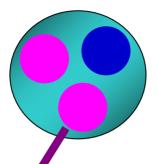
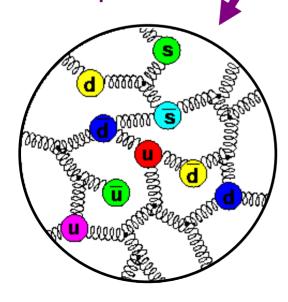
A Measurement of Strangeness in the Nucleon Electromagnetic Form Factors


the **G**[®] Forward Angle Experiment

Jianglai Liu Ph.D., University of Maryland 2006 Thesis Research Work Performed at Jlab Hall C

Jlab Users Group Meeting, 06-19-2007

Strangeness in the Nucleon?

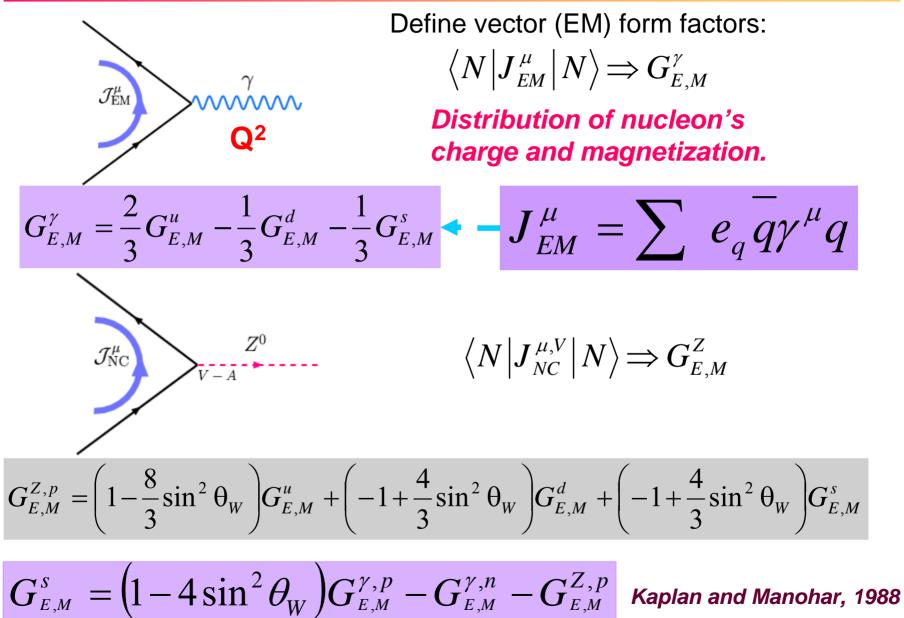

quark	charge
u, c, t	2/3
d, s, b	-1/3

Quark models: Only u and d quarks in nucleons. No strangeness!

QCD introduces color force between quarks carried by gluons.

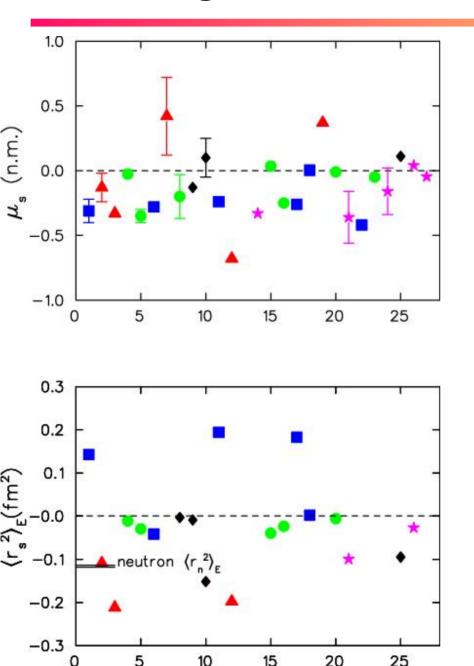
"Full QCD description"

Quark-antiquark pairs and gluons make up the QCD vacuum ("sea").
 ss pair arise from the vacuum fluctuation.

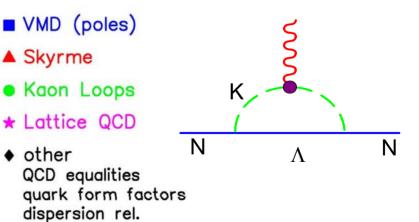

Overall strangeness is zero, but s and s might not have identical distributions. So strangeness might manifest locally. Analogous to the charge distribution in neutron!

Different Aspects of Nucleon Strangeness

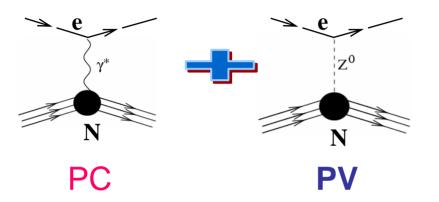
Contribution of s quark to the longitudinal momentum difficult to make $\int_0^1 x(s(x) + \overline{s}(x)) dx \sim 2\%$ connection with Contribution to the nucleon mass ordinary observables $m_s \langle N | \bar{ss} | N \rangle \sim 130 \text{ MeV}$ Contribution to the nucleon spin $\left\langle N \mid \bar{s} \gamma^{\mu} \gamma^{5} s \mid N \right\rangle = \sigma^{\mu} \Delta s$ $\Delta s \sim -0.1$ likely 100% uncertainty


Contributions to the nucleon charge and magnetism strange electric and magnetic form factors: well-defined observables, results are theoretically clean.

Strange Electromagnetic Form Factors

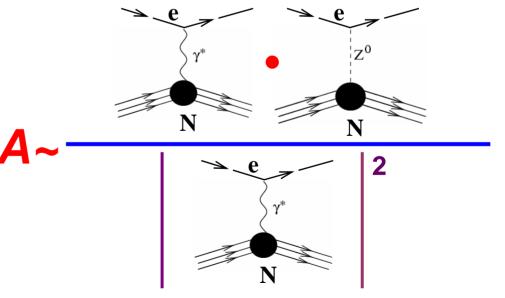

Strange Form Factors Calculations at Q²=0

...


$$\mu_{s} = G_{M}^{s}(0)$$

$$\left\langle r_{s}^{2} \right\rangle_{E} = -6 \frac{dG_{E}^{s}(Q^{2})}{dQ^{2}} \Big|_{Q^{2}=0}$$

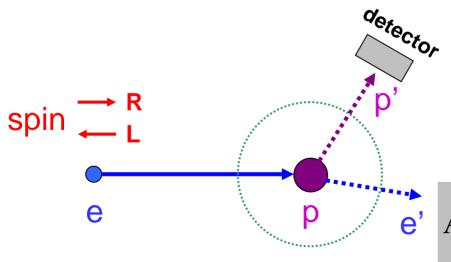
Measuring the NC Form Factor: Parity Violation


Elastic e-N scattering

- NC amplitude suppressed by ~10⁻⁴
- Impossible to see in

cross-section measurement

Parity violation in the elastic scattering \rightarrow interference term \rightarrow "amplify" the relative experimental sensitivity to neutralweak interaction.


McKeown and Beck, 1989

Measurement of Parity Violation

First observation of parity violation in weak interaction; Madam Wu's famous 1957 ⁶⁰Co beta decay experiment.

