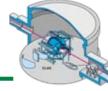


Experimental Moments of Nucleon Structure Functions at Low Q²

K. Griffioen College of William & Mary griff@physics.wm.edu

Jefferson Lab Users Meeting 18-20 June 2007

Introduction



Our tendency is to go from inclusive to exclusive reactions $f(x,Q^2)$ $f(x,Q^2,p_{\perp})$

Our tendency is to go from low resolution (Q²) to high Σ of constituents resolved constituents

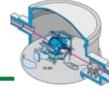
Our tendency is to go from holism to reductionism

This talk is about going in the other direction:

$$\int f(x, Q^2, p_\perp) dp_\perp \to f(x, Q^2)$$

 $\int f(x, Q^2) dx \to f(Q^2)$
 $\int f(Q^2) dQ^2 \to \text{hyperfine splitting}$

Global Properties



Energy-Weighted Sum Rule

$$S(F) = \sum_{a} (E_{a} - E_{0}) |\langle a|F|0 \rangle|^{2} = \langle 0|[F, [H, F]|0 \rangle|^{2}$$

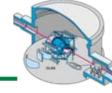
GDH Sum Rule

$$\int_{k_{\pi}}^{\infty} \frac{dk}{k} \Delta \sigma^{\gamma N}(k) = \frac{2\pi^2 \alpha \kappa^2}{M^2}$$
$$\Delta \sigma^{\gamma N} = \sigma_{3/2}^{\gamma N} - \sigma_{1/2}^{\gamma N}$$

Sum over excited states is tied to property of ground state

JLabUsers2007

High Energy Diversion



Gottfried Sum Rule

ILLIAM & MARY

The College of .

0.235(26) at Q²=4 GeV²

$$\begin{split} \Phi_1^{p,n}(Q^2) &= \int_0^1 F_1^{p,n}(x,Q^2) dx \\ F_1(x) &= \frac{1}{2} \sum_i e_i^2 q_i(x) \\ \Phi_1^p - \Phi_1^n &= \frac{1}{6} [u_v - d_v + 2\bar{u} - 2\bar{d}] \end{split}$$

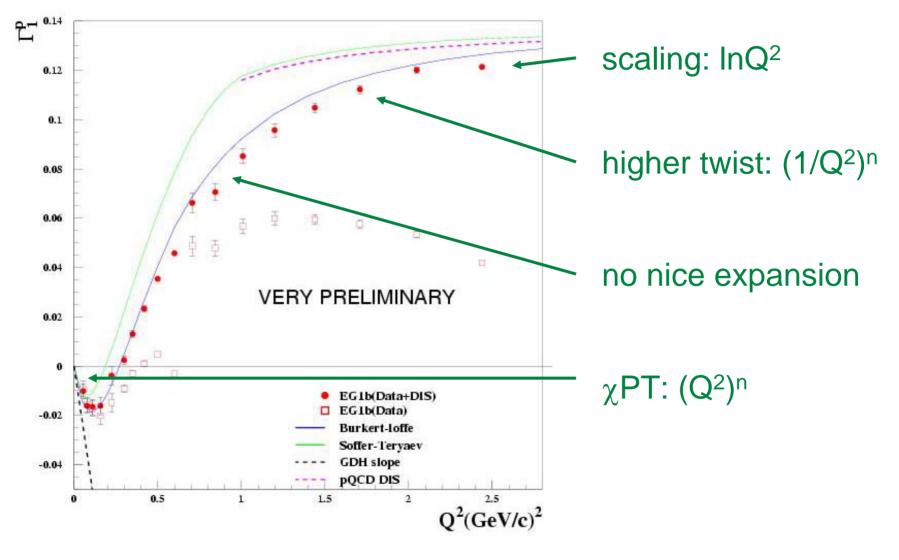
Bjorken Sum Rule

0.176(7) at Q²=5 GeV²

 $\Gamma_{1}^{p,n}(Q^{2}) = \int_{0}^{1} g_{1}^{p,n}(x,Q^{2}) dx$ $g_{1}(x) = \frac{1}{2} \sum_{i} e_{i}^{2} \Delta q_{i}(x)$ $\Gamma_{1}^{p} - \Gamma_{1}^{n} = \frac{1}{6} [\Delta u_{v} - \Delta d_{v} + 2\Delta \bar{u} - 2\Delta \bar{d}]$ or $\Delta C_{NS}^{\bar{M}S} = 1 - \frac{\alpha_{S}}{\pi} - 3.583 \left(\frac{\alpha_{S}}{\pi}\right)^{2} - 20.215 \left(\frac{\alpha_{S}}{\pi}\right)^{3} + \dots$

