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Challenges of studies of the short-range nuclear structure



Fundamental questions of microscopic quark-gluon structure 
of nuclei and nuclear forces

• Microscopic origin of intermediate and short-range nuclear forces

• Are nucleons good nuclear quasiparticles?

• Probability and structure of the short-range correlations in nuclei
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The nucleon-nucleon (NN) potential VNN(r) is studied by the lattice QCD simulations in the
quenched approximation, using the plaquette gauge action and the Wilson quark action on a 324 (!
(4.4 fm)4) lattice. From the equal-time Bethe-Salpeter wave function, we extract the central part of
the NN potentials in the 1S0 and 3S1 channels. The extracted potential has a strong repulsive core
of a few hundred MeV at short distances (r ! 0.5 fm) surrounded by a relatively weak attraction
at medium and long distances. These features are consistent with the empirical structure of the
nuclear force.

PACS numbers: 12.38.Gc, 13.75.Cs, 21.30-Cb

More than 70 years ago, Yukawa introduced the pion to
account for the strong interaction between the nucleons
(the nuclear force) [1]. Since then, enormous efforts have
been devoted to understand the nucleon-nucleon (NN)
potential at low energies both from theoretical and ex-
perimental points of view.

As shown in Fig.1, the NN potential is thought to be
characterized by three distinct regions; the long range,
the medium range and the short range parts [2, 3]. The
long range part (r " 2 fm) is well understood and is
known to be dominated by the pion exchange. The
medium range part (1 fm ! r ! 2 fm) receives signif-
icant contributions from the exchange of multi-pions and
heavy mesons (ρ, ω, and σ). The short range part (r ! 1
fm) is empirically known to have strong repulsive core [6],
which is essential for describing the NN scattering data,
for the stability and saturation of atomic nuclei, for de-
termining the maximum mass of neutron stars, and for
igniting the Type II supernova explosions [7]. The origin
of the repulsive core must be intimately related to the

FIG. 1: Two examples of the modern NN potential in the
1S0 (spin singlet and s-wave) channel. AV18 is from [4] and
Reid93 is from [5].

quark-gluon structure of the nucleon. However, it is not
yet understood from QCD and remains as one of the most
fundamental problems in nuclear and hadron physics [8].

In this Letter, we report our first successful attempt
to attack the nuclear force using lattice QCD simula-
tions [9]. The essential idea is to derive the NN potential
from the equal-time Bethe-Salpeter (BS) wave function,
which satisfies the effective Schrödinger equation in the
non-relativistic regime. This is a generalization of the
approach recently proposed by CP-PACS collaboration
to study the ππ scattering on the lattice [10, 11]. As we
shall see below, we have indeed found a strong repulsive
core of about a few hundred MeV at short distances sur-
rounded by a relatively weak attraction at medium and
long distances in the s-wave channel of the NN potential.

Let us start with the effective Schrödinger equation
obtained from the BS equation for two nucleons after
non-relativistic reduction [2, 12]:

−
1

2µ
∇2φ(&r) +

∫

d3r′ U(&r,&r′)φ(&r′) = Eφ(&r), (1)

where µ ≡ mN/2 and E is the reduced mass of the nu-
cleon and the non-relativistic energy, respectively. In
general, the non-local kernel U depends on E.

For the two nucleons at low energies, U can be
represented by the the local potentials as U(&r,&r′) =
VNN(&r,∇)δ(&r − &r′) [2]. Also the most general NN po-
tential VNN(&r,∇) is severely constrained by various sym-
metries and is known to have the form;

VNN = VC(r) + VT(r)S12 + VLS(r)&L · &S + O(∇2). (2)

Here S12 = 3(&σ1 · r̂)(&σ2 · r̂)−&σ1 ·&σ2 is the tensor operator
with r̂ ≡ |&r|/r, &S the total spin operator, and &L ≡ −i&r×&∇
the relative angular momentum operator. For the gen-
eral spin-isospin combination, the central NN potential
VC(r), the tensor potential VT(r) and the spin-orbit po-
tential VLS(r) can be further decomposed as Vi(r) =
V 1

i (r)+V σ
i (r)&σ1 ·&σ2+V τ

i (r)&τ1 ·&τ2+V στ
i (r)(&σ1 ·&σ2)(&τ1 ·&τ2)

rN ~0.6 fm for valence quarks

N N
rNN

M

Hard to fit a meson between two 
nucleons for rNN< 1.5 fm. Can nucleons 
instead exchange quarks?

Interesting new development: 
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quark-gluon structure of the nucleon. However, it is not
yet understood from QCD and remains as one of the most
fundamental problems in nuclear and hadron physics [8].

In this Letter, we report our first successful attempt
to attack the nuclear force using lattice QCD simula-
tions [9]. The essential idea is to derive the NN potential
from the equal-time Bethe-Salpeter (BS) wave function,
which satisfies the effective Schrödinger equation in the
non-relativistic regime. This is a generalization of the
approach recently proposed by CP-PACS collaboration
to study the ππ scattering on the lattice [10, 11]. As we
shall see below, we have indeed found a strong repulsive
core of about a few hundred MeV at short distances sur-
rounded by a relatively weak attraction at medium and
long distances in the s-wave channel of the NN potential.

Let us start with the effective Schrödinger equation
obtained from the BS equation for two nucleons after
non-relativistic reduction [2, 12]:

−
1

2µ
∇2φ(&r) +

∫

d3r′ U(&r,&r′)φ(&r′) = Eφ(&r), (1)

where µ ≡ mN/2 and E is the reduced mass of the nu-
cleon and the non-relativistic energy, respectively. In
general, the non-local kernel U depends on E.

For the two nucleons at low energies, U can be
represented by the the local potentials as U(&r,&r′) =
VNN(&r,∇)δ(&r − &r′) [2]. Also the most general NN po-
tential VNN(&r,∇) is severely constrained by various sym-
metries and is known to have the form;

VNN = VC(r) + VT(r)S12 + VLS(r)&L · &S + O(∇2). (2)

Here S12 = 3(&σ1 · r̂)(&σ2 · r̂)−&σ1 ·&σ2 is the tensor operator
with r̂ ≡ |&r|/r, &S the total spin operator, and &L ≡ −i&r×&∇
the relative angular momentum operator. For the gen-
eral spin-isospin combination, the central NN potential
VC(r), the tensor potential VT(r) and the spin-orbit po-
tential VLS(r) can be further decomposed as Vi(r) =
V 1

i (r)+V σ
i (r)&σ1 ·&σ2+V τ

i (r)&τ1 ·&τ2+V στ
i (r)(&σ1 ·&σ2)(&τ1 ·&τ2)
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Origin of intermediate and short-range nuclear forces.
 Do nucleons exchange mesons or quarks (gluons) at r< 1.5 fm?
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(i = C, T, LS). In the phenomenological determination
of Vi(r), the Schrödinger equation Eq.(1) with a certain
parametrization of Vi(r) in Eq.(2) is solved and compared
with the NN phase-shift data [3, 4, 5]. On the other hand,
if we can calculate φ("r) directly from lattice simulations,
Eq.(1) can be used to define the NN potential. Namely,
it is schematically written as

V ("r) = E +
1

2µ

"∇2φ("r)

φ("r)
. (3)

On the lattice, φ("r) with zero angular momentum (# =
0) is defined from the equal-time BS wave function as

φ("r) ≡
1

24

∑

R∈O

1

L3

∑

!x

(4)

× P τ
ijP

σ
αβ

〈

0
∣

∣

∣
N i

α(R["r] + "x)N j
β("x)

∣

∣

∣
NN

〉

,

where N i
α = εabc

(

tqaCγ5τ2qb
)

qi,c
α is the local interpolat-

ing field for the nucleon. a, b and c the color indices, α
and β the Dirac indices, i and j the isospin indices, and
C ≡ γ4γ2 the charge conjugation matrix. "r describes
the spatial separation between the nucleons. Since we
consider the NN scattering at low energies, we take only
the upper components of the nucleon interpolating fields.
The summation over the vector "x projects out the state
with zero total-momentum. The summation over discrete
rotation R of the cubic group O projects out the A+

1 rep-
resentation which contains # = 0 state and # ≥ 4 states.
The former can be singled out by selecting the lowest
energy state with the procedure given in Eq.(5). The
spin (isospin) projection is carried out by the operator
P σ (P τ ); for example, P σ

αβ = (σ2)αβ(= δαβ) in the spin-
singlet (spin-triplet) channel. The renormalization factor
Z, which relates the BS wave function on the lattice and
that in the continuum, cancels out in the definition of
V ("r) in Eq.(3).