C. S. Wu

In parity violating e-p scattering, the spin (helicity) of the electron is flipped back and forth.

$$A_{PV} \propto \vec{\sigma} \cdot \vec{p} = \frac{\sigma_{R} - \sigma_{L}}{\sigma_{R} + \sigma_{L}} \sim 10^{-4} Q^{2}$$

Parity Violating Asymmetry

$$A = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \left[\frac{-G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \frac{A_E + A_M + A_A}{\varepsilon(G_E^p)^2 + \tau(G_M^p)^2}$$

$$A_{E} = \varepsilon(\theta) G_{E}^{Z}(Q^{2}) G_{E}^{\gamma}(Q^{2}) \qquad \rightarrow G_{E}^{s} \qquad \text{forward ep}$$

$$A_{M} = \tau(Q^{2}) G_{M}^{Z}(Q^{2}) G_{M}^{\gamma}(Q^{2}) \qquad \rightarrow G_{M}^{s} \qquad \text{backward ep}$$

$$A_{A} = -(1 - 4\sin^{2}\theta_{W}) \varepsilon' G_{A}^{e}(Q^{2}) G_{M}^{\gamma}(Q^{2}) \qquad \rightarrow G_{A}^{e} \qquad \text{backward ed}$$

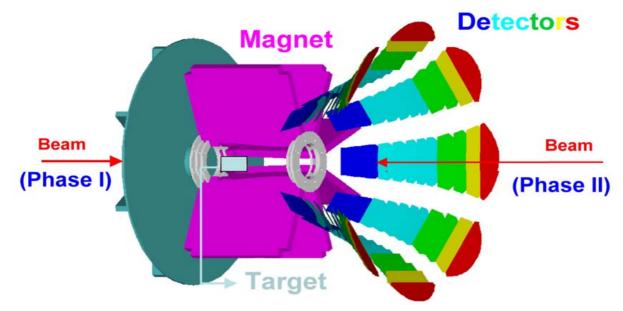
kinematic factors

$$\tau = \frac{Q^2}{4M^2}$$
$$\varepsilon = \left[1 + 2(1 + \tau)\tan^2\left(\frac{\theta}{2}\right)\right]^1$$
$$\varepsilon' = \sqrt{(1 - \varepsilon^2)\tau(1 + \tau)}$$

Assuming EM and axial form factors are known (with errors), each measurement yield $G_E^s + \eta G_M^s$ where $\eta = \tau G_M^p / (\varepsilon G_E^p)$

Summary of PV Electron Scattering Experiments (Spring 2006)

Experiment	Target	Q ² (GeV ²)	Sensitivity	
SAMPLE	H ₂	0.10	$G_{E}^{s} + 1.67 G_{M}^{s}$	
HAPPEx-I	H ₂	0.48	<i>G_E^s+0.37G_M^s</i>	
HAPPEx-II-a	H ₂	0.10	G _E ^s +0.08G _M ^s	
HAPPEx-He-a	⁴ He	0.091	G _E ^s	
PVA4-I	H ₂	0.23	G _E ^s +0.23G _M ^s	
PVA4-II	H ₂	0.11	G_E^s +0.11 G_M^s	
G ⁰	H ₂	0.12-1.0	$G_E^s + 0.94 Q^2 G_M^s$	
HAPPEx-II-b	H2	0.11	G _E ^s +0.09G _M ^s	
HAPPEx-He-b	⁴ He	0.08	G _E ^s	


The G⁰ Collaboration

D.S.Armstrong¹, J.Arvieux², R.Asaturyan³, T.Averett¹, S.L.Bailey¹, G.Batigne⁴, D.H.Beck⁵, E.J.Beise⁶, J.Benesch⁷, L.Bimbot², J.Birchall⁸, A.Biselli⁹, P.Bosted⁷, E.Boukobza^{2,7}, H.Breuer⁶, R.Carlini⁷, R.Carr¹⁰, N.Chant⁶, Y.-C.Chao⁷, S.Chattopadhyay⁷, R.Clark⁹, S.Covrig¹⁰, A.Cowley⁶, D.Dale¹¹, C.Davis¹², W.Falk⁸, J.M.Finn¹, T.Forest¹³, G.Franklin⁹, C.Furget⁴, D.Gaskell⁷, J.Grames⁷, K.A.Griffioen¹, K.Grimm^{1,4}, B.Guillon⁴, H.Guler², L.Hannelius¹⁰, R.Hasty⁵, A. Hawthorne Allen¹⁴, T.Horn⁶, K.Johnston¹³, M.Jones⁷, P.Kammel⁵, R.Kazimi⁷, P.M.King^{6,5}, A.Kolarkar¹¹, E.Korkmaz¹⁵, W.Korsch¹¹, S.Kox⁴, J.Kuhn⁹, J.Lachniet⁹, L.Lee⁸, J.Lenoble², E.Liatard⁴, J.Liu⁶, B.Loupias^{2,7}, A.Lung⁷, G.A.MacLachlan¹⁶, D.Marchand², J.W.Martin^{10,17}, K.W.McFarlane¹⁸, D.W.McKee¹⁶, R.D.McKeown¹⁰, F.Merchez⁴, H.Mkrtchyan³, B.Moffit¹, M.Morlet², I.Nakagawa¹¹, K.Nakahara⁵, M.Nakos¹⁶, R.Neveling⁵, S.Niccolai², S.Ong², S.Page⁸, V.Papavassiliou¹⁶, S.F.Pate¹⁶, S.K.Phillips¹, M.L.Pitt¹⁴, M.Poelker⁷, T.A.Porcelli^{15,8}, G.Quéméner⁴, B.Quinn⁹, W.D.Ramsay⁸, A.W.Rauf⁸, J.-S.Real⁴, J.Roche^{7,1}, P.Roos⁶, G.A.Rutledge⁸, J.Secrest¹, N.Simicevic¹³, G.R.Smith⁷, D.T.Spayde^{5,19}, S.Stepanyan³, M.Stutzman⁷, V.Sulkosky¹, V.Tadevosyan³, R.Tieulent⁴, J.van de Wiele², W.van Oers⁸, E.Voutier⁴, W.Vulcan⁷, G.Warren⁷, S.P.Wells¹³, S.E.Williamson⁵, S.A.Wood⁷, C.Yan⁷, J.Yun¹⁴

¹College of William and Mary, ²Institut de Physique Nucléaire d'Orsay, ³Yerevan Physics Institute, ⁴Laboratoire de Physique Subatomique et de Cosmologie-Grenoble, ⁵University of Illinois, ⁶University of Maryland, ⁷Thomas Jefferson National Accelerator Facility, ⁸University of Manitoba, ⁹Carnegie Mellon University, ¹⁰California Institute of Technology, ¹¹University of Kentucky, ¹²TRIUMF, ¹³Louisiana Tech University, ¹⁴Virginia Tech, ¹⁵University of Northern British Columbia, ¹⁶New Mexico State University, ¹⁷University of Winnipeg, ¹⁸Hampton University, ¹⁹Grinnell College

Overview of the G⁰ experiment

@ Jlab Hall C. Full program: forward & backward elastic asymmetries: protons for forward, electrons for backward

