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Fundamental questions of microscopic quark-gluon structure
of nuclei and nuclear forces

e Microscopic origin of intermediate and short-range nuclear forces

e Are nucleons good nuclear quasiparticles?

e Probability and structure of the short-range correlations in nuclei



Origin of intermediate and short-range nuclear forces.
Do nucleons exchange mesons or quarks (gluons) at r< 1.5 fm?

ol Hard to fit a meson between two
200
S D nucleons for ran< 1.5 fm. Can nucleons
A I instead exchange quarks!?
0 —
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e T Interesting new development:
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The Nuclear Force from Lattice QCD
o 9/rr\: ~0.6 fm for valence quarks
N 45N N. Ishii, S. Aoki, T. Hatsuda, PRL 07
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reconstruct potential
from wave function

V(r)=F+
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Nuclear core from lattice QCD

Important - quenched approximation
interaction is due to quark exchanges
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Euclidean time

Quark exchanges also lead to

transitions to NA, AA - so far
neglected in the lattice calculation



Are meson and quark exchanges equivalent -dual! Not necessarily/always
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Meson Exchange Quark interchange
extra antiquarks in nuclei no extra antiquarks

qpld ~ 1-1-12 for x=0.05 and A=40

Drell-Yan experiments: C_IA/CTN ~ 0.97

- Ca/D
1 .20k ‘ Q2=15 GeV2
.10k /
21 00k A A-dependence of antiquark distribution, data are

from FNAL nuclear Drell-Yan experiment, curves

- Q2 _oGeV? - pQCD analysis of Frankfurt, Liuti, MS 90. Similar
0.80- conclusions Eskola et al 93-07 analyses



Are nucleons good nuclear quasiparticles?

Low momentum transfer processes - Fermi liquid theory - effective masses ~0.7 mn,
strong quenching for A(e,e’p) processes Q~0.6

Properties of nuclei seen by low energy probes described well using notion of
quasiparticles - SRC effects are hidden in parameters of these quasiparticle

% Form factors (talk of Strauch)

s  Structure functions - EMC effect

* Quenching - analyses of the |Jlab data at large momentum
transfer Q>0.85



Probability and structure of the short-range correlations (SRC) in nuclel

SRC for many years considered to be an elusive feature of nuclear structure

Questions:

How large is probability of SRC ?

|sotopic structure k1> kr

Two nucleon SRC

Non-nucleonic degrees of freedom

2NSRC p ~ 5pg

Connections to neutron stars:
a) =1 nn correlations,

b) admixture of protons in
neutron stars — |=0 sensitivity
c) multi-nucleon correlations

Short-range NN
correlations (SRC) have
densities comparable to
the density in the center of
a nucleon - drops of cold
dense nuclear matter




Consensus of the 70’s: it is hopeless to look for SRC experimentally
Phys.Lett. rules of 1976 - reject claims to the opposite without review

NO GO theorem: high momentum component of the nuclear wave function is not observable (Amado /8)

Theoretical analysis of F&S (75) : results from the medium energy studies of short-

range correlations are inconclusive due to insufficient energy/momentum transfer leading to
complicated structure of interaction (MEC,...), enhancement of the final state contributions.

Way out - use processes with Iarge energy and momentum transfer:

go > 1GeV > |VSR|, 7> 1GeV/e> 2 kp

Adjusting resolution scale as a function of the probed nucleon
momentum allows to avoid Amado theorem.

— There is a price to pay: relativistic (light-cone) treatment of the nucleus -
however in broad kinematic range a smooth connection with nonrelativistic
g
description of nuclei. Will briefly mention relativistic effects later.



Progress in the studies of SRC at high momentum due to two concepts

z1-z1 < |.2 fm > only fsi within SRC

“72 In hard exclusive processes where a nucleon of SRC is removed instantaneously

brobe another quantity sensitive to SRC - nuclear decay function (FS 77-88) - probability to emit a
nucleon with momentum k; after removal of a fast nucleon with momentum k|, leading to a state
with excitation energy E. nonrelativistic definition

Da(ka, k1, Er) = [(pa—1(ka,..) |0(Ha1 — Ep)a(k1)] 1 4)|°



Operational definition of the SRC: nucleon belongs to SRC if its instantaneous removal
from the nucleus leads to emission of one or two nucleons which balance its momentum:
includes not only repulsive core but also tensor force interactions.

