Re}(\hat{P} \otimes \mathcal{D})}$$

$$\hat{P}_{\rho} = \int_{-1}^{+1} \frac{dx}{\sqrt{2}} \left(e_u H^u - e_d H^d \right) \left[(x - \xi + i\varepsilon)^{-1} + (x + \xi - i\varepsilon)^{-1} \right]$$

Asymmetry depends linearly on the GPD E, which enters in Ji's sum rule. High x_B contribute significantly.

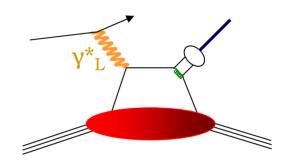


 ω_L has similar sensitivity to proton quark spin

Deeply virtual meson production: pseudoscalar mesons $\leftrightarrow \widetilde{H}$ and \widetilde{E}

Flavor sensitivity of DVMP on the proton:

π^0	$2\Delta u + \Delta d$	
η	$2\Delta u - \Delta d + 2\Delta s$	
π^+	Δu - Δd	



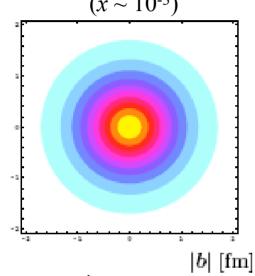
$$\frac{d\sigma_L}{dt} \propto \frac{1}{Q^4} \left[\frac{\alpha_S}{Q} \sum \iint \frac{\psi_M(z)}{z} \frac{1}{x \pm \xi - i\varepsilon} (a\widetilde{H} + b\widetilde{E})(x, \xi, t) dx dz \right]^2 \propto \frac{f(\xi, t)}{Q^6}$$

(Evidence from CLAS and Hall A at 6 GeV that σ_L does not dominate)

Nucleon Structure: the emerging picture

Gluons:

from an analysis of HERA data $(x \sim 10^{-3})$



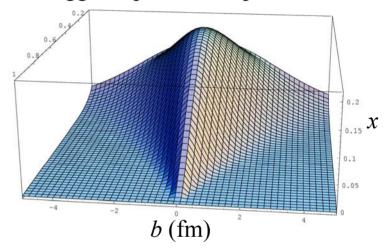
 $\langle b^2 \rangle^{\frac{1}{2}} \approx 0.85 \text{ fm}$

(40-50% larger than proton charge radius)

D. Mueller, hep-ph/0605013

Quarks:

Qualitatively from lattice calculations and from Regge inspired GPD parameterizations



$$H^{q}(x,0,t) = q_{v}(x)x^{-\alpha'_{1}(1-x)t}$$

M. Guidal et al., PRD **72** (2005) **QCDSF**, PRL **92** (2004)

Dedicated DVCS experiments

JLab / Hall A (p, n, $\Delta \sigma_{LU}$) 2004 2009

JLab / CLAS (p, A_{III} , A_{UL}) 2005 2008

DESY/HERMES (p, A_{LU} , A_{C}) 2006-07

CERN/COMPASS (p, A_C) > 2011

JLab / CLAS12 & Hall A > 2013

Will GSI/PANDA contribute? > 2015

Some conclusions

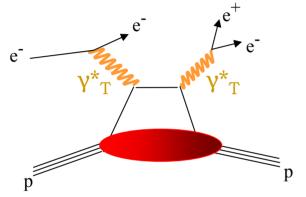
- DVCS a very promising tool to measure GPDs: (virtual) Compton scattering at the quark level unravels the nucleon structure
- Need a general fitting routine (theory!), as is done with PDFs
- DVMP more uncertain, but must be investigated
- CEBAF@12GeV has an ideal coverage in the valence quark sector (and some in the sea-quark sector)
- "Sister" distributions, such as TMDs, TDAs, will be investigated as well.

Additional slides

DDVCS

(Double Deeply Virtual Compton Scattering)

DDVCS-BH interference generates a **beam spin asymmetry** sensitive to



 $\operatorname{Im} T^{DDVCS} \sim H(\pm x(\xi, q'), \xi, t) + \dots$

The (continuously varying) virtuality of the outgoing photon allows to "tune" the kinematical point (x,ξ,t) at which the GPDs are sampled (with $|x| < \xi$).