Forward angle configuration: 3.03 GeV beam, 40 μA, A = -1 to -50 ppm

G⁰ in Hall C

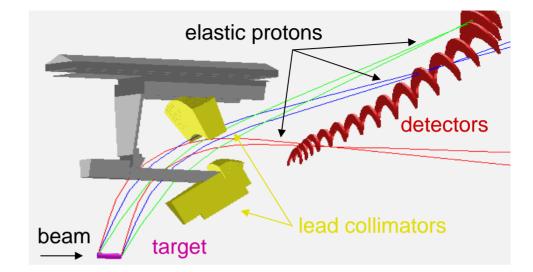
superconducting magnet (SMS)

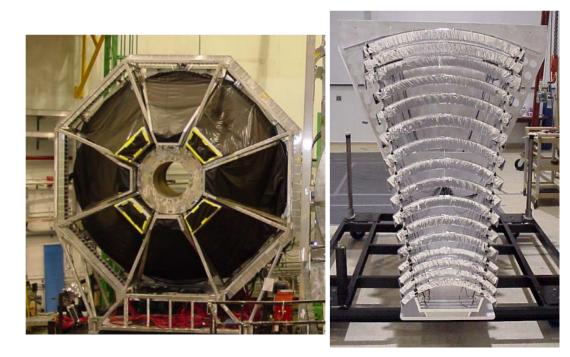
Lumi monitors

cryogenic supply

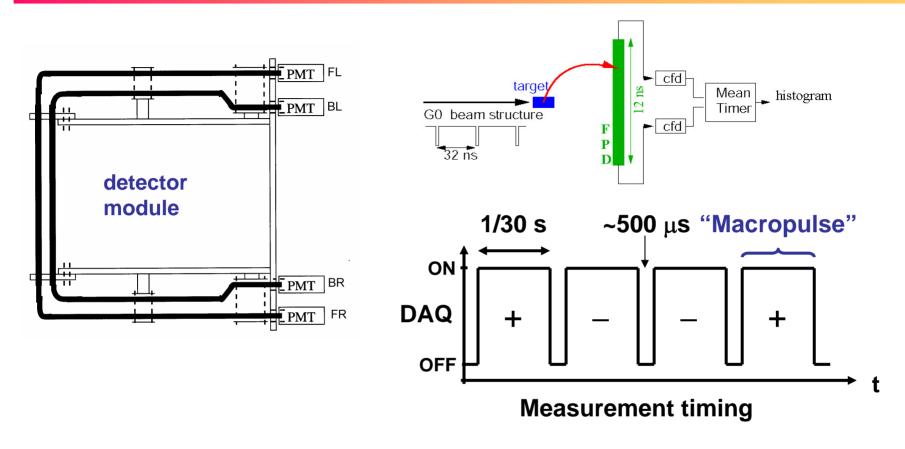
scintillation detectors

cryogenic target service module

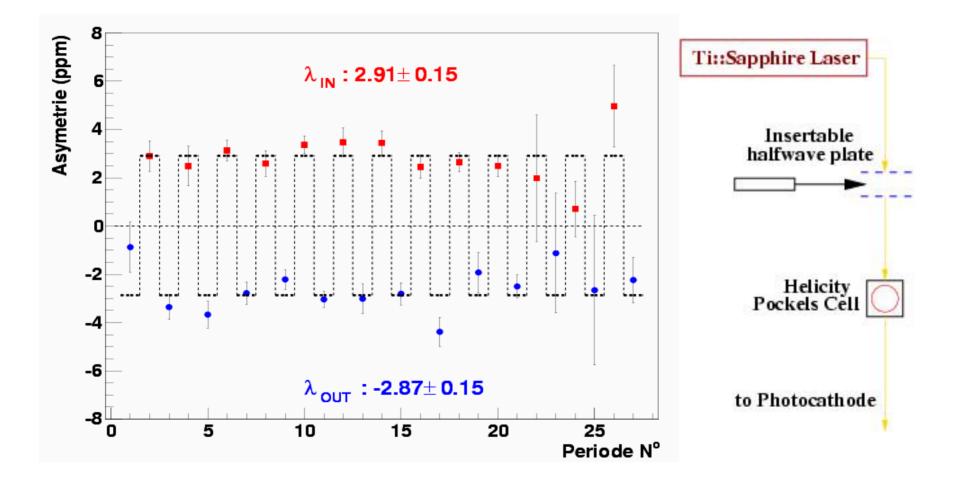

beam monitoring girder


-P P

electron beamline

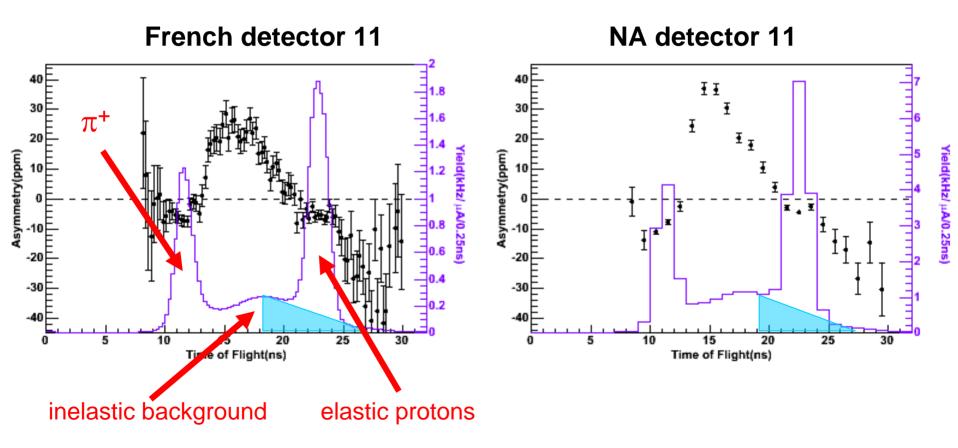

Spectrometer

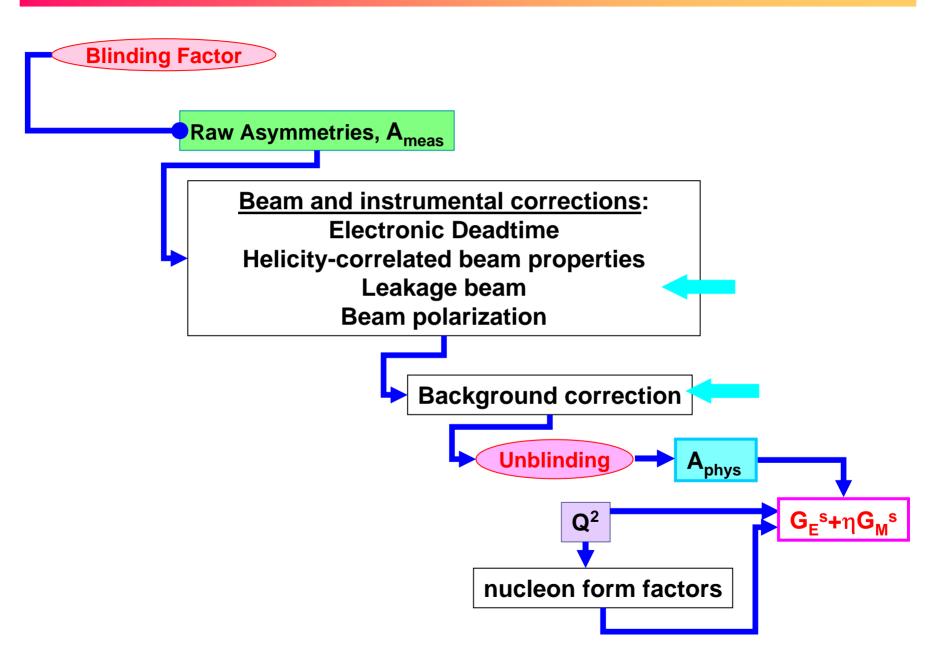
- Toroidal magnet, elastic protons dispersed in Q² along focal surface
- Acceptance
 0.12<Q²<1.0 GeV²
- 16 scintillator rings at the focal plane. 8 octants.
- Detector 15 acceptance: 0.44-0.88 GeV²
- Detector 16: "superelastic", crucial to measure the background



