Spin Structure Measurements in Hall A

Vincent Sulkosky

Jefferson Lab

Users Group Workshop and Annual Meeting June 20th, 2007

Outline

- Inclusive Electron Scattering and Structure Functions
- Quark-Hadron Duality: E01-012
- Gerasimov-Drell-Hearn (GDH) Sum Rule: E97-110
- Future Hall A Spin Structure Measurements

Inclusive Electron Scattering

Energy transfer: $\nu = E - E^{'}$

4-momentum transfer squared: $\vec{q} = \vec{k} - \vec{k'}$ $Q^2 = -q^2 = 4EE' \sin^2 \frac{\theta}{2}$

Invariant Mass: $W^2 = M^2 + 2M\nu - Q^2$

Bjorken variable:

$$x = \frac{Q^2}{2M\nu}$$

Inclusive Cross Sections

Unpolarized cross sections

$$\frac{d^2\sigma}{dE'd\Omega} = \sigma_{\text{Mott}} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2 \frac{\theta}{2} \right]$$

Polarized cross sections

$$\Delta \sigma_{\parallel} = \frac{d^2 \sigma^{\downarrow \uparrow}}{dE' d\Omega} - \frac{d^2 \sigma^{\uparrow \uparrow}}{dE' d\Omega} = K \left[(E + E' \cos \theta) g_1(x, Q^2) - \left(\frac{Q^2}{\nu}\right) g_2(x, Q^2) \right]$$
$$\Delta \sigma_{\perp} = \frac{d^2 \sigma^{\downarrow \Rightarrow}}{dE' d\Omega} - \frac{d^2 \sigma^{\uparrow \Rightarrow}}{dE' d\Omega} = KE' \sin \theta \left[g_1(x, Q^2) + \frac{2E}{\nu} g_2(x, Q^2) \right]$$
$$K = \frac{4\alpha^2}{M\nu Q^2} \frac{E'}{E}$$

↓, ↑ are for electron spin ↑, ⇒ are for target spin direction F_1 , F_2 , g_1 , g_2 : structure functions

– p.4/55

Quark-hadron Duality

- First observed by Bloom and Gilman in the 1970's on F_2 .
- Scaling curve at high Q^2 is an accurate average over the resoance region at lower Q^2 .
- Global and local duality are observed for F_2 .

I. Niculescu et al., PRL 85 (2000) 1182.

• Recent Hall B data for g_1^p :

P.E. Bosted et al., PRC 75 (2007) 035203.

E. D. Bloom and F. J. Gilman, PRL 25 (1970) 1140

E01-012

Spokespersons: J.P. Chen, S. Choi and N. Liyanage; PhD student: P. Solvignon

Test of spin duality on the neutron (^{3}He)

- 32 (GeV/c)² Ran in Jan.-Feb. 2003 Inclusive experiment: ${}^{3}\text{He}(\vec{e}, e')X$ 5 \Rightarrow Polarized electron beam: 4 $70\% < P_{\rm beam} < 85\%$ ⇒ Standard Hall A equipment 3 \Rightarrow Pol. ³He target (para & perp): 4 GeV, 25 ° 2 $\langle P_{\rm targ} \rangle$ = 37% Measured polarized cross-1 section differences
 - Form g_1 and g_2 for ³He

 $g_1^{
m ^3He}$ at Constant Q^2

³He as an Effective Polarized Neutron Target

 $P_{\rm n}$ = 86% and $P_{\rm p}$ = -2.8% J.L. Friar *et al.*, PRC 42, (1990) 2310

Extraction of Neutron Results

$$\Gamma_1^{\rm n}(Q^2) = \frac{1}{P_{\rm n}} \left[\Gamma_1^{\rm ^3He}(Q^2) - 2P_{\rm p}\Gamma_1^{\rm p}(Q^2) \right]$$

C. Ciofi degli Atti & S. Scopetta, PLB 404, (1997) 223

Test of Duality on the Neutron and 3 He

- Define integration range as a function of W in the resonance region
- Integrate g_1^{res} and g_1^{DIS} over that same x range at constant Q^2
- Target mass correction applied.

$$\tilde{\Gamma}_1^{\text{res}} = \int_{x_{\min}}^{x_{\max}} g_1^{\text{res}}(x, Q^2) dx \qquad \tilde{\Gamma}_1^{\text{DIS}} = \int_{x_{\min}}^{x_{\max}} g_1^{\text{DIS}}(x, Q^2) dx$$

If $\tilde{\Gamma}_1^{res} = \tilde{\Gamma}_1^{DIS} \Rightarrow$ duality is verified.

Test of Duality on the Neutron and 3 He

Parton Model:

$$A_1(x, Q^2) \approx \frac{g_1(x, Q^2)}{F_1(x, Q^2)}$$

If Q^2 -dependence for g_1 and F_1 are similar \Rightarrow weak Q^2 -dependence for A_1 .