 $H(x,\xi,0)$ 10

7.5

5

2.5

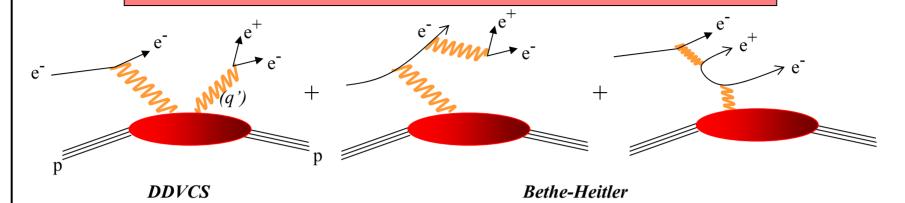
0.4

-2.5

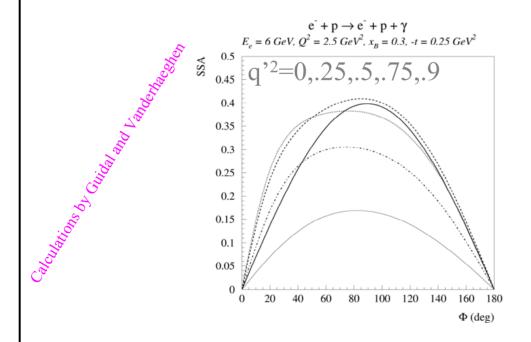
0.8

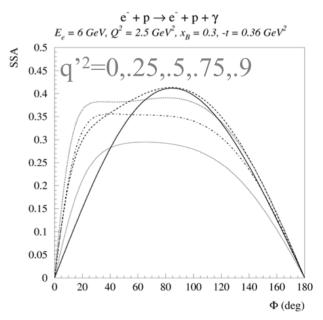
M. Guidal & M. Vanderhaeghen, PRL 90 A. V. Belitsky & D. Müller, PRL 90

DDVCS: (integrated) beam spin asymmetry



interference leads to a beam spin asymmetry:



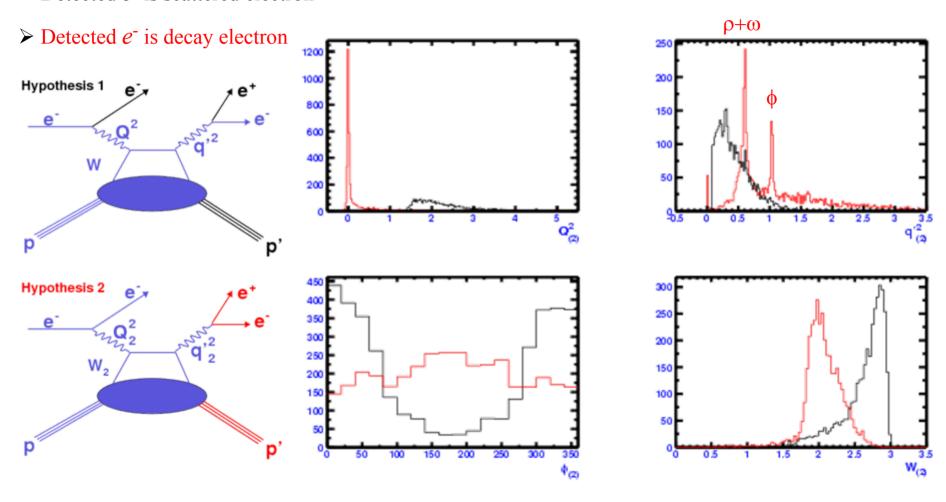


We made an implicit hypothesis!

Why would the detected electron be the scattered one? It could be the e^+e^- one!

Let us test both « hypothesis »:

 \triangleright Detected e^- is scattered electron



DDVCS: first observation of $ep \rightarrow epe^+e^-$

- * **Positrons identified** among large background of positive pions
- * $ep \rightarrow epe^+e^-$ cleanly selected (mostly) through missing mass $ep \rightarrow epe^+X$
- * Φ distribution of outgoing γ * and <u>beam spin asymmetry</u> extracted (integrated over γ * virtuality)

but...