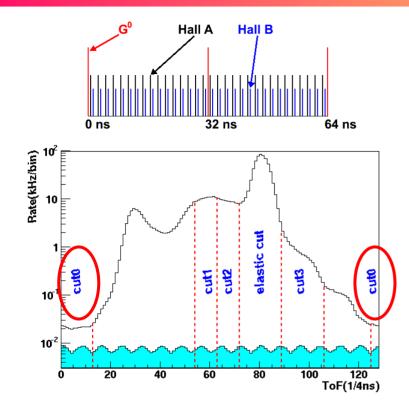
Electronics and Timing

- High rate counting experiment, coinc. rate ~1MHz per scintillator pair.
- Fast time encoding (ToF histogramming electronics. beam pick-off signal \Rightarrow T=0), DAQ at 30 Hz


Measured Asymmetry upon Beam Spin Reversal

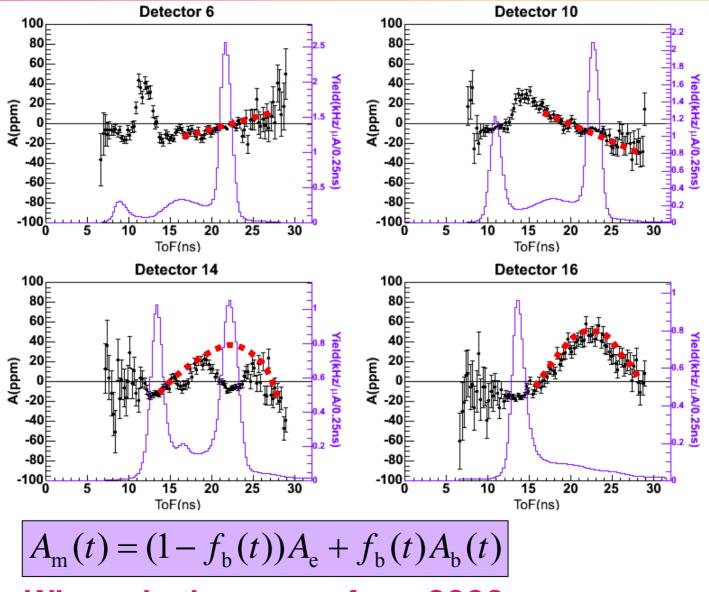

Raw Data of G^0

Yield and asymmetry as functions of time of flight


Two sets of electronics: French 0.25 ns/bin, NA 1 ns/bin

Analysis Overview

Leakage Beam

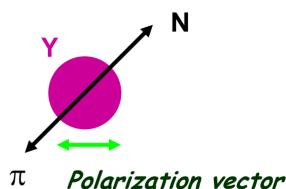


- ~ 50 nA 499 MHz beam leaks into G⁰ beam (~ 40 μA)
- Leakage current has large, varying asymmetry (A ~ 600 ppm).
- ToF dependent false asymmetry created.
- Need to know the leakage current and asymmetry to make the correction.

Use "cut0" region in actual data to measure leakage current and asymmetry throughout run.

∆A_{leak} = -0.71±0.14 ppm (global uncertainty!)

Background Asymmetry



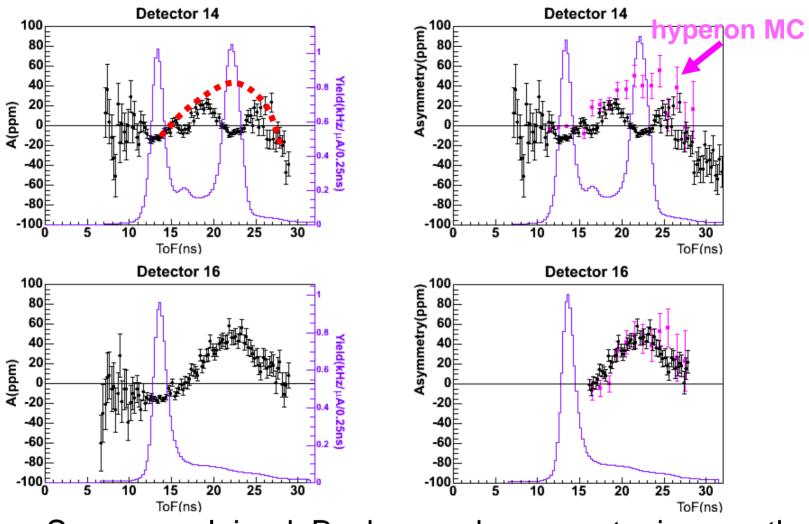
Where do they come from ????

Physics Origin of the Positive Background Asymmetries

$$\vec{e} + p \rightarrow \vec{Y} + K$$

 $N + \pi$

Weak decay, $A \approx 1 = 10^6$ ppm!!!

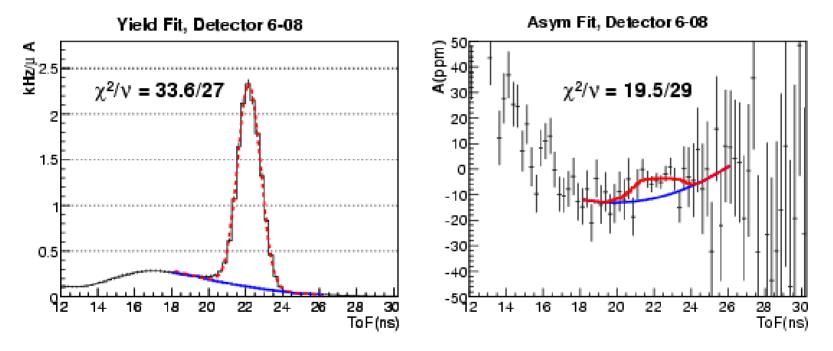


The decay particles of hyperons are hugely suppressed by the acceptance, but a small rate can lead to large asymmetry!

IF Y contribute to 0.001% of the rate THEN $A = 0.001\% \times 10^{6}$ ppm = 10 ppm ! ENDIF

Simulated ($\Lambda^0, \Sigma^+, \Sigma^0$) production with GEANT. Decay particles <u>rescatter</u> inside the spectrometer that make it into the detector.