In the actual simulations, Eq. (4) is obtained through
the four point nucleon correlator,

FNN("x, "y, t; t0) ≡
〈

0
∣

∣

∣
N i

α("x, t)N j
β("y, t)J̄NN(t0)

∣

∣

∣
0
〉

=
∑

n

An

〈

0
∣

∣

∣
N i

α("x)N j
β("y)

∣

∣

∣
n
〉

e−En(t−t0). (5)

Here J̄NN(t0) is a source term located at t = t0, which
produces the nucleons in appropriate quantum numbers
with zero total momentum. To enhance the ground state
contribution of the NN system, we adopt the wall source,
JNN(t0) = P τ

ijP
σ
αβN

i
α(t0)N

j
β (t0), where N is obtained

from N by replacing q by Q(t0) =
∑

!x q("x, t0). En is
the energy of the two-nucleon state |n〉 and An(t0) ≡
〈n|J̄NN(t0)|0〉. Since the spatial lattice size L3 is finite,
the energy E takes only discrete value. Furthermore,
it has a finite shift from the total energy of the non-
interacting nucleons ∆E = O(1/L3) to be determined

from the simulations [13]. In particular, E for the scat-
tering state may be negative, if there exists attraction.

In this Letter, we focus on the spin-singlet and spin-
triplet channels with zero orbital angular momentum. In
the standard notation, the former (latter) is called the
2s+1#J=1S0 (=3S1) channel, where s, l and J denote the
total spin, orbital angular momentum, and the total an-
gular momentum of the two nucleons. The 1S0 is the
simplest channel where only the central potential VC(r)
contributes. On the other hand, there arises a mixing
between the 3S1 and 3D1 channels because of the ten-
sor force VT(r). In this case, one may define an effective
central potential V eff

C (r); it consists of the bare central
potential and the induced central potential by the 3D1

admixture [2]. The definition in Eq.(3) with φ("r) being
projected onto 1S0 (3S1) is easily shown to give the cen-
tral potential (the effective central potential).

To calculate φ("r), we have carried out simulations on
a 324 lattice in the quenched approximation. We em-
ploy the plaquette gauge action with the gauge coupling
β = 5.7 and the Wilson quark action. The hopping pa-
rameters are chosen to be κ = 0.1665 and 0.1678 which
correspond to mπ/mρ = 0.595 and 0.438, respectively.
The lattice spacing determined from the ρ meson mass
is a−1 = 1.44(2) GeV (a ' 0.137 fm) [14], which leads
to the physical size of our lattice as (4.4 fm)4. In the
following, we will show the results for κ = 0.1665 which
corresponds to mπ ' 0.53 GeV, mρ ' 0.89 GeV and
mN ' 1.34 GeV. The case for lighter quark masses will
be reported elsewhere. We use the global heat-bath algo-
rithm with overrelaxations to generate the gauge config-
urations. After skipping 3000 sweeps for thermalization,
500 gauge configurations are collected with the interval of
200 sweeps. The Dirichlet (periodic) boundary condition
is imposed on the quark fields in the temporal (spatial)
direction. To avoid the boundary effect, the wall source
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FIG. 2: The lattice QCD result of the radial dependence of
the NN wave function at t−t0 = 6 in the 1S0 and 3S1 channels.
Inset shows the two-dimensional view in the x − y plane.
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channel for mπ/mρ = 0.595. The inset shows its enlargement.
The solid lines correspond to the one-pion exchange potential
(OPEP) given in Eq.(6).

is placed at t = t0 = 5 at which the Coulomb gauge fixing
is made. The ground state saturation for t − t0 ≥ 6 is
checked by the effective mass of the two-nucleon system.

Fig. 2 shows the lattice QCD result of the wave func-
tion at the time-slice t − t0 = 6. They are normalized
at the spatial boundary !r = (32/2 = 16, 0, 0). All the
data including the off-axis ones are plotted for r ! 0.7
fm, beyond which we plot only the data locating on the
coordinate axes and their nearest neighbors. As is clear
from Fig. 2, the wave function is suppressed at short
distances and have a slight enhancement at medium dis-
tances. This suggests that the NN potential has a repul-
sion (attraction) at short (medium) distance.

Fig. 3 shows the central (effective central) NN potential
in the 1S0 (3S1) channel at t−t0 = 6. As for ∇2 in Eq. (3),
we take the discrete form of the Laplacian with the
nearest-neighbor points. To obtain the total energy E,
the Green’s function G(!r; E) of the Helmholtz equation
on the lattice is utilized [10]. By fitting the wave function
φ(!r) at the points !r = (10 − 16, 0, 0) and (10 − 16, 1, 0)
by G(!r; E), we obtain E(1S0) = −0.49(15) MeV and
E(3S1) = −0.67(18) MeV. This indicates that there is a
slight attraction between the two nucleons in a finite box.
To check the ground state saturation in terms of the NN
potential, we plot the t dependence of VC(r) in the 1S0

channel at several distances r = 0, 0.14, 0.19, 0.69, 1.37
and 2.19 fm in Fig. 4. We found that the saturation
indeed holds for t − t0 ≥ 6 within errors.

As anticipated from Fig. 2, both VC(r) and V eff
C (r)

have repulsive core at r ! 0.5 fm with the height of
about a few hundred MeV. Also, they have relatively
weak attraction of about −(20−30) MeV at the distance
0.5 ! r ! 1.0 fm. Shown by the solid lines in Fig. 3 are
the one-pion exchange contribution to the central poten-
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FIG. 4: t − t0 dependence of VC(r) in the 1S0 channel for
several different values of the distance r.

tial calculated from

V π
C (r) =

g2
πN

4π

(!τ1 · !τ2)(!σ1 · !σ2)

3

(

mπ

2mN

)2 e−mπr

r
, (6)

where we have used the hadron masses corresponding to
our data, mπ $ 0.53 GeV and mN $ 1.34 GeV, while the
πN coupling constant is taken to be the physical value,
g2

πN/(4π) $ 14.0. One should keep in mind that there
is in principle an unphysical ghost contribution in the
long-range tail of the NN potential in the quenched ap-
proximation. It originates from the flavor-singlet hairpin
diagram (the η exchange) between the nucleons [15]. Its
contribution to the central potential reads [17]:

V η
C (r) =

g2
ηN

4π

!σ1 · !σ2

3

(

mπ

2mN

)2 (

1

r
−

m2
0

2mπ

)

e−mπr. (7)

Here gηN and m0 are the ηN coupling constant and a
mass parameter to characterize the ghost, respectively.
Eq.(7) has an exponential tail which dominates over the
Yukawa potential at large distances. We can estimate its
significance by comparing the sign and the magnitude of
emπrVC(r) and emπrV eff

C (r) at large distances, because
V η

C (r) has an opposite sign between 1S0 and 3S1. We
found no evidence of the ghost contribution in our data at
large distances within errors, which may indicate gηN %
gπN .