For 2N SRC can model decay function as decay of a NN pair moving in
mean field (like for spectral function) Piasetzky et al 06

. Pm Emission of fast nucleons
SPeCtator IS - — €679 €€ -
leased Drs - P 27 and “3”is strongly
release P2 - suppressed due to FSI

——————

Studies of the spectral and decay function of 3He reveal both two nucleon
and three nucleon correlations - Sargsian et al 2004

No simple connection between the decay function and two nucleon momentum
distributions in the nuclei.
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Last two years a qualitative progress in the study of SRC based on the analysis of the high
momentum transfer (e,e’) |lab data, (p,2pn) BNL data and preliminary (e,e’'pp) & (e,e’pn)
Jlab data. SRC are not anymore an elusive property of nuclei !!

.

Summary of the findings

Practically all nucleons with momenta k=300 MeV belong to two
nucleon SRC correlations BNL + Jlab +SLAC

Probability for a given proton with momenta 600> k > 300 MeV/c to
belong to pn correlation is ~ |8 times larger than for pp correlation

BNL + Jlab preliminary

Probability for a nucleon to have momentum > 300 MeV/c in medium
nuclei is ~25% BNL + Jlab 04 +SLAC 93

Three nucleon SRC are present in nuclei with a significant probability  Jlab 05

The findings confirm our predictions based on the study of the structure of SRC in nuclei
(77-93) add new information about isotopic structure of SRC. In particular this confirms our
interpretation of the fast backward hadron emission observed in the 70’s-80’s as to due to SRC
and allows to use information from these experiments for planning new experiments which
would allow unambiguous interpretation. y
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Ratio of the cross sections of (e,e’)scattering off a °°Fe

('2C,*He) and 3He per nucleon

The best evidence for presence of 3N SRC. One probes
here interaction at internucleon distances <|.2 fm
corresponding to local matter densities 25p0 which is
comparable to those in the cores of neutron stars!!!

New Jlab data from Hall B.

Q%> 1.5 GeV?

for the ratios due to SRC

Fe/C ratios for x~1.75,
x~2.5 agree within
experimental errors with
our prediction - density
based estimate:

Before absorption
of the photon

| <x<?2

confirm our 1980 prediction of scaling

ro — (Al/A2)0'15
re — (Al/A2)0'22

After absorption



Ana|)'SIS Of Evidence for the Strong Dominance of Proton-Neutron Correlations in Nuclei PRL Oct 06

BNL E8S850 data E. Piasetzky,! M. Sargsian,? L. Frankfurt,! M. Strikman,®> and J. W. Watson* Pn/PP > 16
\ n-p Short-Range Correlations from (p,2p + n) Measurements at energy anhd momentum
A. Tang®, J. W. Watson®, J. Aclander®, J. Alster’, G. Asryan®°, Y. Averichev?, D. Barton®, V. Baturin/-°, >
N. Bukhtoyarova®¢, A. Carroll?, S. Heppelmann?, A. Leksanov’, Y. Makdisi?¢, A. Malki®, E. Minina’, I. Navon?, tranSfer - 3 Gev
H. Nicholson?, A. Ogawa’, Yu. Panebratsev”, E. Piasetzky?, A. Schetkovsky’ ¢, S. Shimanskiv”?, D. Zhalov/ PRL 04

spectator mechanism of backward
nucleon production 577 nucleus decay after

instantaneous removal of a nucleon from SRC

*
*
*
*
*
*
*
*
*
*
‘0
*

pp scatter at Ocm=90°

20% of 2C
wave function
Before collision After collision Jlab: from study of (e,e’pp),
removal of a proton with ~90% probability of emission of neutron (e,e’pn)~ | 0% probability of
momentum > 250 MeVI/c with similar but opposite momentum *| proton emission, strong

enhancement of pn vs pp
comparable with BNL data

|3



Directional correlation

'2C(e,e’pp)