Results of the Hyperon Simulation

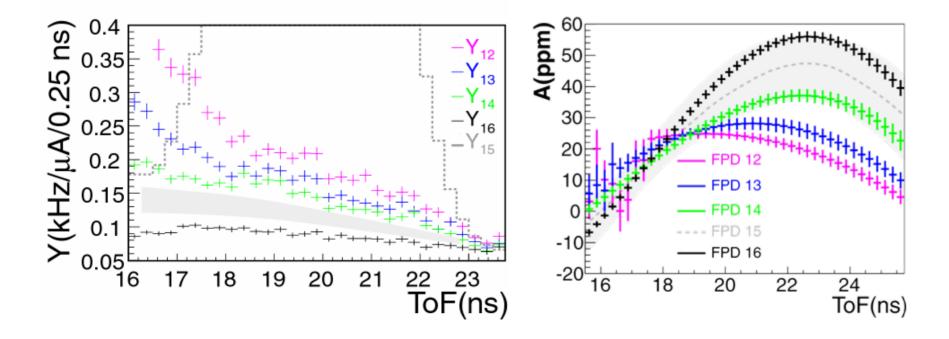

 Source explained. Background asymmetry is smooth in (FPD, ToF).

Used measured data in the correction.

Background Correction —— Yield & Asymmetry "2-step" Fit

$$A_{\rm m}(t) = (1 - f_{\rm b}(t))A_{\rm e} + f_{\rm b}(t)A_{\rm b}(t)$$

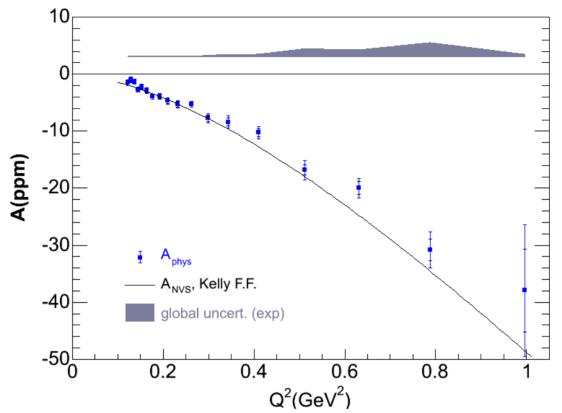
$$f_{\rm b}(t) = \frac{Y_{\rm b}(t)}{Y_{\rm e}(t) + Y_{\rm b}(t)}$$



Extract bin-by-bin background fraction f_b(t) by fitting time-of-flight spectra (gaussian elastic peak + polynomial background)

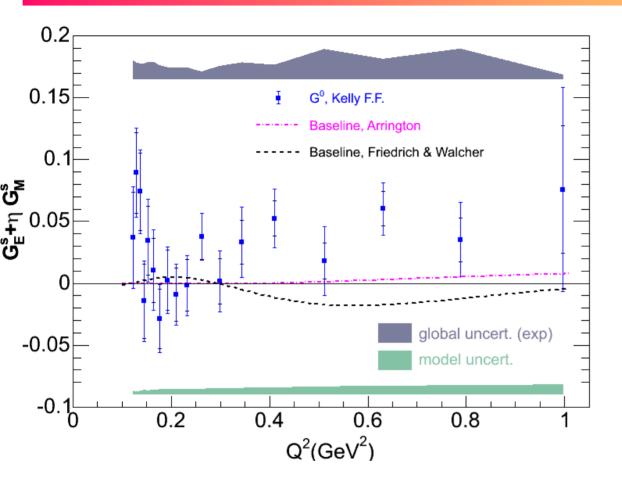
Use results to perform asymmetry fit:
A_e(t) = const, A_b(t) = polynomial

Det. 15 Background Determination


- Elastic peak broadened (~6 ns) because of increased Q² acceptance.
- Smooth variation of the background yield and over detector range 12-14, 16. So make linear interpretation over detector number to determine Y_b(t).
- Similar treatment to the background asymmetry

Summary of Systematic Effects

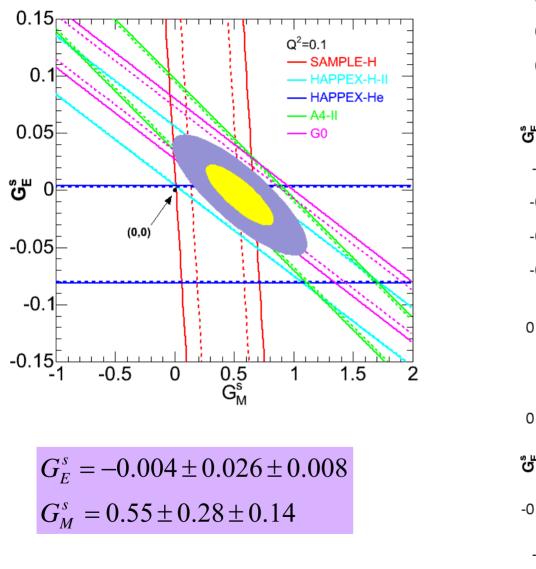
Source	Correction	Uncertainty	global or pt-pt
Electronics deadtime	0.2	0.05 ppm	pt-pt
French time bin correlation	0	0.043 ppm	global
Helicity-correlated differences in beam properties	0.01	0.01 ppm	pt-pt
Leakage beam	0.71	0.14 ppm	global
Beam polarization	1.36 (frac.)	1 % (frac.)	global
Transverse beam polarization	0	0.01 ppm	global
Inelastic background subtraction	0.1-40 ppm	0.2-9 ppm	both
Radiative corrections	1% (frac.)	0.1 % (frac.)	pt-pt
Detector (Q ²)	0	1 %	global

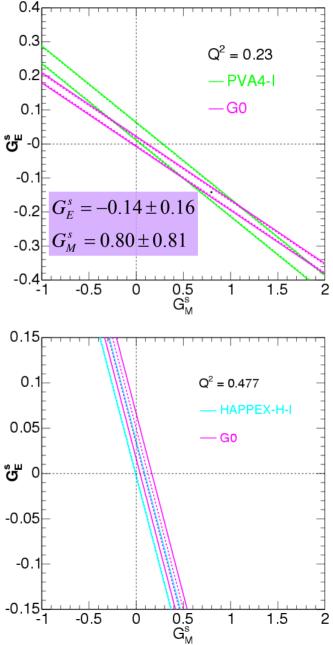

Elastic Asymmetries

- "Non-vector-strange" asymmetry, A_{NVS}, is A(G_E^s, G_M^s = 0)
- Nucleon EM form factors: Kelly PRC 70 (2004) 068202
- Inner error bars: stat; outer: stat & pt-pt sys

Dominating global systematic uncertainty: background & leakage

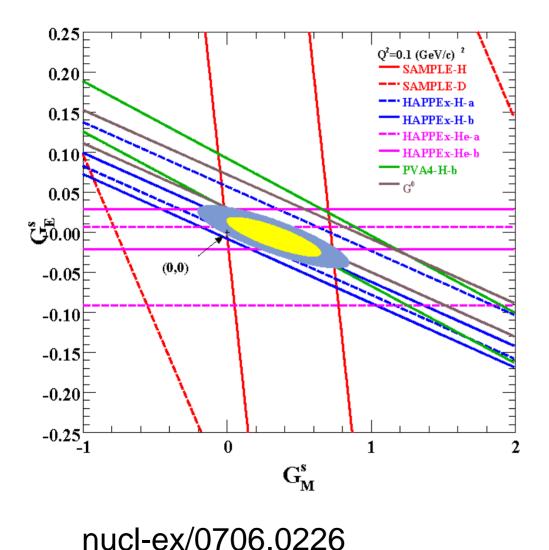
 $G_{E}^{s} + \eta G_{M}^{s}$, Q² = 0.12-1.0 GeV²




Model" uncertainty: the uncertainty due to the electroweak parameters and the kinematics.