Complicating Factor

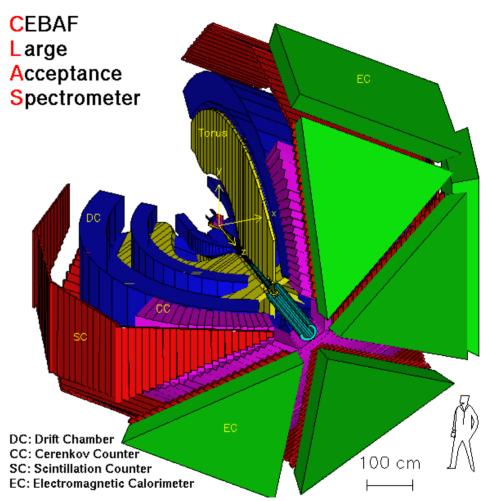
Regions of Q^2



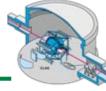
WILLIAM & MARY Spin Structure with CLAS

- Long-standing program in Hall-B at JLab to measure longitudinal double spin asymmetries A_{||} on ¹⁵NH₃ and ¹⁵ND₃
- EG1: 0.05<Q²<3.5 GeV²
 data (2001); anal (2007)
- EG4: 0.01<Q²<1 GeV²
 data (2006); anal (2008)
- EG12: 0.5<Q²<7 GeV²

- data (2012?); anal (2014)



Formalism



$$A_{\parallel} = \frac{\sigma^{\downarrow\uparrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\downarrow\uparrow} + \sigma^{\uparrow\uparrow}}$$

$$A_{\parallel} = D(A_1 + \eta A_2)$$

We can extract A_1 using a model for A_2 (small), or g_1 using a model for g_2 (small)

We can extract A_1 and A_2 from A_{\parallel} at multiple values of $\eta(E_{beam})$

$$= \frac{\sigma_{1/2}^{T} - \sigma_{3/2}^{T}}{\sigma_{1/2}^{T} + \sigma_{3/2}^{T}}$$

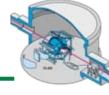
$$= \frac{g_{1}(x, Q^{2}) - \gamma^{2}g_{2}(x, Q^{2})}{F_{1}(x, Q^{2})}$$

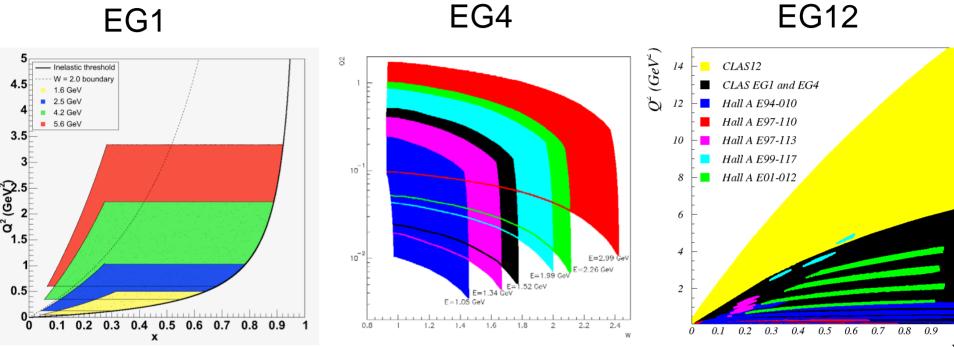
$$A_2 = \frac{2\,\sigma_{LT}}{\sigma_{1/2}^T + \sigma_{3/2}^T}$$

$$= \frac{\gamma [g_1(x,Q^2) + g_2(x,Q^2)]}{F_1(x,Q^2)}$$

A

Kinematics

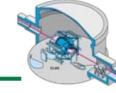


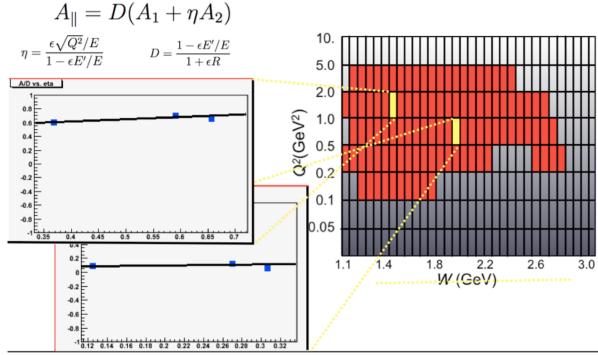


EG4

- Overlapping colors correspond to different beam energies
- CLAS measures a large range in x at each fixed Q²
- Different E_{beam} for fixed (x,Q²) allows separation of A₁ & A₂