Several comments are in order here:
1. Our wave function φ(!r) provides us with an or-
thodox way to extract the NN scattering length. Ac-
cording to the standard scattering theory, the asymp-
totic wave function outside the range of the potential
at low energy (E → 0) is approximated as φasy(!r) =
sin(kr+δ0(k))

kr → r+a0

r , where δ0(k) is the s-wave scatter-
ing phase shift and a0 ≡ limk→0 δ0(k)/k is the scatter-
ing length. By searching the zero of φasy(!r), we find
a0(1S0) = 0.066(22) fm and a0(3S1) = 0.089(27) fm un-
der the assumption that E ∼ −0.5 MeV is small enough

2

(i = C, T, LS). In the phenomenological determination
of Vi(r), the Schrödinger equation Eq.(1) with a certain
parametrization of Vi(r) in Eq.(2) is solved and compared
with the NN phase-shift data [3, 4, 5]. On the other hand,
if we can calculate φ("r) directly from lattice simulations,
Eq.(1) can be used to define the NN potential. Namely,
it is schematically written as

V ("r) = E +
1

2µ

"∇2φ("r)

φ("r)
. (3)

On the lattice, φ("r) with zero angular momentum (# =
0) is defined from the equal-time BS wave function as

φ("r) ≡
1

24

∑

R∈O

1

L3

∑

!x

(4)

× P τ
ijP

σ
αβ

〈

0
∣

∣

∣
N i

α(R["r] + "x)N j
β("x)

∣

∣

∣
NN

〉

,

where N i
α = εabc

(

tqaCγ5τ2qb
)

qi,c
α is the local interpolat-

ing field for the nucleon. a, b and c the color indices, α
and β the Dirac indices, i and j the isospin indices, and
C ≡ γ4γ2 the charge conjugation matrix. "r describes
the spatial separation between the nucleons. Since we
consider the NN scattering at low energies, we take only
the upper components of the nucleon interpolating fields.
The summation over the vector "x projects out the state
with zero total-momentum. The summation over discrete
rotation R of the cubic group O projects out the A+

1 rep-
resentation which contains # = 0 state and # ≥ 4 states.
The former can be singled out by selecting the lowest
energy state with the procedure given in Eq.(5). The
spin (isospin) projection is carried out by the operator
P σ (P τ ); for example, P σ

αβ = (σ2)αβ(= δαβ) in the spin-
singlet (spin-triplet) channel. The renormalization factor
Z, which relates the BS wave function on the lattice and
that in the continuum, cancels out in the definition of
V ("r) in Eq.(3).

In the actual simulations, Eq. (4) is obtained through
the four point nucleon correlator,

FNN("x, "y, t; t0) ≡
〈

0
∣

∣

∣
N i

α("x, t)N j
β("y, t)J̄NN(t0)

∣

∣

∣
0
〉

=
∑

n

An

〈

0
∣

∣

∣
N i

α("x)N j
β("y)

∣

∣

∣
n
〉

e−En(t−t0). (5)

Here J̄NN(t0) is a source term located at t = t0, which
produces the nucleons in appropriate quantum numbers
with zero total momentum. To enhance the ground state
contribution of the NN system, we adopt the wall source,
JNN(t0) = P τ

ijP
σ
αβN

i
α(t0)N

j
β (t0), where N is obtained

from N by replacing q by Q(t0) =
∑

!x q("x, t0). En is
the energy of the two-nucleon state |n〉 and An(t0) ≡
〈n|J̄NN(t0)|0〉. Since the spatial lattice size L3 is finite,
the energy E takes only discrete value. Furthermore,
it has a finite shift from the total energy of the non-
interacting nucleons ∆E = O(1/L3) to be determined

from the simulations [13]. In particular, E for the scat-
tering state may be negative, if there exists attraction.

In this Letter, we focus on the spin-singlet and spin-
triplet channels with zero orbital angular momentum. In
the standard notation, the former (latter) is called the
2s+1#J=1S0 (=3S1) channel, where s, l and J denote the
total spin, orbital angular momentum, and the total an-
gular momentum of the two nucleons. The 1S0 is the
simplest channel where only the central potential VC(r)
contributes. On the other hand, there arises a mixing
between the 3S1 and 3D1 channels because of the ten-
sor force VT(r). In this case, one may define an effective
central potential V eff

C (r); it consists of the bare central
potential and the induced central potential by the 3D1

admixture [2]. The definition in Eq.(3) with φ("r) being
projected onto 1S0 (3S1) is easily shown to give the cen-
tral potential (the effective central potential).

To calculate φ("r), we have carried out simulations on
a 324 lattice in the quenched approximation. We em-
ploy the plaquette gauge action with the gauge coupling
β = 5.7 and the Wilson quark action. The hopping pa-
rameters are chosen to be κ = 0.1665 and 0.1678 which
correspond to mπ/mρ = 0.595 and 0.438, respectively.
The lattice spacing determined from the ρ meson mass
is a−1 = 1.44(2) GeV (a ' 0.137 fm) [14], which leads
to the physical size of our lattice as (4.4 fm)4. In the
following, we will show the results for κ = 0.1665 which
corresponds to mπ ' 0.53 GeV, mρ ' 0.89 GeV and
mN ' 1.34 GeV. The case for lighter quark masses will
be reported elsewhere. We use the global heat-bath algo-
rithm with overrelaxations to generate the gauge config-
urations. After skipping 3000 sweeps for thermalization,
500 gauge configurations are collected with the interval of
200 sweeps. The Dirichlet (periodic) boundary condition
is imposed on the quark fields in the temporal (spatial)
direction. To avoid the boundary effect, the wall source
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Important - quenched approximation 
interaction is due to quark exchanges

x

r

y N

N

Euclidean time

2

(i = C, T, LS). In the phenomenological determination
of Vi(r), the Schrödinger equation Eq.(1) with a certain
parametrization of Vi(r) in Eq.(2) is solved and compared
with the NN phase-shift data [3, 4, 5]. On the other hand,
if we can calculate φ("r) directly from lattice simulations,
Eq.(1) can be used to define the NN potential. Namely,
it is schematically written as

V ("r) = E +
1

2µ

"∇2φ("r)

φ("r)
. (3)

On the lattice, φ("r) with zero angular momentum (# =
0) is defined from the equal-time BS wave function as

φ("r) ≡
1

24

∑

R∈O

1

L3

∑

!x

(4)

× P τ
ijP

σ
αβ

〈

0
∣

∣

∣
N i

α(R["r] + "x)N j
β("x)

∣

∣

∣
NN

〉

,

where N i
α = εabc

(

tqaCγ5τ2qb
)

qi,c
α is the local interpolat-

ing field for the nucleon. a, b and c the color indices, α
and β the Dirac indices, i and j the isospin indices, and
C ≡ γ4γ2 the charge conjugation matrix. "r describes
the spatial separation between the nucleons. Since we
consider the NN scattering at low energies, we take only
the upper components of the nucleon interpolating fields.
The summation over the vector "x projects out the state
with zero total-momentum. The summation over discrete
rotation R of the cubic group O projects out the A+

1 rep-
resentation which contains # = 0 state and # ≥ 4 states.
The former can be singled out by selecting the lowest
energy state with the procedure given in Eq.(5). The
spin (isospin) projection is carried out by the operator
P σ (P τ ); for example, P σ

αβ = (σ2)αβ(= δαβ) in the spin-
singlet (spin-triplet) channel. The renormalization factor
Z, which relates the BS wave function on the lattice and
that in the continuum, cancels out in the definition of
V ("r) in Eq.(3).