Time-of-Flight (e,e'pp) Enifies Fre]
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Note - BNL and Jlab

studied very different

150 kinematics for break up
R. Subedi et al., of 2N SRC - similarity of
To be submitted the numbers is highly
100 % 1 * non-trivial

12 '
>0 C(e,e' pn) extranolated BNL Experiment +8
“C(e,e' p) P 107 23 % = ° 92 5 %

measurement was

o-—. . .
?C(e,e' pp)
15— C : extrapolated R. Shneor et al.,
(e,¢'p) - submitted to PRL
10 } | % ; L | arXiv:nuclex/0703023v2
5|
O | | | |
300 400 500 600

Missing momentum [MeV/c]
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The (e, e’pn) / (e, €’pp) ratio

179 £ 39 \
(efficiency corrected)

12
C(e.e' pn
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:: | P T > np - SRC
: b pp —SRC
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Single Charge Exchange (SCX)| PP — SRC
16 In 12C




Small pp/pn consistent with dominance of tensor SRC in the high
momentum component of the nuclear wave function

Bonn-A Neff et al 03
N 16 10 0. WS - V8
E O - -
0.1 :
1074 Ny 0 e Mean Field
o Dol Central
= ool g 107 Ful
S 0.001§— ~
= 0.0001k x 107 -
| S
0.00001? 10-4 _ . Ref
k [fm™) 107 . . .
0 1 2 3 4

k [fm™]

Calculations confirm dominance of tensor forces, but relative contribution of central forces varies

from |0 to 20 % . However it seems that “pp” correlations are suppressed more experimentally
than in the calculations

|7



Side remark - | am often asked - Are these regularities the same as in low energy
bhoto/pion absorption? Answer appears to be N0 on the quantitative level.

151
L(A)
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)

ocill ) | | 1
/ ///////"/ WO, YL )r//////// ///////%j(
7&
Yt

0l

i 1 | 1 i | 1 1 i ] 1 ]
20 40 60 80 100 120 140 160 180 200 220 20 A

A-dependence of the Levinger constant - L -
where LNZ/A number of quasideuteron pairs in the nucleus
obtained from the analysis of the total photon-nucleus
absorption cross sections below the pion threshold

If I=0, S=1 pairs dominate r,=L/2 for N+Z

iy rz(C)= 2.5 much smaller than the high energy finding of rZ(C)z 5
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Directions for the future

Inclusive (e,e’) at x> |

o Detailed study of onset of scaling at Q? ~ | GeV? - sensitive to minimum
momentum where SRC dominate.

‘- Observing a break down of the scaling of ratios at large Q2> 5 GeV?due to onset
of the contribution of inelastic processes - ratios A/D should further increase !!!

x> 2.2 need much more data

Isotopic structure of correlations
pn/pp  8Ca vs °Ca: g(e®Ca)/0(e “°Ca) =28/20 for x=1.5?
*H vs *He (Am | asking toooooo much?): o(e3H)/o(e 3He) = | for x=1.5?

bbn/pnn o(e3H)/o(e 3He)=? atx=2.5  sensitive to 3N forces

19



(Semi) Exclusive (e,e’pN, bNN) processes

Need processes/kinematics with sufficiently small fsi, which can be taken into

account theoretically - GEA - Sabina’s talk

Seems to work in the processes where fsi dominates — should be good in the

situations where fsi are corrections. Example - recent calculation of Ciofi et al:
Data: JLab E89044 ¢ +° He — ¢ +p+2 H

10 rl = lNhn.Fiiét. ]

N,:, 1 n.g E - - = Factonzed

¢ 10~

£

210"

%u 10°

G ' 4

<= 10°
Breaking down of the = DO . b I c
Fact. App. at large rescatteri ng
negative 1088/ R .
P > 300(MeV/c) Yoo .S dominates
Can be natura.lly 107 500 -600 300 0 300 600 900
taken care of in GEA P . [MeV/c]