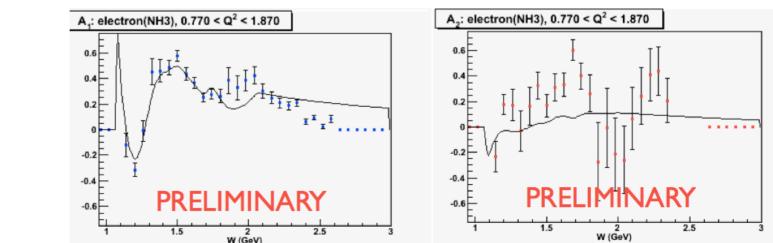
EG1 Extraction of A₂





WILLIAM & MARY

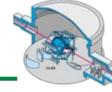
- Analysis is in progress to obtain both A₁ and A₂ from the EG1 data
- Intercept gives A₁
- Slope gives A₂
- A₂ is larger than EG1 model (MAID, AO) as is Hall C RSS experiment

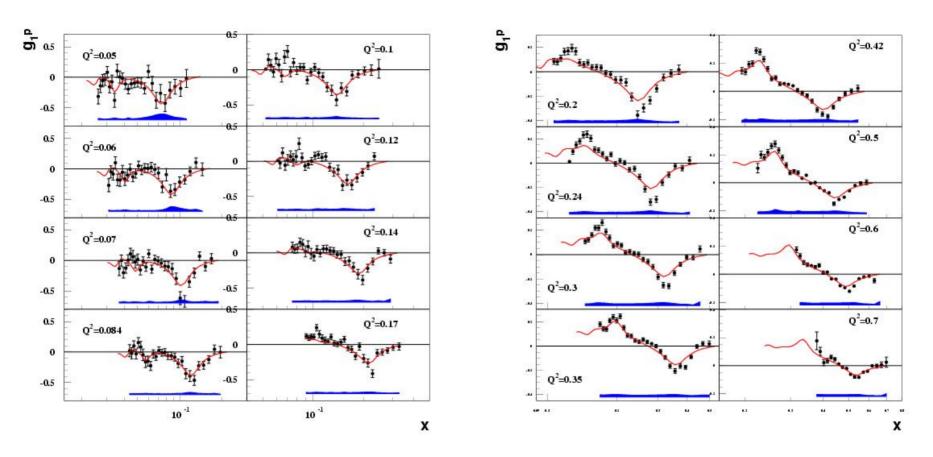


JLabUsers2007

The College of —— WILLIAM & MARY

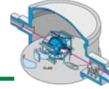
EG1 g_1^p (Q²<0.7)