In the actual simulations, Eq. (4) is obtained through
the four point nucleon correlator,

FNN("x, "y, t; t0) ≡
〈

0
∣

∣

∣
N i

α("x, t)N j
β("y, t)J̄NN(t0)

∣

∣

∣
0
〉

=
∑

n

An

〈

0
∣

∣

∣
N i

α("x)N j
β("y)

∣

∣

∣
n
〉

e−En(t−t0). (5)

Here J̄NN(t0) is a source term located at t = t0, which
produces the nucleons in appropriate quantum numbers
with zero total momentum. To enhance the ground state
contribution of the NN system, we adopt the wall source,
JNN(t0) = P τ

ijP
σ
αβN

i
α(t0)N

j
β (t0), where N is obtained

from N by replacing q by Q(t0) =
∑

!x q("x, t0). En is
the energy of the two-nucleon state |n〉 and An(t0) ≡
〈n|J̄NN(t0)|0〉. Since the spatial lattice size L3 is finite,
the energy E takes only discrete value. Furthermore,
it has a finite shift from the total energy of the non-
interacting nucleons ∆E = O(1/L3) to be determined

from the simulations [13]. In particular, E for the scat-
tering state may be negative, if there exists attraction.

In this Letter, we focus on the spin-singlet and spin-
triplet channels with zero orbital angular momentum. In
the standard notation, the former (latter) is called the
2s+1#J=1S0 (=3S1) channel, where s, l and J denote the
total spin, orbital angular momentum, and the total an-
gular momentum of the two nucleons. The 1S0 is the
simplest channel where only the central potential VC(r)
contributes. On the other hand, there arises a mixing
between the 3S1 and 3D1 channels because of the ten-
sor force VT(r). In this case, one may define an effective
central potential V eff

C (r); it consists of the bare central
potential and the induced central potential by the 3D1

admixture [2]. The definition in Eq.(3) with φ("r) being
projected onto 1S0 (3S1) is easily shown to give the cen-
tral potential (the effective central potential).

To calculate φ("r), we have carried out simulations on
a 324 lattice in the quenched approximation. We em-
ploy the plaquette gauge action with the gauge coupling
β = 5.7 and the Wilson quark action. The hopping pa-
rameters are chosen to be κ = 0.1665 and 0.1678 which
correspond to mπ/mρ = 0.595 and 0.438, respectively.
The lattice spacing determined from the ρ meson mass
is a−1 = 1.44(2) GeV (a ' 0.137 fm) [14], which leads
to the physical size of our lattice as (4.4 fm)4. In the
following, we will show the results for κ = 0.1665 which
corresponds to mπ ' 0.53 GeV, mρ ' 0.89 GeV and
mN ' 1.34 GeV. The case for lighter quark masses will
be reported elsewhere. We use the global heat-bath algo-
rithm with overrelaxations to generate the gauge config-
urations. After skipping 3000 sweeps for thermalization,
500 gauge configurations are collected with the interval of
200 sweeps. The Dirichlet (periodic) boundary condition
is imposed on the quark fields in the temporal (spatial)
direction. To avoid the boundary effect, the wall source
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FIG. 2: The lattice QCD result of the radial dependence of
the NN wave function at t−t0 = 6 in the 1S0 and 3S1 channels.
Inset shows the two-dimensional view in the x − y plane.

Quark exchanges also lead to 
transitions to NΔ, ΔΔ - so far 

neglected in the lattice calculation

4
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d

d

u

Meson Exchange                                    Quark interchange

d

u

u

qq

Are meson and quark exchanges equivalent -dual?  Not necessarily/always

extra antiquarks in nuclei no extra antiquarks

Drell-Yan experiments:  qA/qN ~ 0.97  

qA/qN ~ 1.1-1.2   for  x=0.05 and A=40

_ _

_ _

Q2 = 15 GeV2

Q2 = 2 GeV2

q̄ A
/q̄

N

5

A-dependence of antiquark distribution, data are 
from FNAL nuclear Drell-Yan experiment, curves 
- pQCD analysis of Frankfurt, Liuti, MS 90. Similar 

conclusions Eskola et al 93-07 analyses



Low momentum transfer processes - Fermi liquid theory - effective masses ~0.7 mN,  
strong quenching for A(e,e’p) processes Q~0.6

Processes with large momentum transfer resolve individual nucleons - legitimate to ask 
questions about properties of bound nucleon 

Form factors (talk of  Strauch)

Structure functions - EMC effect

Quenching -  analyses of the Jlab data at large momentum 
transfer  Q>0.85

Properties of nuclei seen by low energy probes described well using notion of 
quasiparticles - SRC effects are hidden in parameters of these quasiparticle

6

❋

❋

❋

Are nucleons good nuclear quasiparticles?



SRC for many years considered to be an elusive feature of nuclear structure

Questions: 

How large is probability of SRC ? 

Isotopic structure

Non-nucleonic degrees of freedom

Short-range NN 
correlations (SRC) have 
densities comparable to 
the density in the center of 
a nucleon - drops of cold 
dense  nuclear matter

p

p

p

n
n

n

n

2N SRC

∼
1
÷

1.
2

f
m

1.7 fm

ρ ∼ 5ρ0

ρ0 ∼ .17fm−3

☛

☛

☛

Connections to neutron stars: 
a) I=1 nn correlations, 
b) admixture of protons in 
neutron stars → I=0 sensitivity 
c)  multi-nucleon correlations 

Two nucleon SRC

V(r)

!k1

!k2

!k1 + !k2 ≈ 0

k1 > kF

7

Probability and structure of the short-range correlations (SRC) in nuclei



Consensus of the 70’s:   it is hopeless to look for SRC experimentally 
 Phys.Lett. rules of 1976 - reject claims to the opposite without review  

NO GO theorem: high momentum component of the nuclear wave function is not observable (Amado 78)

Way out - use processes with large energy and momentum transfer:

Adjusting resolution scale  as a function of the probed nucleon 
momentum allows to avoid Amado theorem.

Theoretical analysis of F&S (75) :  results from the medium energy  studies of short-
range correlations are inconclusive due to insufficient energy/momentum transfer leading to 
complicated structure of interaction (MEC,...), enhancement of the final state contributions.

q0 ≥ 1GeV " |V SR
NN |, !q ≥ 1GeV/c" 2 kF

⇒  There is a price to  pay:  relativistic (light-cone) treatment of the nucleus - 
however in broad kinematic range a smooth connection with nonrelativistic 
description of nuclei.  Will briefly mention relativistic effects later.
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Progress in the studies of SRC at high momentum  due to two concepts

Closure approximation for A(e,e’) at x> 1, Q2 > 1.5 GeV2   up to fsi in the SRC

A new quantity to provide even cleaner test of the structure of SRCs- nuclear decay function (FS 77-88) - probability to emit a nucleon with momentum k2  after removal of a fast nucleon with momentum k1, leading to a state with excitation energy Er nonrelativistic definition

Studies of the spectral and decay function of 3He reveal both two nucleon and three nucleon correlations - Sargsian et al 2004

For 2N SRC  can model decay function as decay of a NN pair moving in mean field (like for spectral function  PA)                 Piasetzky et al 06

 Instantaneous removal of one nucleon of 2N SRC leads to release of the second nucleon of SRC with initial momentum (more precisely light cone  fraction and transverse momentum) due to a large difference between the scale of local NN potential and interaction with the rest of the nucleons

☝

•2NCorrelations
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Use 3He(e,e’ppn)

reactions to 
study pn, pp and 
ppn correlations.