I

p=0¢ ) p=x
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Factorization tests for 2N SRC - removal of a nucleon at  (like pdfs)
different Q - demonstrate that decay function is universal

Looking for 3N SRC - should be present at
the level 10-20% of 2N SRC - evidence from
x> 2 and backward nucleon production
(effectively x up to 3.5) - best kinematics -
knocked out proton forward - two nucleons
backward - requires high energies and ol g sr i
appropriate acceptance pTa—backward p+X

3He is optimal for many of these studies (polarized He target?) - see Misak’s talk

Key for neutron stars nnn correlations:

e'?C — e p (forward) + 2p (backward) ©

p(n)
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Non-nucleonic degrees of freedom

The reviewed data seem to indicate that 2N correlations dominate for

600 > kn > 300 MeV/c

What about A’s in nuclei?

Attraction in NN at medium distance (| fm) is due to two pion exchange

Reminder - quark exchanges also should generate A’s

22



Intermediate states with A -isobars.

Often hidden in the potential. Probably OK for calculation of the energy binding, energy
levels. However wrong for high Q? probes.

Explicit calculations of B.Wiringa - ~1/2 high momentum component is due to
AN correlations, significant also AA

Large A admixture in high momentum component

Y

@ Suppression of NN correlations in kinematics of BNL experiment

@ Presence of large Er tail (~ 300 MeV) in the spectral function




= Searchingl/discovering baryonic nonnucleonic degrees of freedom in nuclei

(@) Knockout of AT T isobarin € +°H — e+ forward AT+ slow A~

e+>He — e+ forward AT + slow nn

Sufficiently large Q are necessary to suppress two step processes where ATT

isobar is produced via charge exchange. Can regulate by selecting different x -
rescatterings are centered at x=|1.

(b) Looking for slow (spectator) A’s in exclusive processes with 3He

Another possibility for 12 GeV, study of xg 20.5 production of A- isobars in e+D(A)—e+
A +X. For the deuteron one can reach sensitivity better than 0.1 % for AA (FS 80)

(c) e+"H — e+ forward N+ slow N* Y -
&= Searchingl/discovering mesonic degrees of freedom in nuclei 2 ;
e+*H — e+ forward n (along §) + p(forward) + p(forward) p

~(0.3—-04 GeV
y Py Ve FS 77



Origin of the EMC effect.

@ The EMC effectat 0.72 x = 0.4 is unambiguous signature of the

presence of nonnucleonic degrees of freedom in nuclei. Claims to the
opposite are due to the violation of baryon or energy-momentum conservation or both.

@ The lack of the enhancement of antiquarks - only models which are still viable
(not necessarily correct) are those where nucleon wave function is deformed.

Combined with lack of significant modification of the nucleon form factor in a bound
nucleon with small momenta makes appealing idea that deformation grows with
momentum of the bound nucleon and enhanced for large x quarks.

Qualitative consideration - consider dependence of deformation for the process e
+A = e+ (A1) +X [ X=p, inclusive] on virtuality of the interacting nucleon
Dine” = (PA- p(a-1y+)?> . Analytically continue to pin? = mn? expect no EMC effect.

Natural to have deviations from the free nucleon case to be proportional in the
lowest order to

A D?
— 1 QmN

(PA- P(A-1}¥)? - MN? ~ 2m (A

25
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Would be nice to study modification of the nucleon form factors as a

"= 1function of the nucleon momentum. If effect is observed at 100 MeV/c - go to 50
MeVic (150 MeV/c) and see whether the effect will decrease (increase) by a factor of ~1.5.

Dynamical model - color screening model of the EMC effect (s 83-85)

Combination of two ideas:

(a) Quark configurations in a nucleon of a size << average size (PLC) should
interact weaker than in average and their probability in nucleons is suppressed.

(b) Quarks in nucleon with x>0.5 belong to small size configurations (no pion
field), large relative quark momenta.