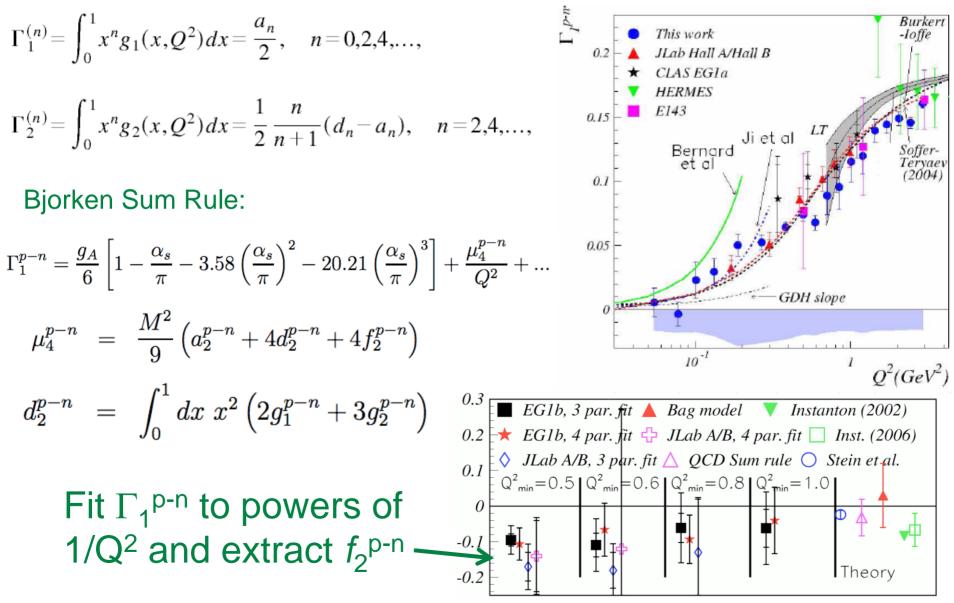




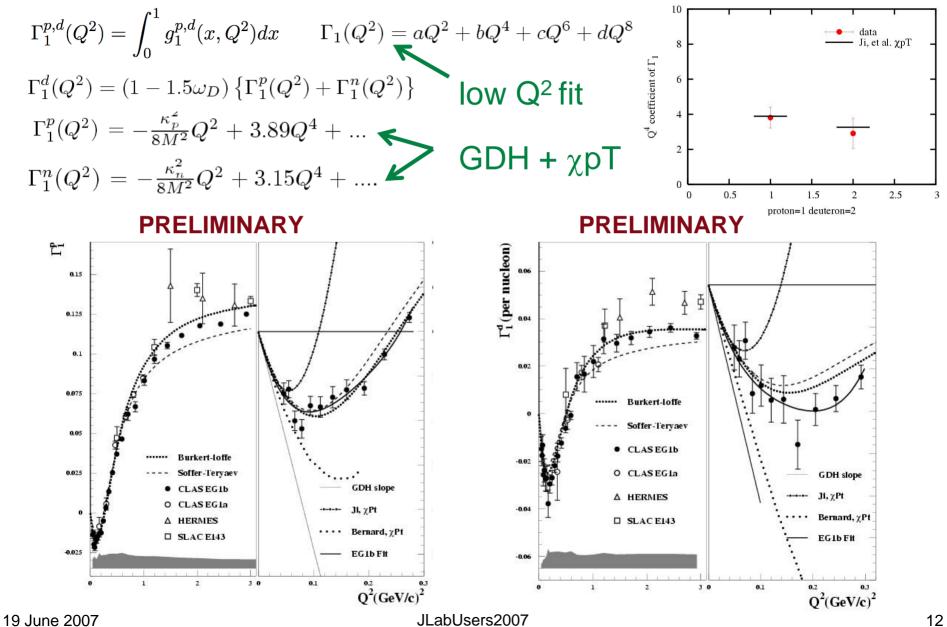
- At low Q^2 the Δ resonance drives g_1 negative
- Extensive x-range at fixed Q² allows integration over x
- Red curve is the EG1 model used for radiative corrections