3 nucleon form factor fits; spread indicate uncertainties.

A χ² test based on the random and correlated uncertainties: the "zero-line" hypothesis is disfavored at 89%.
 Data suggest that either G_E^s or G_M^s (or both) are non-zero and dependent on Q².


World Data with G⁰ (Spring 2006)

Most Recent Global Data Analysis

With two recent high statistics HAPPEx Runs

 $G_E^s = -0.008 \pm 0.016$ $G_M^s = 0.29 \pm 0.21$

One side confidence contour for negative G_M^s is 12.3%, so significantly negative value of G_M^s are highly disfavored.
 Strange quark contribute to µ_p at ~-4% level

G⁰: recently completed backward angle at $\mathbf{Q}^2 = 0.63, 0.23$ GeV² with both LH₂ and LD₂ targets

PV-A4 backward: $\theta = 145^{\circ}$ $Q^2 = 0.23 \text{ GeV}^2$ (underway) both LH₂ and LD₂ targets

HAPPEx high precision at $Q^2 = 0.6$ GeV²

Conclusion

- The G⁰ forward angle experiment yields a measurement of parity violating e-p elastic asymmetries over broad Q² range: 0.12-1.0 GeV².
- Data suggest that either G_E^s or G_M^s (or both) are non-zero and Q²-dependent.
- Fully separated G_E^s, G_M^s at various Q² values await the results from backward angle measurements from G⁰ and PVA4.

Acknowledgements

I am so grateful that Jlab awards me the thesis prize. But this prize is not just for myself ...

I want to thank all my G⁰ colleagues, particularly Betsy Beise, Doug Beck, and Julie Roche for their guidance and support throughout the years.

I also like to thank Jlab for supporting this challenging and exciting projects.

Formalism Including EW Rad. Corr.

$$A = -\frac{G_{E}Q^{2}}{4\pi\alpha\sqrt{2}} \frac{1}{\varepsilon G_{E}^{p^{2}} + \tau G_{M}^{p^{2}}} \left\{ (1 - 4\sin^{2}\theta_{W}) \left(\varepsilon G_{E}^{p^{2}} + \tau G_{M}^{p^{2}}\right) (1 + R_{V}^{p}) - \left(\varepsilon G_{E}^{p} G_{E}^{n} + \tau G_{M}^{p} G_{M}^{n}\right) (1 + R_{V}^{n}) - \varepsilon G_{E}^{p} \left(G_{E}^{s} + \eta G_{M}^{s}\right) (1 + R_{V}^{0}) - \varepsilon' (1 - 4\sin^{2}\theta_{W}) G_{M}^{p} G_{A}^{e} \right\}$$
Where $\eta \equiv \frac{\tau G_{M}^{p}}{\varepsilon G_{E}^{p}}$ and At tree level, R 's are zeros.
 $G_{A}^{e} = \left[-\frac{g_{A}}{g_{V}} (1 + R_{A}^{T=1}) + \frac{1}{2} (3F - D(R_{A}^{T=1}) + \Delta s (1 + R_{A}^{0})) \right] G_{A}^{p}$
 $G_{A}^{p} = \frac{1}{(1 + Q^{2} / \Lambda_{A}^{2})^{2}}$

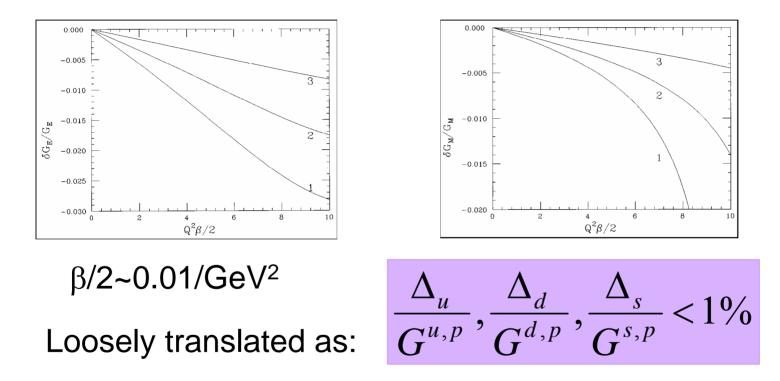
Each asymmetry measurement can be cast into a linear combination of G_E^s and G_M^s, assuming everything else is known.
 In forward angle, use theoretical value and uncertainty of G_A^e. Uncertainty dominated by the "anapole" term.

Charge Symmetry Breaking

$$G_{E,M}^{\gamma,p} = \frac{2}{3} G_{E,M}^{u,p} - \frac{1}{3} G_{E,M}^{d,p} - \frac{1}{3} G_{E,M}^{s,p}$$
$$G_{E,M}^{\gamma,n} = \frac{2}{3} G_{E,M}^{u,n} - \frac{1}{3} G_{E,M}^{d,n} - \frac{1}{3} G_{E,M}^{s,n}$$

$$G_{E,M}^{Z,p} = \left(1 - \frac{8}{3}\sin^2\theta_W\right)G_{E,M}^{u,p} + \left(-1 + \frac{4}{3}\sin^2\theta_W\right)G_{E,M}^{d,p} + \left(-1 + \frac{4}{3}\sin^2\theta_W\right)G_{E,M}^{d,p}$$

$$G^{u,p} = G^{d,n} - \Delta_{u}; G^{d,p} = G^{u,n} - \Delta_{d}; G^{s,p} = G^{s,n} - \Delta_{d}$$

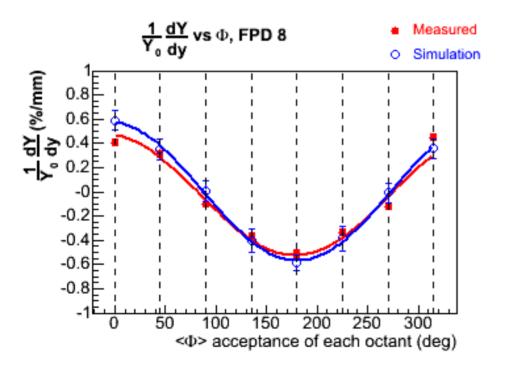

$$G_{E,M}^{s} = (1 - 4\sin^{2}\theta_{W})G_{E,M}^{\gamma,p} - G_{E,M}^{\gamma,n} - G_{E,M}^{Z,p} + \frac{2}{3}\Delta_{d} - \frac{1}{3}\Delta_{u} - \frac{1}{3}\Delta_{s}$$

No charge symmetry breaking:

$$G_{E,M}^{s} = \left(1 - 4\sin^{2}\theta_{W}\right)G_{E,M}^{\gamma,p} - G_{E,M}^{\gamma,n} - G_{E,M}^{Z,p}$$