A problem for both experiment and theory:

- * 2 electrons in the final state \rightarrow antisymmetrisation was not included in calculations,
 - → define domain of validity for *exchange diagram*.
- * data analysis was performed assuming two different hypotheses

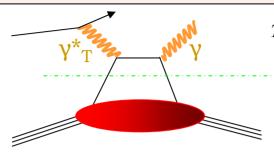
either detected electron = scattered electron

or detected electron belongs to lepton pair from γ^*

Hyp. 2 seems the most valid \rightarrow quasi-real photoproduction of vector mesons

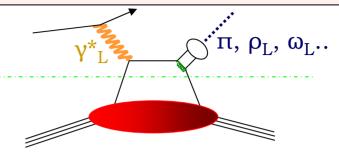
How to measure GPDs?

Step 1: define observables sensitive to different GPDs (at leading order)



This is about done

Factorization theorems



DVCS (Virtual Compton)

- Sensitive to all H, E, \widetilde{H} and \widetilde{E}
- Beam spin asymmetry \rightarrow H(p) or E(n) at x = $\pm \xi$
- Target spin asymmetry $\rightarrow \widetilde{H}$ at $x = \pm \xi$,
- Beam charge asymmetry \rightarrow H
- leading order (twist-2) contribution may dominate down to relatively low Q²
- -Cross sections:

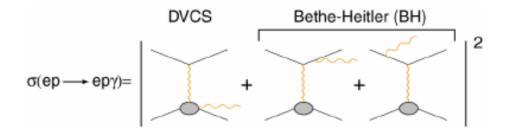
BH/DVCS decreases when E increases $\sigma(DVCS) \sim 1/Q^4$

DVMP (Meson production)

- Pseudoscalar mesons $\rightarrow \widetilde{H}, \widetilde{E}$
- Vector mesons \rightarrow H, E (the GPDs entering Ji's sum rule)
- Different mesons → flavor decomposition of GPDs,
- Cross sections: necessary to extract σ_L ($\sim 1/Q^6$)
- Ratios $\sigma_L(\eta)/\sigma_L(\pi^0)$, $\sigma_L(\rho)/\sigma_L(\omega)$
- Asymmetries, e.g. with transverse polarized target $A_{UT}\left(\pi\right)\sim\widetilde{H}^{\bullet}\widetilde{E},\ A_{UT}(\rho)\sim H^{\bullet}E$
- Such ratios and asymmetries less sensitive to highertwist contributions.

DVCS/BH interference

3. Experimentally, DVCS is undistinguishable with Bethe-Heitler



However, we know FF at low t and BH is fully calculable

Using a polarized beam on an unpolarized target, 2 observables can be measured:

$$\frac{d^4\sigma}{dx_{\rm p}dO^2dtd\varphi} \approx \left|T^{BH}\right|^2 + 2T^{BH} \cdot \text{Re}\left(T^{DVCS}\right) + \left|T^{DVCS}\right|^2$$

$$\frac{d^{4} \overrightarrow{\sigma} - d^{4} \overrightarrow{\sigma}}{dx_{B} dQ^{2} dt d\varphi} \approx 2T^{BH} \cdot \operatorname{Im}(T^{DVCS}) + \left[\left| T^{DVCS} \right|^{2} - \left| T^{DVCS} \right|^{2} \right]$$
At JLab energies,
$$|T^{DVCS}|^{2} \text{ is small}$$

$$\sigma^{+} - \sigma = 2T^{BH} \operatorname{Im}(T^{DVCS}) + \left|T_{+}^{DVCS}\right|^{2} - \left|T_{-}^{DVCS}\right|^{2}$$

hadronic plane

HERMES

HERMES explored several different observables which have selective sensitivity to the 4 GPDs,

Beam Spin Asymmetry (A_{LU})

Beam Charge Asymmetry (A_C)

Target spin asymmetries $(A_{UL} \text{ and } A_{UT})$

e.g. preliminary results on $\underline{\text{transverse target spin asymmetry}}$ (A_{UT})