WILLIAM & MARY Bjorken Sum & Higher Twist



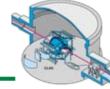


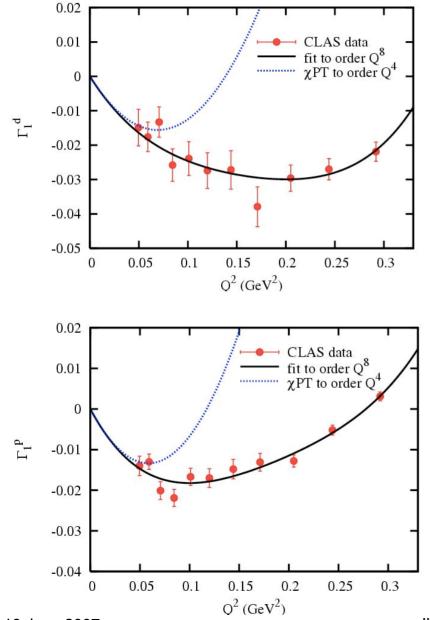
Moments $\Gamma_1^{p,d}$

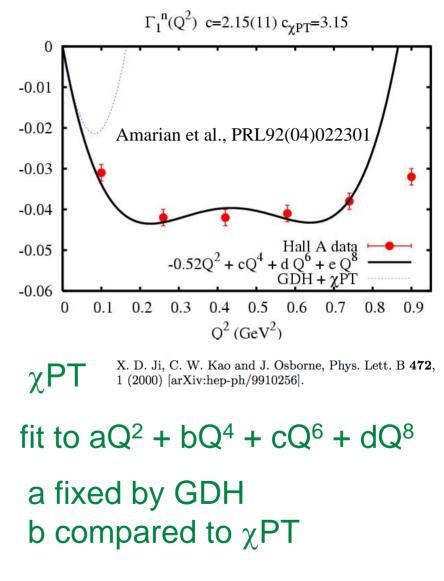


The College of — WILLIAM & MARY

Low Q^2 Fits of Γ_1

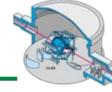




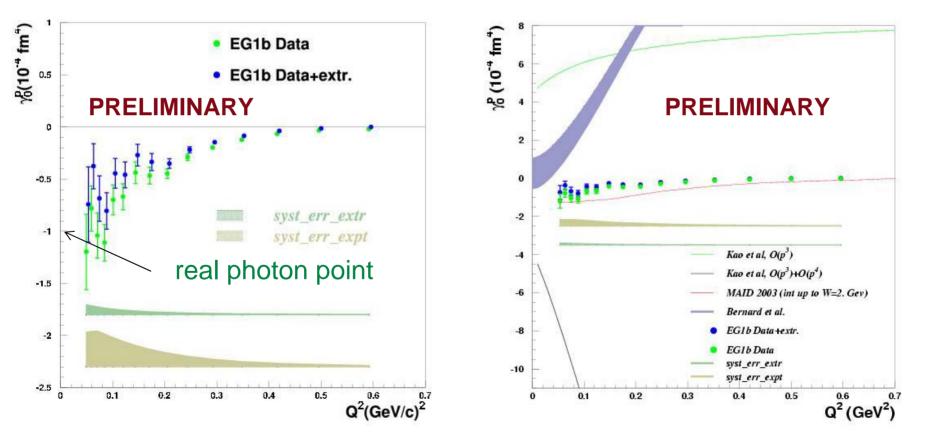


JLabUsers2007

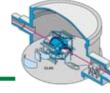
WILLIAM & MARY Forward Spin Polarizability

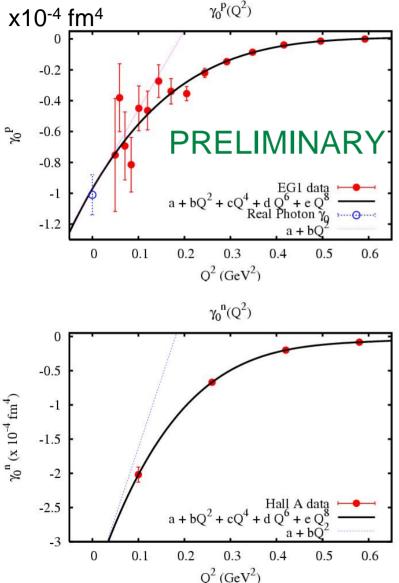


$$\gamma_0(Q^2) = \frac{4e^2 M^2}{\pi Q^6} \int_0^{x_0} dx \, x^2 \left\{ g_1(x, Q^2) - \gamma^2 g_2(x, Q^2) \right\}$$

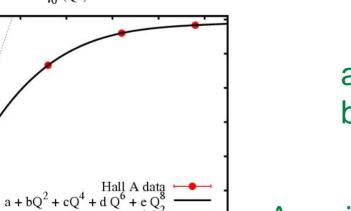


 γ_0 Fits at Low Q²





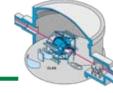
a = -0.97(11)b = 5.13(94)



a = -3.643(1)b = 20.180(8)

Amarian et al., PRL93(04)152301

WILLIAM & MARY Hydrogen Hyperfine Splitting



 $E_{\text{HFS}}(e^{-}p) = 1.4204057517667(9) \text{GHz} = (1 + \Delta_{QED} + \Delta_{R}^{p} + \Delta_{S}) E_{F}^{p}$ $\Delta_{S} = \Delta_{Z} + \Delta_{\text{pol}} \qquad \delta_{Z}^{\text{rad}} = \frac{\alpha}{3\pi} [2 \ln \frac{\Lambda^{2}}{m^{2}} - \frac{4111}{420}]$ $\Delta_{E} \quad \text{Zemach:} \quad \Delta_{Z} = -2\alpha m_{e} \langle r \rangle_{Z} (1 + \delta_{Z}^{\text{rad}})$ $\langle r \rangle_{Z} = -\frac{4}{\pi} \int_{0}^{\infty} \frac{dQ}{Q^{2}} \left[G_{E}(Q^{2}) \frac{G_{M}(Q^{2})}{1 + \kappa} - 1 \right]$ $\Delta_{S} = -38.62(16) \text{ ppm } \Delta_{Z} = -41.0(5) \text{ ppm } \Delta_{\text{pol}} = 2.38(58) \text{ ppm}$ $\Delta_{\text{pol}} = \frac{\alpha m_{e}}{2\pi(1 + \kappa)M} (\Delta_{1} + \Delta_{2}) = (0.2264798 \text{ ppm})(\Delta_{1} + \Delta_{2})$