Remember:
structure (though not 

probability) of 2N and 
3N correlations is very 

similar in A=3 and 
heavy nuclei

Spectator 
is released

Emission of FB 
nucleon is strongly 
suppressed due to 
FSI

DA(k2,k1,Er)=|〈φA−1(k2,...)|δ(HA−1−Er)a(k1)|ψA〉|
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In hard exclusive processes where a nucleon of SRC is removed instantaneously

probe another quantity sensitive to SRC - nuclear decay function (FS 77-88) - probability to emit a 
nucleon with momentum k2  after removal of a fast nucleon with momentum k1, leading to a state 
with excitation energy Er nonrelativistic definition

DA(k2, k1, Er) = |〈φA−1(k2, ...) |δ(HA−1 − Er)a(k1)| ψA〉|2

A A
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Operational definition of the SRC: nucleon belongs to SRC if its instantaneous  removal 
from the nucleus leads to emission of  one or two nucleons which balance its momentum:  

includes not only repulsive core but also tensor force interactions. 

Studies of the spectral and decay function of 3He reveal both two nucleon 
and three nucleon correlations - Sargsian et al 2004

For 2N SRC  can model decay function as decay of a NN pair moving in 
mean field (like for spectral function)                 Piasetzky et al 06
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Use 3He(e,e’ppn)

reactions to 
study pn, pp and 
ppn correlations.

Remember:
structure (though not 
probability) of 2N and 
3N correlations is very 

similar in A=3 and 
heavy nuclei

Spectator is 
released

Emission of  fast nucleons 
“2”  and “3” is strongly 
suppressed due to FSI
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No simple connection between the decay function and two nucleon momentum 
distributions in the nuclei.



Last two years a qualitative progress in the study of  SRC based on the analysis of the high 
momentum transfer (e,e’) Jlab data, (p,2pn) BNL data and preliminary (e,e’pp) & (e,e’pn) 
Jlab data.  SRC are not anymore an elusive property of nuclei !!

Practically all nucleons with momenta k≥300 MeV belong to two 
nucleon SRC correlations

Probability for a given proton  with momenta 600> k > 300 MeV/c to 
belong to pn correlation is  ~ 18 times larger than for pp correlation

Probability for a nucleon to have momentum > 300 MeV/c in medium 
nuclei is  ~25%

Three nucleon SRC are present in nuclei with a significant probability

The findings confirm our predictions based on the study of the structure of SRC in nuclei 
(77-93) add new information about isotopic structure of SRC. In particular this confirms our 
interpretation of the fast backward hadron emission observed in the 70’s-80’s as to due to SRC 
and allows to use information from these experiments for planning new experiments which 
would allow unambiguous interpretation.

Summary of the findings

BNL + Jlab +SLAC

BNL + Jlab preliminary

BNL + Jlab 04 +SLAC 93

Jlab 05
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New Jlab data from Hall B. 
Q2 > 1.5 GeV2

Fe/C ratios for x~1.75, 
x~2.5 agree within 
experimental errors with 
our prediction - density 
based estimate:

The best evidence for presence of 3N SRC. One probes 
here  interaction at internucleon distances <1.2 fm 
corresponding to local matter densities ≥5ρ0  which is 
comparable to those in the cores of neutron stars!!!  

confirm our 1980 prediction of scaling 
for the ratios due to SRC

r2 = (A1/A2)0.15

r3 = (A1/A2)0.22

Scientists believe that the crushing forces
in the core of neutron stars squeeze nucle-
ons so tightly that they may blur together.
Recently, an experiment by Kim Egiyan and
colleagues in Hall B at the US Department
of Energy’s Jefferson Lab caught a glimpse
of this extreme environment in ordinary
matter here on Earth. Using the CEBAF
Large Acceptance Spectrometer (CLAS)
during the E2 run, the team measured
ratios of the cross-sections for electrons
scattering with large momentum transfer
off medium, and light nuclei in the kine-
matic region that is forbidden for low-
momentum scattering. Steps in the value
of this ratio appear to be the first direct
observation of the short-range correlations
(SRCs) of two and three nucleons in nuclei,
with local densities comparable to those in
the cores of neutron stars.

SRCs are intimately connected to the
fundamental issue of why nuclei are dilute
bound systems of nucleons. The long-range attraction between nucle-
ons would lead to a collapse of a heavy nucleus into an object the
size of a hadron if there were no short-range repulsion. Including a
repulsive interaction at distances where nucleons come close
together, ≤0.7 fm, leads to a reasonable prediction of the present
description of the low-energy properties of nuclei, such as binding
energy and saturation of nuclear densities. The price is the prediction
of significant SRCs in nuclei.

For many decades, directly observing SRCs was considered an
important, though elusive, task of nuclear physics; the advent of
high-energy electron–nucleus scattering appears to have changed
all this. The reason is similar to the situation encountered in particle
physics: though the quark structure of hadrons was conjectured in
the mid-1960s, it took deep inelastic scattering experiments at SLAC
and elsewhere in the mid-1970s to prove directly the presence of
quarks. Similarly, to resolve SRCs, one needs to transfer to the
nucleus energy and momentum ≥1 GeV, which is much larger than
the characteristic energies/momenta involved in the short-distance
nucleon–nucleon interaction. At these higher momentum transfers,
one can test two fundamental features of SRCs: first, that the shape
of the high-momentum component (>300 MeV/c) of the wave func-
tion is independent of the nuclear environment, and second, the
balancing of a high-momentum nucleon by, predominantly, just one
nucleon and not by the nucleus as a whole.

An extra trick required is to select kinematics where scattering off

low-momentum nucleons is strongly sup-
pressed. This is pretty straightforward at
high energies. First, one needs to select
kinematics sufficiently far from the regions
allowed for scattering off a free nucleon,
i.e. x = Q2/2q0mN < 1, and for the scatter-
ing off two nucleons with overall small
momentum in the nucleus, x < 2. (Here Q2

is the square of the four momenta trans-
ferred to the nucleus, and q0 is the energy
transferred to the nucleus.) In addition,
one needs to restrict Q2 to values of less
than a few giga-electron-volts squared; in
this case, nucleons can be treated as par-
tons with structure, since the nucleon
remains intact in the final state due to final
phase-volume restrictions.

If the virtual photon scatters off a two-
nucleon SRC at x > 1, the process goes as
follows in the target rest frame. First, the
photon is absorbed by a nucleon in the
SRC with momentum opposite to that of

the photon; this nucleon is turned around and two nucleons then fly
out of the nucleus in the forward direction (figure 1). The inclusive
nature of the process ensures that the final-state interaction with
the rest of the nucleus does not modify the cross-section. Accord-
ingly, in the region where scattering off two-nucleon SRCs domi-
nates (which for Q2≥1.4 GeV2 corresponds to x > 1.5), one predicts
that the ratio of the cross-section for scattering off a nucleus to that
off a deuteron should exhibit scaling, namely it should be constant
independent of x and Q2 (Frankfurt and Strikman 1981). In the
1980s, data were collected at SLAC for x > 1. However, they were in
somewhat different kinematic regions for the lightest and heavier
nuclei. Only in 1993 did the sustained efforts of Donal Day and col-
laborators to interpolate these data to the same kinematics lead to
the first evidence for scaling, but the accuracy was not very high.

The E2 run of the CLAS detector at Jefferson Lab was the first exper-
iment to take data on 3He and several heavier nuclei, up to iron, with
identical kinematics, and the collaboration reported their first find-
ings in 2003 (Egiyan et al. 2003). Using the 4.5 GeV continuous
electron beam available at the lab’s Continuous Electron Beam
Accelerator Facility (CEBAF), they found the expected scaling behav-
iour for the cross-section ratios at 1.5 ≤ x ≤ 2 with high precision.

The next step was to look for the even more elusive SRC of three
nucleons. It is practically impossible to observe such correlations in
intermediate energy processes. However, at high Q2, it is straightfor-
ward to suppress scattering off both slow nucleons and two-nucleon

NUCLEAR PHYSICS

1CERN Cour ier November 2005

Close nucleon encounters
Jefferson Lab may have directly observed short-range nucleic correlations, with densities

similar to those at the heart of a neutron star. Mark Strikman explains.