Resonance Region:

If local duality is observed for g_1 and $F_1 \Rightarrow A_1^{\text{res}} = A_1^{\text{DIS}}$.

– p.10/55

In Progress

- The ³He results are final but work is ongoing for the neutron extraction.
- First paper in preparation:
 - ³He: g_1 , $\tilde{\Gamma}_1$, and A_1
 - Neutron: $\tilde{\Gamma}_1$
- **•** Future papers: d_2^n , BC sum rule, A_1^n and A_2^n

Gerasimov-Drell-Hearn (GDH) Sum Rule ($Q^2 = 0$)

$$I_{\rm GDH} = \int_{\nu_{\rm th}}^{\infty} \frac{\sigma_{\rm P}(\nu) - \sigma_{\rm A}(\nu)}{\nu} d\nu = -4\pi^2 S \alpha \left(\frac{\kappa}{M}\right)^2$$

Circularly polarized photons incident on a longitudinally polarized spin-S target.

Gerasimov-Drell-Hearn (GDH) Sum Rule ($Q^2 = 0$)

$$I_{\rm GDH} = \int_{\nu_{\rm th}}^{\infty} \frac{\sigma_{\rm P}(\nu) - \sigma_{\rm A}(\nu)}{\nu} d\nu = -4\pi^2 S \alpha \left(\frac{\kappa}{M}\right)^2$$

• $\sigma_{\rm P}$ ($\sigma_{\rm A}$) photoabsorption cross section with photon helicity parallel (anti-parallel) to the target spin.

Gerasimov-Drell-Hearn (GDH) Sum Rule ($Q^2 = 0$)

$$I_{\rm GDH} = \int_{\nu_{\rm th}}^{\infty} \frac{\sigma_{\rm P}(\nu) - \sigma_{\rm A}(\nu)}{\nu} d\nu = -4\pi^2 S \alpha \left(\frac{\kappa}{M}\right)^2$$

- Circularly polarized photons incident on a longitudinally polarized spin-S target.
- $\sigma_{\rm P}$ ($\sigma_{\rm A}$) photoabsorption cross section with photon helicity parallel (anti-parallel) to the target spin.
- The sum rule is related to the target's mass M and anomalous part of the magnetic moment κ .

Spin- $\frac{1}{2}$ Targets

$$I_{\rm GDH} = \int_{\nu_{\rm th}}^{\infty} \frac{\sigma_{\frac{1}{2}}(\nu) - \sigma_{\frac{3}{2}}(\nu)}{\nu} d\nu = -2\pi^2 \alpha (\frac{\kappa}{M})^2$$

The sum rule is valid for any target.

	M[GeV]	Spin	κ	$I_{\rm GDH}[\mu \ b]$	
Proton	0.938	$\frac{1}{2}$	1.79	-204.8	
Neutron	0.940	$\frac{1}{2}$	-1.91	-233.2	
Deuteron	1.876	1	-0.14	-0.65	
Helium-3	2.809	$\frac{1}{2}$	-8.38	-498.0	
$1 \mu b = 10^{-34} m^2$					

- Proton sum rule was verified to \sim 10%, Mainz and Bonn.
- Measurements for the neutron are in progress.

Generalized GDH Integral ($Q^2 > 0$)

$$I(Q^{2}) = \int_{\nu_{\rm th}}^{\infty} \left[\sigma_{\frac{1}{2}}(\nu, Q^{2}) - \sigma_{\frac{3}{2}}(\nu, Q^{2}) \right] \frac{d\nu}{\nu}$$

$$\sigma_{1/2} - \sigma_{3/2} = \frac{8\pi^{2}\alpha}{MK} \left[g_{1}(\nu, Q^{2}) - \left(\frac{Q^{2}}{\nu^{2}}\right) g_{2}(\nu, Q^{2}) \right]$$

- Replace photoproduction cross sections with the corresponding electroproduction cross sections.
- The integral is related to the Compton scattering amplitudes: $S_1(Q^2)$ and $S_2(Q^2)$.

$$S_1(Q^2) = \frac{8}{Q^2} \int_0^1 g_1(x, Q^2) dx = \frac{8}{Q^2} \Gamma_1(Q^2)$$

X.-D. Ji and J. Osborne, J. Phys. **G27**, 127 (2001)

At $Q^2 = 0$, the GDH sum rule is recovered.

– p.14/55

Importance of the Generalized GDH Sum Rule

- Constrained at the two ends of the Q² spectrum by known sum rules.
- S_1 and S_2 are calculable at any Q^2 .
- Compare theoretical predictions to experimental measurements over the entire Q^2 range.
- Provides a bridge from the non-perturbative region to the perturbative region of QCD.