Ma, Phys. Lett. B 408, 387 (1997) $\delta G_M^s \approx 0.007 \ n.m.$

G. Miller's (PRC 57, 1492 (1998))'s results

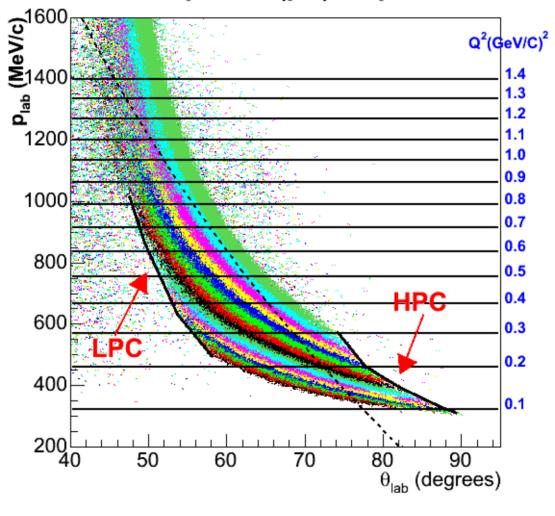


So $\delta G_E^s < 0.01, \delta G_M^s < 0.02$ at Q² β /2~4

Also should be small at low Q²

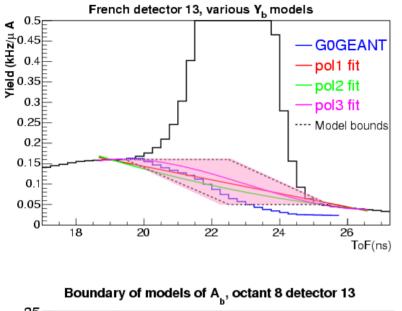
Helicity Correlated Beam Properties and Their Corrections

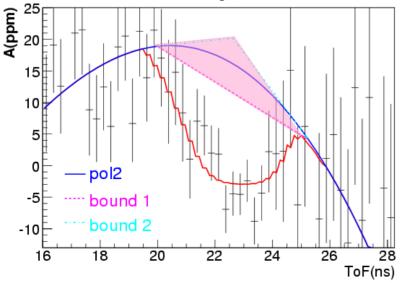
$$A_{\text{false}} = \sum_{i} \frac{1}{2\langle Y \rangle} \left(\frac{\partial Y}{\partial P_{\text{i}}} \right) \Delta P_{\text{i}}$$


So require

✓ Small ΔP_i ✓ Small sensitivity to P_i

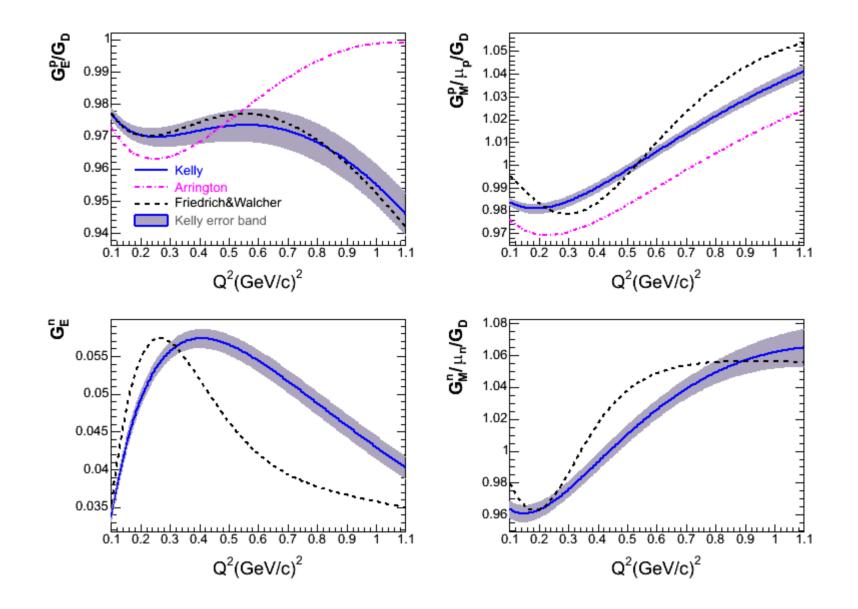
- ➢ Azimuthal symmetry ⇒ large reduction of detector sensitivity to beam positions
- Response of spectrometer to beam changes well understood
- False asymmetries (and the uncertainty) due to helicity-correlated beam parameters very small (~-0.02 ppm)


Detector Acceptance


proton (p,0) map

Large and continuous acceptance for protons.

Systematic Uncertainty of the Correction



- Allowed background yield to vary within the parallelogram.
- Similar procedure for background asymmetry.
- Looking for global changes of A_e on different detectors if the background model is changed globally.

$$\sigma_{sys}^{pt-pt^2}(A_e) = \frac{3}{4}\sigma_{sys}^2(A_e)$$
$$\sigma_{sys}^{glob^2}(A_e) = \frac{1}{4}\sigma_{sys}^2(A_e)$$

Different Nucleon EM FF Parametrizations

Combining World Data

General procedure:

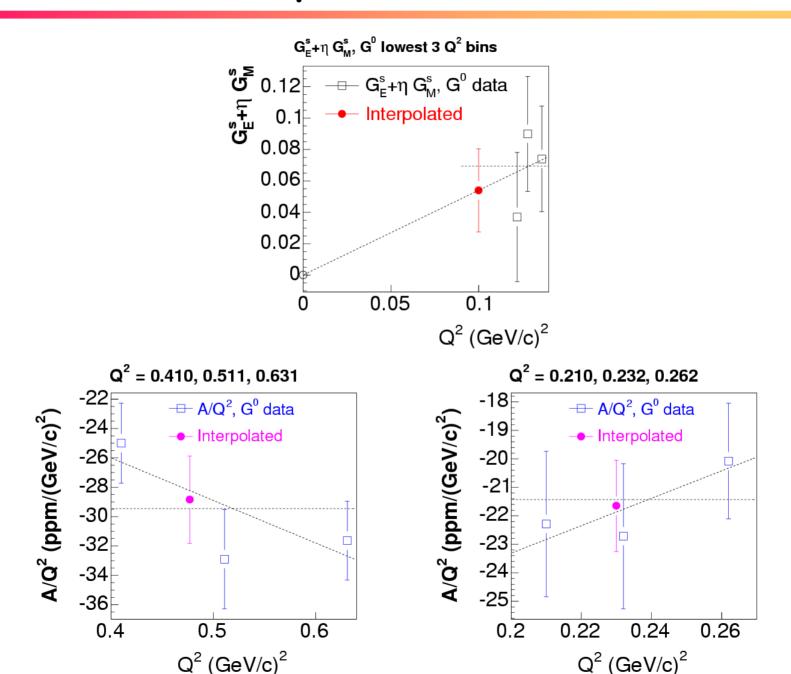
- I. Start from the experimental asymmetries and uncertainties from different experiment
- II. Use a common set of form factor and electroweak parameters
- III. Calculate $G_E^s + \eta G_M^s$
- IV. Combine world data and separate G_E^s and G_M^s
- V. The sensitivity to nucleon form factor and electroweak parameters are evaluated separately by changing the model input globally and repeat I-IV