Fig. 2. Scattering of a virtual photon off a
three-nucleon correlation, x > 2, before (left)
and after (right) absorption of the photon.

Fig. 1. Scattering of a virtual photon off a two-
nucleon correlation, x > 1.5, before (left) and
after (right) absorption of the photon.

!!

1<x<2

Ratio of the cross sections of (e,e’)scattering off a 56Fe
(12C,4He)  and 3He per nucleon



spectator mechanism of backward 
nucleon production   FS77 nucleus decay after 
instantaneous removal of a nucleon from SRC

k→
k→

→
-k

20% of 12C
wave function

Analysis of PRL Oct 06

PRL 04

BNL E850 data

at energy and momentum 
transfer ≥ 3 GeV
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Evidence for the Strong Dominance of Proton-Neutron Correlations in Nuclei

E. Piasetzky,1 M. Sargsian,2 L. Frankfurt,1 M. Strikman,3 and J. W. Watson4
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Abstract: We analyze recent data from high-momentum-transfer (p, pp) and (p, ppn) reactions
on Carbon. For this analysis, the two-nucleon short-range correlation (NN-SRC) model for backward
nucleon emission is extended to include the motion of the NN-pair in the mean field. The model is
found to describe major characteristics of the data. Our analysis demonstrates that the removal of a
proton from the nucleus with initial momentum 275−550 MeV/c is 92+8

−18% of the time accompanied
by the emission of a correlated neutron that carries momentum roughly equal and opposite to the
initial proton momentum. Within the NN-SRC dominance assumption the data indicate that the
probabilities of pp or nn SRCs in the nucleus are at least a factor of six smaller than that of pn
SRCs. Our result is the first estimate of the isospin structure of NN-SRCs in nuclei, and may have
important implication for modeling the equation of state of asymmetric nuclear matter.

PACS numbers: 21.60.-n, 24.10.-i, 25.40.Ep

Studies of short-range nucleon correlations (SRCs)
in nuclei are important for understanding the short-
distance and large-momentum properties of nuclear
ground state wave functions. The relevant distances in
two-nucleon (NN)-SRCs are expected to be comparable
to that in neutron stars corresponding to 4-10 times the
central density of nuclei [1]. Thus SRC studies are essen-
tial in understanding the structure of cold dense nuclear
matter. In this context the isospin content of SRCs (i.e.
pn vs. pp and nn pairs) is important for understanding
the structure of nuclear matter made of either protons or
neutrons. Studies of SRCs also give the best hope of un-
derstanding the nature of the short-range NN repulsion.

SRCs in nuclei have been actively investigated for
over three decades (see e.g.[2]). However, experimen-
tal studies of the microscopic structure of SRCs were
largely restricted due to moderate momentum-transfer
kinematics in which it is difficult to resolve SRCs. Re-
cently, several experiments [3, 4, 5, 6, 7] made noticeable
progress in understanding dynamical aspects of SRCs.
For Q2 > 1 GeV2, Refs [4, 5] observed Bjorken xB scal-
ing for ratios of inclusive (e, e′) cross sections of nuclei
A to the 3He nucleus when xB ≥ 1.4. This confirms
the earlier observation of scaling for nucleus-to-deuteron
cross section ratios[8, 9], and indicates directly that the
electrons probe high-momentum bound nucleons coming
from local sources in nuclei (i.e. SRCs) with properties
generally independent of the non-correlated residual nu-
cleus.

Based on the NN-SRC picture, which is expected to
dominate the internal momentum range of ∼ 250 −
600 MeV/c, one predicts a strong directional (back-
to-back) correlation between the struck nucleon and
its spectator in the SRC. Experiments[3, 6, 7] mea-
sured triple-coincidence events for the 3He(e, e′pp)X and
12C(p, ppn)X reactions, and clearly demonstrated the ex-
istence of such directional correlations. They also re-

vealed a noticeable momentum distribution of the center
of mass (c.m.) of the NN-SRCs.

In this work we extend the NN-SRC model used in
the analyses of A(p, pp)X data[10], to incorporate the
effects of the c.m. motion of SRCs. This allows us to
estimate the probability for correlated neutron emission
following removal of a fast proton from the nucleus in
(p, ppn) reactions. Based on this model we extract from
the data an upper limit to the relative probabilities of pp
and nn vs pn SRCs in 12C.

The measurements of 12C(p, ppn)X reactions[6, 7]
were performed with the EVA spectrometer at the AGS
accelerator at Brookhaven National Laboratory [11, 12].
EVA consists of a 0.8 T superconducting solenoid, 3.3 m
long and 2 m in diameter. The 5.9 − 9.0 GeV/c pro-
ton beam was incident along the central axis. Coinci-
dent pairs of high transverse-momentum protons were de-
tected with four concentric cylinders of straw tube cham-
bers. The experimental kinematics are discussed in more
details later. Neutrons were detected in coincidence with
the quasi-elastic knockout of protons from 12C. The large
momentum transfers −t ≥ 6 GeV 2 in these processes
greatly improve the resolving power of the probe and
validate the instantaneous approximation for description
of the removal of fast bound proton in the pp → pp sub-
process. For each (p, pp) event, the momentum of the
struck proton !p2 before the reaction was reconstructed
and compared (event by event) with the measured coin-
cident neutron momentum !pn. Due to the ∼ s−10 depen-
dence of the underlying hard pp → pp cross section, the
scattering takes place preferentially off a bound proton
with large |p2| in the direction of the beam (minimiz-
ing s)[13], and hence should lead to a significant rate of
emission of backward correlated nucleons due to scatter-
ing off NN-SRCs. Data confirming these characteristics
of A(p, ppn)X reactions are shown in Fig. 1 for 12C. The
data show no directional correlation for neutrons with
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 ~90% probability of emission of neutron 
with similar but opposite  momentum

Jlab:  from study of (e,e’pp), 
(e,e’pn)~10% probability of 

proton emission, strong 
enhancement of pn vs pp 
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Preliminary R. Subedi et al., 
To be submitted

9.5 ± 2 % R. Shneor et al., 
submitted to PRL
arXiv:nuclex/0703023v2

Missing momentum [MeV/c]

107 ±23 % BNL Experiment 
measurement was  92     %+8

-18

Note - BNL and Jlab 
studied very different 
kinematics for break up 
of  2N SRC - similarity of 
the numbers is highly 
non-trivial
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TOF for the neutrons [ns]

179 ± 39

The (e, e’pn) / (e, e’pp)  ratio

116±17

TOF for the protons [ch]

(efficiency corrected)

In 

X 2

In 12C 

+11

Single Charge Exchange (SCX)
16



Small pp/pn  consistent with dominance of tensor SRC in the high 
momentum component of the nuclear wave function Nucleon Momentum Distributions

Other Observables

DPG Spring Meeting 2003
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! correlations induce high-momentum components
! contributions of tensor correlations very big

! different correlator ranges relevant especially at the fermi surface

10

Alvioli et al 05

Calculations confirm dominance of tensor forces, but relative contribution of central forces varies 
from  10 to 20 % . However it seems that “pp” correlations are suppressed more experimentally 
than in the calculations

  

Neff et al 03

M. ALVIOLI, C. CIOFI DEGLI ATTI, AND H. MORITA PHYSICAL REVIEW C 72, 054310 (2005)

FIG. 11. The momentum distributions of 16O corresponding to
harmonic oscillator (top) and Woods-Saxon (bottom) wave functions,
giving the best density shown in Fig. 8. The thin solid curves include
only the central correlation function, whereas the thick solid curves
include all of them. Our results are compared with the results of
Ref. [7] (stars), obtained with the same correlation functions. The
results of Ref. [5] obtained within the variational Monte Carlo
approach using the AV 14 interaction are also shown by full squares.
The value of the kinetic energy obtained by integrating n(k) are
〈T 〉 = 297.87 MeV (central, HO), 〈T 〉 = 476.55 MeV (full, HO);
〈T 〉 = 306.99 MeV (central, WS), and 〈T 〉 = 494.48 MeV (full,
WS). In this and the following figures, the normalization of n(k) is
4 π

∫
n(k)k2dk = 1.