Hall A GDH Results

Neutron

Helium-3

M. Amarian et al., PRL 89, (2002) 242301

Preliminary results from K. Slifer

Experiment E97-110

Precise measurement of generalized GDH integral at low Q², 0.02 to 0.3 GeV²

Students: J. Singh, V. Sulkosky, and J. Yuan

The Septum Magnet

- Low Q^2 requires forward angles.
- Minimum spectrometer angle is **12.5°**.
- The septum magnet allows detection of electrons with scattering angles of 6° and 9°.
- Designed for the spectrometers to retain their resolution.

Cross Section Differences

³*He Spin Structure Functions*

– p.20/55

The GDH Integrand: σ_{TT}

Expected Neutron Results

– p.22/55

- E06-010/E06-011: Transversity
- E06-014: *d*₂ⁿ
- **•** E12-06-122: A_1^n (12 GeV approved proposal)

E06-010/E06-011: Transversity

Spokespersons: X. Jiang, J.-P. Chen, E. Cisbani, H. Gao and J.-C. Peng Requires two Chiral-odd objects to measure: Drell-Yan or Semi-Inclusive DIS

 $A_{UT}(\phi_h, \phi_s) = A_{UT}^{Collins} \sin(\phi_h + \phi_s) + A_{UT}^{Sivers} \sin(\phi_h - \phi_s)$

See Jen-Chieh Peng's talk.

– p.24/55

E06-014: $d_2^{ m n}$

Spokespersons: B. Sawatzky, S. Choi, X. Jiang and Z.-E. Mezianni

$$d_2^{n} = \int_0^1 x^2 \left(2g_1^{n} + 3g_2^{n} \right) dx$$

- OPE: d_2 a twist-3 matrix element
- Arising from quark-gluon interactions
- Clean indicator of HT effects in nucleons
- E06-014:
 - \Rightarrow BigBite and HRS spectrometers
 - \Rightarrow 0.2 < x < 0.65
 - \Rightarrow 2 GeV $^2 < Q^2 <$ 5 GeV 2
 - \Rightarrow Polarized electron beam
 - \Rightarrow Pol. ³He target
- Reduce statistical uncertainty by a factor of 4
- Benchmark test of Lattice QCD

E12-06-122: A_1^n

Spokespersons: B. Wojtsekhowski, N. Liyanage, X.-C. Zheng, G. D. Cates, Z.-E. Mezianni and G. Rosner

 A_1^n using 6.6 GeV and 8.8 GeV beam with BigBite, approved by PAC30.

- Beam time: 90 hours at 6.6 GeV and 460 hours at 8.8 GeV.
 - \Rightarrow Beam Current: 10 μ A.
 - \Rightarrow Polarized electron beam:

 $P_{\rm beam} = 80\%$

 \Rightarrow 40 cm Pol. ³He target:

 $P_{\text{targ}} = 50\%$

- Resonance data collected simultaneously.
- Similar proposal conditionally approved using 11 GeV beam and baseline equipment in Hall C: x up to 0.77.

Summary and Conclusion

Duality:

- E01-012 provides first data of neutron(³He) spin Structure functions in the resonance region for Q^2 between 1.0 GeV² and 4.0 GeV².
- Dedicated test of Quark-hadron duality for neutron and ³He SSFs.
- Global duality demonstrated for the neutron and ³He SSF g_1 .
- Observed DIS-like behavior in $A_1^{^{3}\text{He}}$ measured in the resonance region.

Summary and Conclusion

Generalized GDH:

- The GDH integral is an important tool used to study the nucleon over the full Q^2 range.
- E97-110 provides precision data for the generalized GDH integral at low Q², 0.02 to 0.3 GeV²
- Extraction of the ³He structure functions and the GDH integrand has been performed.
- Moments of the spin structure functions and the GDH integral extraction are in progress.
- These data allow us to check χ PT at very low Q^2 .

Summary and Conclusion

Future Hall A Spin Program:

- E06-010/E06-011: Transversity (2008)
- E06-014: $d_2^{\rm n}$ (2008)
- E12-06-122: *A*ⁿ₁ (12 GeV)

Extra Slides

$$g_1(x,Q^2) = g_1(x,Q^2;M=0) + \frac{M^2}{Q^2}g_1^{(1)\text{TMC}}(x,Q^2) + \frac{h(x,Q^2)}{Q^2} + O(\frac{1}{Q^4})$$

- Kinematic effect: finite value of $\frac{4M^2x^2}{Q^2}$.
- Need to apply before calculating higher twist effects.
- TMCs are expressed by higher moments of $g_1(x, Q^2; M = 0)$.

E12-06-122: A_1^n

Spokespersons: B. Wojtsekhowski, N. Liyanage, X.-C. Zheng, G. D. Cates, Z.-E. Mezianni and G. Rosner

 A_1^n using 6.6 GeV and 8.8 GeV beam with BigBite, approved by PAC30.