Calculation of deformation in non-relativistic Schrodinger approximation which
interaction depending on the size of the system.A posteriori ( Melnitchouk,

Sargsian, MS (97), Ciofi, Frankfurt, Kaptari MS, 07) it turned out that it satisfies the

above mentioned requirement of no effect for pinc® = MN?

26



2 FQA( 7@2)
AFQN( 7@2)

Ralz, Q%) —1=¢(x,Q°)f(A) consistent with SLAC data

CFKS - detailed analysis of A-dependence using realistic nuclear wave functions with
correlations. Used both point-like configuration model and model with EMC effect
due to binding (mesons taking a fraction of the nucleus momentum)

Leads to factorization of the EMC effect for r.(x.Q?%) =

120 7777 g ]
1,10 . — T : — T : 1.15;- e Carbon I/I :
1.10 _ m  Helium ili
' ¥  SLAC fit ~ 1.05 F } :
5 ' /B
) 1,05+ _ ~, 100 FF= T
we find a x=05 ® PIC o 0 o ﬁ_%giiﬁgg! f?
R4H — RC L - VNC - 0.90 §“§%{i?i
e X 100 ~ _ 0.85 2 :
: : N T A ST T P T T T P :
consistent with LrlF ........ ! 'i‘? | 02 03 04 05 06 07 08 09 10
Jlab recent data m< 0 95" ..... = A AN quark momentum fraction
\ y ; - W - - -

_ g ™
0,90 S ‘\ We suggest that significant

part of the discrepancy could
0,85 e S S - be due to the coherent
1 10 100 Weizecker-Williams photon
A A 27 field of the nucleus




Gaining understanding of the EMC effect (extending current JLab studies)

Studies of the EMC effect will benefit greatly from the Jlab measurement of
Fan (x,Q%) with tagged neutrons - data analysis under way

\ 4
\ 4

test EMC effect for deuteron
more reliable isotopic correction for Z# N

@® Is EMC effect the same for u- and d-quarks? Use 3He target and pion tagging of knocked out

quarks or parity violation with polarized electron beams. Use of 3H (?), Ca isotopes.

@ How EMC effect depends on the virtuality/off-energy-shellness of the nucleon!?

Is dependence the same for u- and d- quarks?
Tagging of proton and neutron in etD—e+ N +X - Misak’s talk

_>
® EMC effect for gia(x,Q). Best target for the job - ’Li.

28



® Higher twist contributions in the EMC effect

6 i l TTT1 l 1711 1 T P11 lj TT Iél T 1] 6 T T 11 l ISR l F'TT 1 I T T 1 1 1+ I_]
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Did not have time to discuss relativistic effects

Decisive test to discriminate between Light-Cone and virtual
nucleon relativistic models of the deuteron: ¢ 127 ¢+ p4n

T20+

ps dependence of the (e,e’p) tensor
polarization (analog of T20 for the elastic
form factor) at GS=I800. Solid and dashed

lines are PWIA predictions of the LC and
VN methods, respective marked curves
include FSI.

30



Conclusions

Impressive experimental progress of the last two years - discovery of strong
short range correlations in nuclei with strong dominance of =0 SRC - provides

solid basis for further studies. Several experiments are under way/ been
planned for 12 GeV

Are detectors optimal for the correlation studies, isobar production? More
work is needed in this direction.

Several complementary studies: x> |, correlations, tagged
structure functions,... will allow to learn about microscopic
nuclear structure in its complexity and probe interactions in
nuclei relevant for the structure of the neutron stars.
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Three prong approach to the study of short-range correlations

Large Q, x> |
A(e,e’) processes:

superfast quarks,
fast nucleons

ﬂ

Closure: can use
all nuclei

Short-range
few nucleon
correlations in nuclei:
quark-gluon &
hadronic
structure

DIS processes

eA—e+backward N +X

Quark distribution in
bound nucleon

32

Q° > 2 GeV?
(e,e'N), (e, NN)

Short-range nucleon cor.
bound N form fact.

%

Final state
interactions: best
to use A=2,3
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