For the TBD matrix one obtains

ρSM
2 (r1, r2) = 1

2

∑

αβ

[ ϕ&
α(x1) ϕ&

β(x2) ϕα(x1) ϕβ(x2)

−ϕ&
α(x1) ϕ&

β(x2) ϕβ(x1) ϕα(x2)]

= 1
2

4 [4 ρo(r1) ρo(r2) − ρo(r1, r2) ρo(r2, r1)],

(45)

where ρo(r i) = ρo(r i , r i).
When OBMD matrix (21) is evaluated with correlated wave

functions (6) at first order of the η expansion, the following

FIG. 12. The same as in Fig. 11, but for 40Ca and correlation
functions from Fig. 4 and mean-field wave functions giving the best
charge density of Fig. 9. The value of the kinetic energy obtained
by integrating n(k) are 〈T 〉 = 782.87 MeV (central, HO), 〈T 〉 =
1178.45 MeV (full, HO); 〈T 〉 = 836.24 MeV (central, WS), and
〈T 〉 = 1245.21 MeV (full, WS).

expression is obtained:

ρ(r1, r ′
1) = ρSM(r1, r ′

1) + ρH (r1, r ′
1) + ρS(r1, r ′

1), (46)

FIG. 13. The effect of the various correlation functions on the
momentum distribution of 16O. f1 approximation, only central corre-
lation; f3 approximation, f (2) = f (3) = f (5) = 0; f6 approximation,
full correlation set, n = 1, . . . , 6. Calculations were performed with
correlation functions from Fig. 3 and HO wave functions.

054310-8
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244 L. Frankfurt and M. Strikman, Hard nuclear processes and microscopic nuclear structure

deuteron [12],indicates that conventional deuteron wave functions describe the data (with an accuracy

of —30%), at least in the kinematics where the nucleon momenta k~0.6GeVIcin the wave function

are probed. Consequently

J ~,~(k)O(k — 0.3 GeVIc) d
3k (3.5-5) x 10~, (2.6)

and the D-wave gives the dominant contribution to the integral in eq. (2.6). Since the deuteron is a
loosely bound nucleus, this number should be considered as quite large.

(e) Recent measurements of the deuteron magnetic form factor B(Q2) = G~(Q2)seem to find a

minimum at Q2 around 2 GeV2 [18], see fig. 7.2. Such a behaviour of GM(Q2) was predicted by the

nuclear core hypothesis, which leads to GM(Q2) <0 at Q2 >2 GeV2. If confirmed, it would provide
strong evidence in favour of the possibility to describe the deuteron as a system of nucleons up to

nucleon momenta in the deuteron of ——0.6—0.7 GeVic.
(f) The recent analysis [19] of experimental data on nuclear photoabsorption for photon energies

E~ 100—200 MeV (that is, above the giant dipole resonance) confirms the hypothesis that the process

is dominated by the interaction of photons with correlated nucleon pairs. The A-dependence of the

probability p~ui)of triplet proton—neutron correlations per nucleon agrees with the theoretical estimate

[20]:

P~ f p~(r)p~(r)d3r, (2.7)

where p~h1) is the density of nucleons in nuclei (see fig. 2.1 from ref. [19]).

(g) Similar regularities were observed in the absorption of slow pions by nuclei (see, e.g., ref. [21]

and references therein). These data as well as the data on photoabsorption discussed above indicate that

for A  12 a considerable number of nucleons have momenta larger than the Fermi momentum kF:

15
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Fig. 2.1. A-dependence of the Levinger constant L (LNZ/A is the number of quasideuteron pairs in a nucleus) obtained from a phenomenological

analysis of the total -
1A absorption cross sections up to the pion threshold [19].A-dependence of the Levinger constant - L -

where  LNZ/A number of quasideuteron pairs  in the nucleus 
obtained from the analysis of the total photon-nucleus 
absorption cross sections below the pion threshold

If I=0, S=1 pairs dominate  r2=L/2 for N+Z

➠ r2(C)= 2.5 much smaller than the high energy finding of  r2(C)≈ 5

Side remark - I am often asked - Are these regularities the same as in low energy 
photo/pion absorption? Answer appears to be no on the quantitative level.
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Directions for the future

Inclusive (e,e’) at x> 1 

Detailed study of onset of scaling at Q2 ~ 1 GeV2 - sensitive to minimum 
momentum where SRC dominate.  

Observing a break down of the scaling of ratios at large Q2> 5 GeV2 due to  onset 
of the contribution of inelastic processes - ratios A/D should further increase !!!

☀

☀

☀ x> 2.2 need  much more data

☀ Isotopic structure of correlations

pn/pp 48Ca  vs 40Ca:  σ(e48Ca)/σ(e 40Ca) =28/20 for x=1.5?
3H  vs 3He (Am I asking toooooo much?):  σ(e3H)/σ(e 3He) = 1 for x=1.5?

ppn/pnn σ(e3H)/σ(e 3He)= ?   at x=2.5 sensitive to 3N forces
19



Need processes/kinematics  with sufficiently small  fsi, which can be taken into 
account  theoretically - GEA - Sabina’s talk
Seems to work in the processes where fsi dominates → should be good in the 
situations where fsi are corrections. Example - recent calculation of Ciofi et al:

Data: JLab E89044

0=φ πφ =

Breaking down of the 
Fact. App.  at large 
negative 
pm > 300(MeV/c). 
Can be naturally 
taken care of in GEA

Double 
rescattering 
dominates

(Semi) Exclusive (e,e’pN, pNN)  processes 

20

e +3 He→ e + p +2 H



Factorization tests for 2N SRC  - removal of a nucleon at 
different Q - demonstrate that decay function is universal

3He is optimal for many of these studies (polarized He target?) - see Misak’s talk

Looking  for 3N SRC  - should be present at 
the level 10-20% of 2N SRC - evidence from 
x> 2 and backward nucleon production 
(effectively x up to 3.5) - best kinematics - 
knocked out proton forward - two nucleons 
backward - requires high energies and 
appropriate acceptance

Key for neutron stars nnn correlations:  
 e12C → e p (forward) + 2p (backward)

e

p
p(n)

e

p(n)

21

(like pdf’s)

α= 3.0

pTa→backward p+X



Non-nucleonic degrees of freedom

The reviewed data seem to indicate that 2N correlations dominate for  

600 > kN > 300 MeV/c

What about  Δ’s in nuclei?

Attraction in NN at medium distance (1 fm) is due to two pion exchange   

N

N

N

N

Δ

ππ

Reminder - quark exchanges also should generate  Δ’s 
22



Intermediate states with Δ -isobars.

Often hidden in the potential.  Probably OK for calculation of the  energy binding,  energy 
levels.  However wrong for  high Q2 probes.