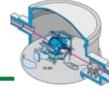
$$\begin{split} \Delta_1 &= \frac{9}{4} \int_0^\infty \frac{dQ^2}{Q^2} \left\{ F_2^2(Q^2) + \frac{8m_p^2}{Q^2} B_1(Q^2) \right\} & B_1 = \int_0^\infty dx \,\beta(\tau) g_1(x,Q^2) \,, \\ \Delta_2 &= -24m_p^2 \int_0^\infty \frac{dQ^2}{Q^4} B_2(Q^2) \,. \\ \tau &= \nu^2 / Q^2 & \beta(\tau) = \frac{4}{9} \left(-3\tau + 2\tau^2 + 2(2-\tau)\sqrt{\tau(\tau+1)} \right) \\ \beta_2(\tau) &= 1 + 2\tau - 2\sqrt{\tau(\tau+1)} \,, \end{split}$$

CX+h

19 June 2007

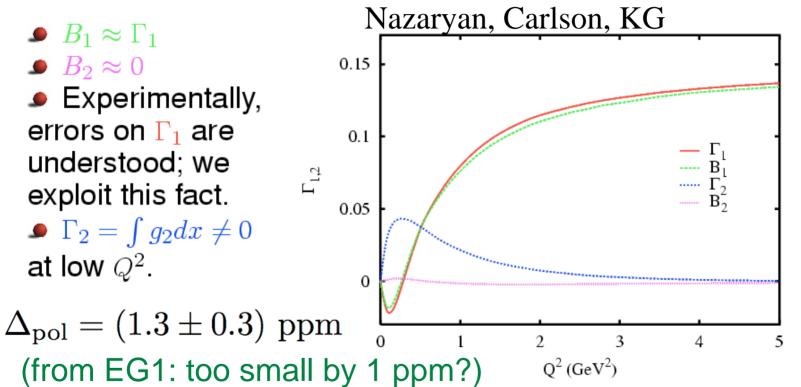
JLabUsers2007

$\Delta_{1,2} \text{ from } g_{1,2}$



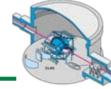
Comparisons between $\Gamma_1 = \int g_1 dx$ and $B_1 = \int \beta_1 g_1 dx$ and between $\Gamma_2 = \int g_2 dx$ and $B_2 = \int \beta_2 g_2 dx$

PRL96,163001



Nucleon structure is the largest uncertainty in calculating HFS. Better g_1 , g_2 , G_M , G_E data at low Q^2 required to resolve discrepancy.

Moments at Low Q²



$$\begin{split} \Gamma_{1,2}^{(N)}(Q^2) &= \int_0^{x_{\rm th}} x^N g_{1,2}(x,Q^2) dx & \Gamma_{1,2}^{(N)} \sim (Q^2)^{N+1} \\ \Gamma_1^{(2)} &\to \gamma_0 Q^6 / (16\alpha m_p^2) & \gamma_0 (Q^2) = \frac{16\alpha m_p^2}{Q^6} \int_0^{x_{\rm th}} x^2 \left(g_1 - \frac{4m_p^2 x^2}{Q^2} g_2\right) dx \\ \Gamma_1^{(0)} &= -\kappa_p^2 Q^2 / (8m_p^2) + c_1 Q^4 + \dots \\ B_1 &= \Gamma_1^{(0)} - 10m_p^2 \Gamma_1^{(2)} / (9Q^2) + \dots \\ \Delta_1 [0,Q_1^2] &= \left\{ -\frac{3}{4} r_P^2 \kappa_p^2 + 18m_p^2 c_1 - \frac{5m_p^2}{4\alpha} \gamma_0 \right\} Q_1^2 \\ \Delta_2 [0,Q_1^2] &= 3m_p^2 Q_1^2 (\gamma_0 - \delta_{LT}) / 2\alpha & \delta_{LT}(Q^2) = \left(\frac{1}{2\pi^2}\right) \int_{\nu_0}^{\infty} \frac{K(\nu,Q^2)}{\nu} \frac{\sigma_{LT}(\nu,Q^2)}{Q\nu^2} d\nu \\ &= \frac{16\alpha M^2}{Q^6} \int_0^{\kappa_0} x^2 [g_1(x,Q^2) + g_2(x,Q^2)] dx \end{split}$$

 $\Delta_2[0,Q_1^2]=3m_p^2Q_1^2(\gamma_0\!-\!\delta_{LT})/2\alpha$

$$\Delta_1[0,Q_1^2] = \left\{ -\frac{3}{4} r_P^2 \kappa_p^2 + 18 m_p^2 c_1 - \frac{5m_p^2}{4\alpha} \gamma_0 \right\} Q_1^2$$

term	$Q^2~({ m GeV^2})$	from	Kelly's F_2
Δ_1	[0,0.05]	F_2 and g_1	0.45 ± 0.30
	[0.05, 20]	F_2	7.01 ± 0.22
		g_1	-1.10 ± 0.55
	$^{[20,\infty]}$	F_2	0.00
		g_1	0.12 ± 0.01
total Δ_1			6.48 ± 0.89
Δ_2	[0, 0.05]	g_2	-0.24 ± 0.24
	[0.05, 20]	g_2	-0.33 ± 0.33
	$^{[20,\infty]}$	g_2	0.00
total Δ_2			-0.57 ± 0.57
$\Delta_1 + \Delta_2$			5.91 ± 1.06
$\Delta_{ m pol}$			$1.34\pm0.24~\text{ppm}$