Interpolate G⁰ Data I

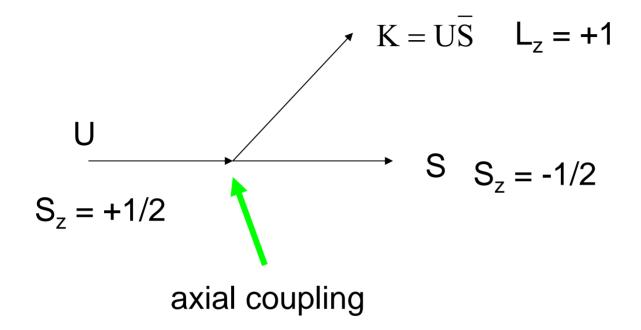
Three overlapping Q^2 with other experiments: $Q^2 = 0.1$ (HAPPEX, SAMPLE, A4), $Q^2 = 0.23$ (A4), $Q^2=0.48$ (HAPPEX)

✤ Q² = 0.1

extrapolate G^0 using A_i/Q_i^2 for first 3 Q^2 points


 $Q^2 = \{0.122, 0.128, 0.136\}$

✤ Q² = 0.23 (PVA4-I), 0.477 (HAPPEX-I) GeV²


Interpolate A_i/Q_i^2 for $Q^2 = \{0.210, 0.232, 0.262\}, \{0.410, 0.511, 0.631\}$

Average the results of flat and linear interpolation. Use the ½ difference as an additional "model" uncertainty.

Interpolate G⁰ Data II

Riska's argument for the strange magnetic moment

So both S and S contribute positive amount to proton magnetic moment \rightarrow negative μ_s

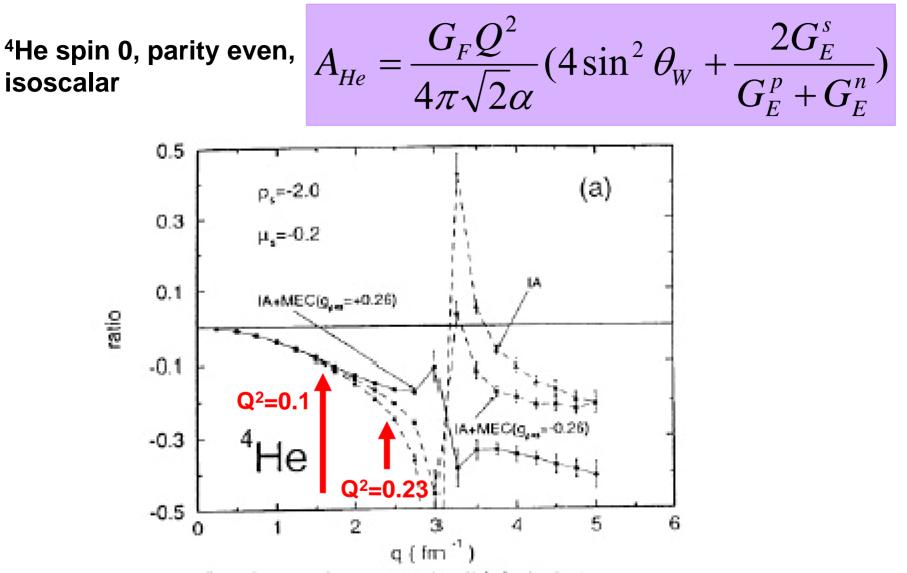
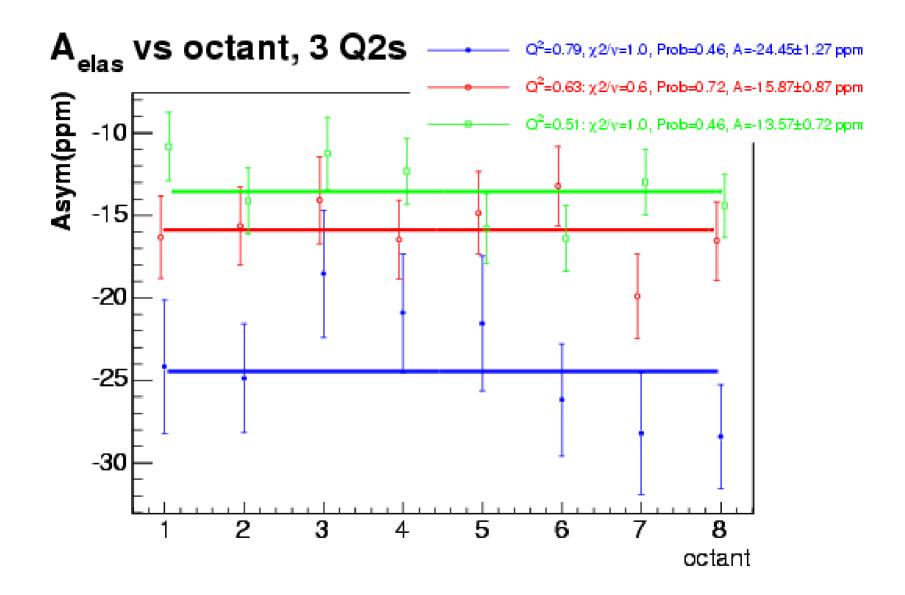
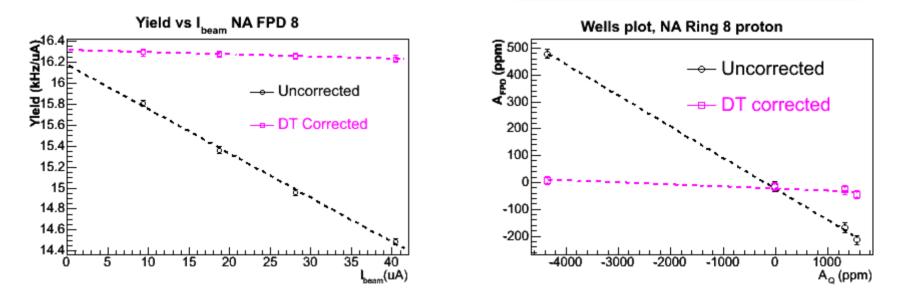



FIGURE 4. Effects of meson exchange currents (MEC) [17]. The elastic strangeness to electromagnetic form factor ratio is plotted vs. q for impulse approximation (IA) and for two choices of possible MEC contributions. At the present kinematics (q = 1.6fm⁻¹), the effects of MEC are negligible.

Sensitivity of the Elastic Neutrino Scattering to the nucleon strangeness

$$\left(\frac{d\sigma}{dQ^2}\right)^{NC} = \frac{G_F^2}{2\pi} \left[\frac{1}{2} y^2 (G_M^Z)^2 + (1 - y - \frac{M}{2E}y) \frac{(G_E^Z)^2 + \frac{E}{2M} y (G_M^Z)^2}{1 + \frac{E}{2M} y} + \left(\frac{1}{2} y^2 + 1 - y + \frac{M}{2E} y\right) (G_A^Z)^2 + 2y(1 - \frac{1}{2}y) G_M^Z G_A^Z\right]$$

$$y = \frac{Q^2}{2p \cdot k}$$



Electronic Deadtime Corrections

To the first order

$$Y_m^{\pm} = (1 - f^{\pm}(R^{\pm}))Y_t^{\pm}, f = R\tau \sim 10\%$$

$$A_{false} = -\frac{f}{1-f}(A_Q + A_{phys})$$

The deadtime effect is largely corrected based on the model of the electronics
 Small correction based on the measured f_{residual}, A_{phys}, and A_Q (~0.05±0.05 ppm).