Explicit calculations of B.Wiringa -  ~1/2 high momentum component  is due to
   ΔN correlations, significant also ΔΔ 

Large Δ admixture in high momentum component  

⇐
Suppression of NN correlations in kinematics of BNL experiment☛

☛ Presence of large ER tail (~ 300 MeV) in the spectral function  

A new quantity to provide even cleaner test of the structure of SRCs- nuclear decay function (FS 77-88) - probability to emit a nucleon with momentum k2  after removal of a fast nucleon with momentum k1, leading to a state with excitation energy Er nonrelativistic definition

Studies of the spectral and decay function of 3He reveal both two nucleon and three nucleon correlations - Sargsian et al 2004

For 2N SRC  can model decay function as decay of a NN pair moving in mean field (like for spectral function  PA)                 Piasetzky et al 06

 Instantaneous removal of one nucleon of 2N SRC leads to release of the second nucleon of SRC with initial momentum (more precisely light cone  fraction and transverse momentum) due to a large difference between the scale of local NN potential and interaction with the rest of the nucleons

☝
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heavy nuclei
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A new quantity to provide even cleaner test of the structure of SRCs- nuclear decay function (FS 77-88) - probability to emit a nucleon with momentum k2  after removal of a fast nucleon with momentum k1, leading to a state with excitation energy Er nonrelativistic definition

Studies of the spectral and decay function of 3He reveal both two nucleon and three nucleon correlations - Sargsian et al 2004

For 2N SRC  can model decay function as decay of a NN pair moving in mean field (like for spectral function  PA)                 Piasetzky et al 06

 Instantaneous removal of one nucleon of 2N SRC leads to release of the second nucleon of SRC with initial momentum (more precisely light cone  fraction and transverse momentum) due to a large difference between the scale of local NN potential and interaction with the rest of the nucleons

☝
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DA(k2,k1,Er)=|〈φA−1(k2,...)|δ(HA−1−Er)a(k1)|ψA〉|
2

☝

Sufficiently large Q are necessary to suppress two step processes where  Δ++   
isobar is produced  via charge exchange.  Can regulate by selecting different x -  
rescatterings are centered at x=1. 

Searching/discovering baryonic nonnucleonic degrees of freedom in nuclei

Knockout of    Δ++ isobar in  e+2H→ e+ f orward Δ++ + slow Δ−

e+2H→ e+ f orward N+ slow N∗

(a)

(c)

e+3He→ e+ f orward Δ++ + slow nn

Searching/discovering mesonic degrees of freedom in nuclei

e+2H→ e+ f orward π−(along!q)+ p( f orward) + p( f orward)
pN ∼ 0.3−0.4 GeV/c

FS 77

☝

(b) Looking for slow (spectator)  Δ’s in exclusive processes  with 3He

Another possibility for 12 GeV, study   of  xF  ≥0.5 production of Δ- isobars  in  e+D(A)→e+ 

Δ +X. For the deuteron one can reach sensitivity better than 0.1 % for  ΔΔ (FS 80)

24
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☛  The EMC effect at  0.7≥ x ≥  0.4 is unambiguous signature of the 
presence of nonnucleonic  degrees of freedom in nuclei.  Claims to the 

opposite are due to the violation  of  baryon  or energy-momentum conservation or both.

☛ The lack of the   enhancement of antiquarks -  only models which are still viable 
(not necessarily  correct) are those where nucleon wave function is deformed.

Origin of the EMC effect.

Combined with lack of significant modification of the nucleon form factor in a bound 
nucleon with small momenta makes appealing idea that deformation grows with 
momentum of the bound nucleon and enhanced for large x quarks.

Qualitative consideration - consider dependence of deformation for the process e 
+ A → e + (A-1)* +X [X=p, inclusive] on virtuality of the interacting nucleon 
pint2 ≡ (pA- p(A-1)*)2   .  Analytically continue to pint2 = mN2  expect no EMC effect. 

Natural to have deviations from the free nucleon case to be proportional in the 
lowest order to 

(pA- p(A-1)*)2 -  mN2 ≈ 2m

(
A

A− 1
p2

2mN
+ MA−1 + mN −MA

)

25



Dynamical model - color screening model of the EMC effect (FS 83-85)

(a) Quark configurations in a nucleon of a size << average size (PLC) should 
interact weaker than in average and their probability in nucleons is suppressed.

Combination of two ideas: 

(b)  Quarks in nucleon with x>0.5 belong to small size configurations (no pion 
field), large relative quark momenta.

➠
Would be nice to study modification of the nucleon form factors as a 
function of the nucleon momentum. If  effect is observed at 100 MeV/c - go to 50 
MeV/c (150 MeV/c) and see whether the effect will decrease (increase)  by a factor of ~1.5.

Calculation of deformation in non-relativistic Schrodinger approximation which  
interaction depending on the size of the system. A posteriori  ( Melnitchouk, 
Sargsian, MS (97), Ciofi, Frankfurt, Kaptari MS, 07) it turned out that it satisfies the 
above mentioned requirement of no effect for  pint2 = mN2 
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Leads to  factorization of the EMC effect  for RA(x,Q2) ≡ 2
A

F2A(x,Q2)
F2N (x,Q2)

RA(x,Q2)− 1 = φ(x,Q2)f(A) consistent with SLAC data

CFKS - detailed analysis of A-dependence using realistic nuclear wave functions with 
correlations. Used both point-like configuration model and model with EMC effect 
due to binding  (mesons taking a fraction of the nucleus momentum)

we find 
R4He = RC

consistent with 
Jlab recent data

We suggest that significant 
part of the discrepancy could 

be due to the coherent 
Weizecker-Williams photon 

field of the nucleusA 27



Gaining understanding of the EMC effect (extending current  JLab studies)

◉ Is EMC effect the same for u- and d-quarks? Use  3He target and pion tagging of knocked out 

quarks or parity violation with polarized electron beams. Use of 3H (?), Ca isotopes.

◉ How EMC effect depends on the virtuality/off-energy-shellness of the nucleon?

Tagging  of  proton and neutron in  e+D→e+ N +X - Misak’s talk

Is dependence the same for u- and d- quarks? 

Studies of the EMC effect will benefit greatly from the Jlab measurement of 
F2n (x,Q2) with tagged neutrons - data analysis under way

test EMC effect for deuteron
more reliable isotopic correction for Z≠ N

♥
♥

◉ EMC effect for g1A(x,Q). Best target for the job -  7Li. 
28
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◉ Higher twist contributions in the EMC effect

Day, Frankfurt, Sargsian, 93

HT
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ps dependence of the (e,e'p) tensor 

polarization (analog of   T20   for the elastic 

form factor) at θs=1800. Solid and dashed 

lines are PWIA predictions of the LC and 
VN methods, respective marked curves 
include FSI.

Did not have time to discuss relativistic effects 

Decisive test to discriminate between Light-Cone  and virtual 
nucleon relativistic models of the deuteron: e+ !2H→ e+ p+n
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Brief list of the directions of study:

☝ Decisive test to discriminate between LC and virtual nucleon 
relativistic models of the deuteron: e+ !2H→ e+ p+n

pN(GeV/c)



Conclusions

Impressive experimental progress of the last two years - discovery of strong 
short range correlations in nuclei with strong dominance of I=0 SRC - provides 
solid basis for further studies. Several experiments are under way/ been 
planned for 12 GeV

Are detectors optimal for the correlation studies, isobar production? More 
work is needed in this direction.

Several complementary  studies: x> 1, correlations, tagged 
structure functions,...  will allow to learn about microscopic 
nuclear structure in its complexity and probe interactions in 
nuclei relevant for the structure of the neutron stars. 
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Q2 ≥ 2 GeV 2

Three prong approach to the study of short-range correlations

Large Q, x>1
 A(e,e’) processes:

superfast quarks,
fast nucleons

Short-range 
 few nucleon 

correlations in nuclei: 
quark-gluon &

hadronic  
structure 

(e,e′N),(e,e′NN)
Short-range nucleon cor.

bound N form fact.

DIS processes
eA→e+backward N +X

Quark distribution in
bound nucleon

⇒
Closure: can use 

all nuclei

⇒

⇒

Final state 
interactions: best 

to use A=2,3
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