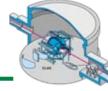
$$\begin{split} \gamma_0 &= -1.01 \times 10^{-4} \text{ fm}^4 \text{ (photons)} \\ r_P &= 0.878(15) \text{ fm (Kelly)} \\ c_1 &= 2.95\text{-}3.89 \text{ (fits/}\chi\text{PT)} \\ \delta_{\text{LT}} &= 1.35 \times 10^{-4} \text{ fm}^4 \text{ (MAID)} \end{split}$$

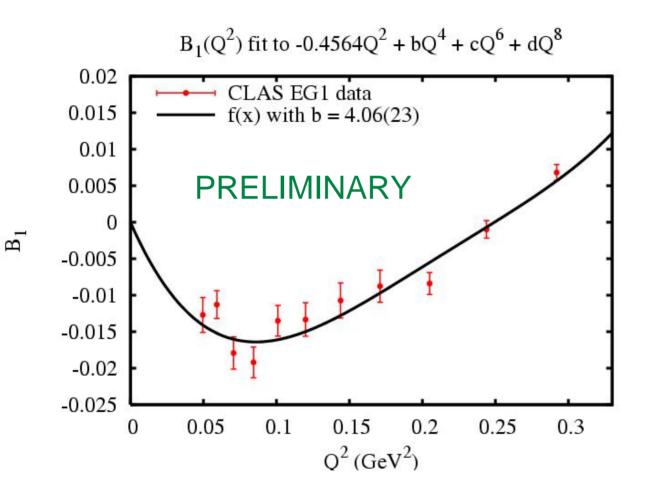
DO

$$g_2 = g_2^{WW} \longrightarrow \Gamma_2^{(N)} = -N\Gamma_1^{(N)}/(N+1)$$

 $\Delta_2[0,0.05] =$ -0.40(05) [g₂^{WW}] -1.4 [MAID] -0.24 [EG1 Model]

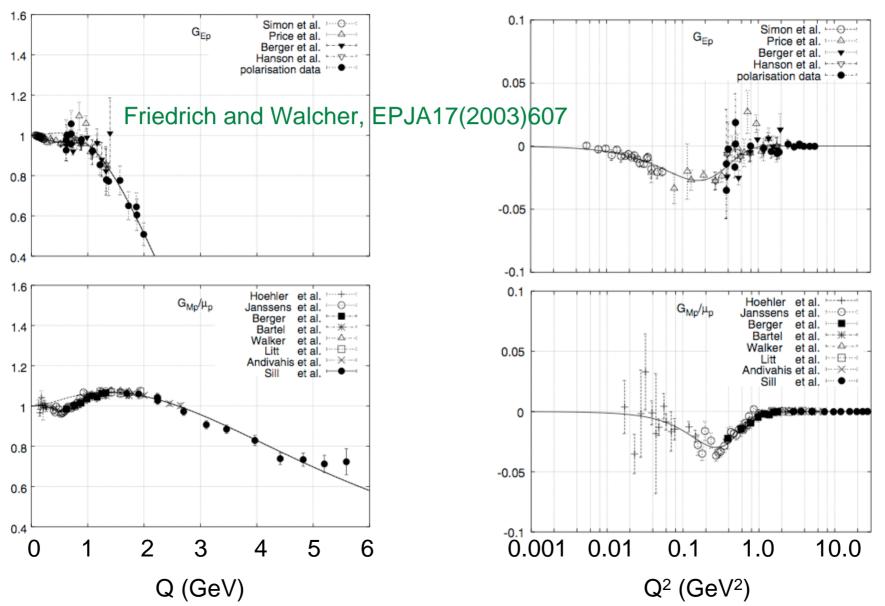
B₁ from CLAS





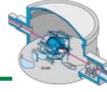
Various estimates change Δ_{pol} up or down within the quoted errors. New data at low Q² are needed to improve this.

 $\Delta_1[0,0.05] = [-0.75r_P^2\kappa_p^2 + 18m_p^2b]0.05 = 0.32$

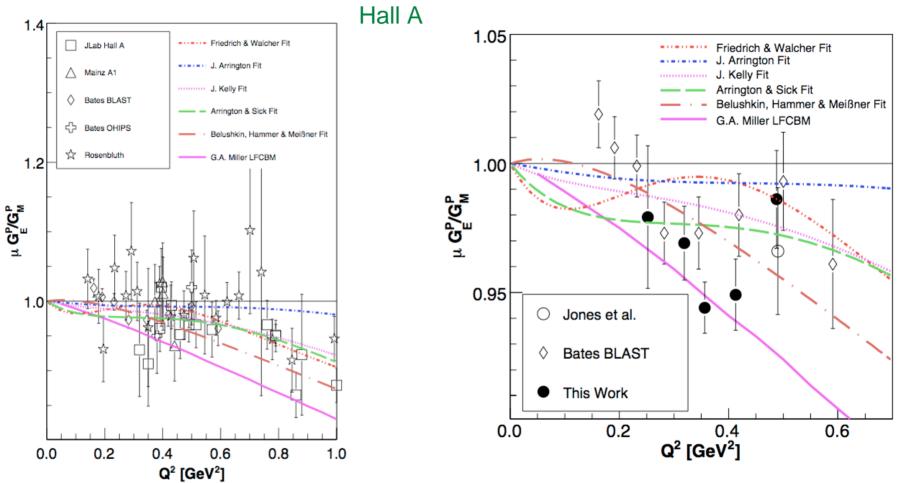


19 June 2007

JLabUsers2007



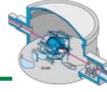
G. Ron et al., nucl-ex 0706.0128



The diversity of fits reflects an inaccurate knowledge of the form factors at low Q²

JLabUsers2007

Zemach Radius



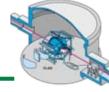
Zemach: $\Delta_Z = -2\alpha m_e \langle r \rangle_Z (1 + \delta_Z^{\text{rad}})$ $\langle r \rangle_Z = -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left[G_E(Q^2) \frac{G_M(Q^2)}{1+\kappa} - 1 \right]$

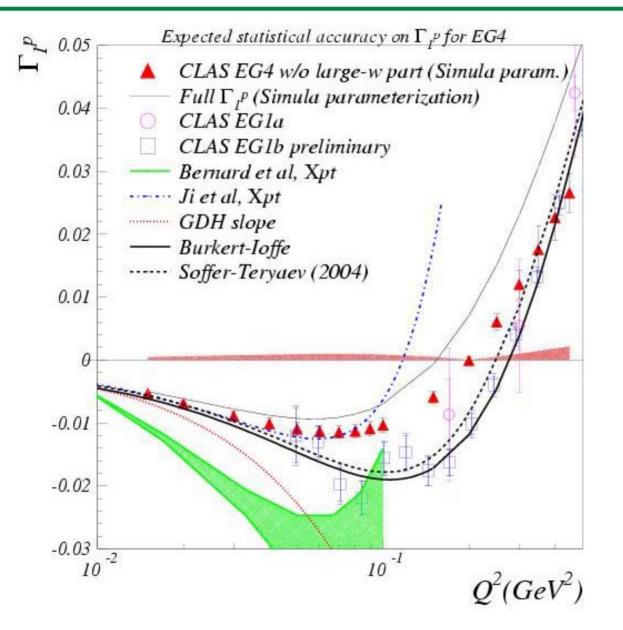
Reference	r _z (fm)	Δ_{Z} (ppm)	Δ_{S} - Δ_{Z} - Δ_{pol} (ppm)
Kelly	1.069(13)	-41.01	1.11
Sick	1.086(12)	-41.67	1.77
Friedrich	1.048	-40.20	0.30
Dipole	1.025	-39.32	-0.58

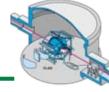
Quoted errors on S,Z and pol are 0.16, 0.49, and 0.24 ppm respectively. Quoted error on S-Z-pol is 0.57 ppm. Largest uncertainty in hyperfine splitting comes from low Q² form factors!

The College of ——— WILLIAM & MARY

EG4 Expectations







Jefferson Lab, past, present and future, provides high-quality structure function and form factor data that make the experimental determination of moments possible.

- rigorous χ PT calculations are often lost on us because our Q^2 is too high
- atomic physics with 14-digit accuracy, in which the nuclear physics enters at the ppm level, is often lost on us because our Q² is too high
- more structure function data at low Q² are on the way
- before the 12 GeV upgrade, Jefferson Lab should do more precise measurements at low Q² including G_E and G_M