- Light Blue: LSS(BBS)
 using HHC with fit to data.
- Blue: BBS using HHC.
- magenta (above yellow band): bag model.
- yellow band: RCQM.
- black: LSS2001.
- magenta (< 0): soliton model.

Analysis Procedure

– p.31/55

The E97-110 Collaboration

S. Abrahamyan, K. Aniol, D. Armstrong, T. Averett, S. Bailey, P. Bertin, W. Boeglin, F. Butaru, A. Camsonne, G.D. Cates, G. Chang, J.P. Chen, Seonho Choi, E. Chudakov, L. Coman, J. Cornejo, B. Craver, F. Cusanno, R. De Leo, C.W. de Jager, A. Deur, K.E. Ellen, R. Feuerbach, M. Finn, S. Frullani, K. Fuoti, H. Gao, F. Garibaldi, O. Gayou, R. Gilman, A. Glamazdin, C. Glashausser, J. Gomez, O. Hansen, D. Hayes, B. Hersman, D. W. Higinbotham, T. Holmstrom, T.B. Humensky, C. Hyde-Wright, H. Ibrahim, M. Iodice, X. Jiang, L. Kaufman, A. Kelleher, W. Kim, A. Kolarkar, N. Kolb, W. Korsch, K. Kramer, G. Kumbartzki, L. Lagamba, G. Laveissiere, J. LeRose, D. Lhuillier, R. Lindgren, N. Liyanage, B. Ma, D. Margaziotis, P. Markowitz, K. McCormick, Z.E. Meziani, R. Michaels, B. Moffit, P. Monaghan, S. Nanda, J. Niedziela, M. Niskin, K. Paschke, M. Potokar, A. Puckett, V. Punjabi, Y. Qiang, R. Ransome, B. Reitz, R. Roche, A. Saha, A. Shabetai, J. Singh, S. Sirca, K. Slifer, R. Snyder, P. Solvignon, R. Stringer, R. Subedi, V. Sulkosky, W.A. Tobias, P. Ulmer, G. Urciuoli, A. Vacheret, E. Voutier, K. Wang, L. Wan, B. Wojtsekhowski, S. Woo, H. Yao, J. Yuan, X. Zheng, L. Zhu

and the Jefferson Lab Hall A Collaboration

– p.32/55

Systematic Uncertainties

Source	Systematic Uncertainty		
Target density	2.0%		
Acceptance/Effects	7.5%		
VDC efficiency	2.5% (6°)	2.0% (9°)	
Charge	1.0%		
PID Detector and Cut effs.	< 1.0%		
$\delta\sigma_{ m raw}$	8.4% (6°)	8.2% (9°)	
Nitrogen dilution	0.2–0.5%		
$\delta\sigma_{ m exp}$	8.5% (6°)	8.3% (9°)	
Beam polarization	3.5%		
Target polarization	7.5%		
$\delta\left(\Delta\sigma_{\parallel,\perp} ight)$	11.9% (6°)	11.7% (9°)	

Chiral Symmetry

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4g^2} G^{\alpha}_{\mu\nu} G^{\mu\nu}_{\alpha} + \bar{q} i \gamma^{\mu} D_{\mu} q - \bar{q} \mathcal{M} q$$
$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_0 + \mathcal{L}_{sb}$$

- Consider the limit where the light quark masses vanish.
- For massless fermions, chirality (handedness) is identical to a particle's helicity.
- Extra symmetry to the Lagrangian and obtain left and right handed quark fields.

$$q_{L,R} = \frac{1}{2}(1 \mp \gamma_5)q \,,$$

Based on fundamental physical arguments

- Lorentz and gauge invariance: low energy theorem, Phys. Rev. 96, 1428 (1954).
- Unitarity of the S-matrix: optical theorem.
- Causality: dispersion relations for forward compton scattering.

The Quark-Parton Model

Infinite-momentum frame

- Partons: quarks and gluons (point-like).
- With no quark-quark or quark-gluon interactions.
- *x*: fraction of nucleon's momentum carried by the struck quark
- $q_i(x)$ and $\Delta q_i(x)$ are quark momentum distribution functions.

$$F_1(x) = \frac{1}{2} \sum_i e_i^2 q_i(x)$$

$$g_1(x) = \frac{1}{2} \sum_i e_i^2 \Delta q_i(x)$$

Experimental Setup

Spectrometer Optics

Optics transformation matrix

- The target coordinates are related to coordinates measured at the focal plane.
- The matrix is well know for the standard HRS.
- The addition of the septum magnet required a new determination of the matrix.
- Experiment E97-110 was the commissioning experiment for the septum.

$$\begin{bmatrix} \delta \\ \theta \\ y \\ \phi \end{bmatrix}_{\mathrm{tg}} = \begin{bmatrix} \langle \delta | x \rangle & \langle \delta | \theta \rangle & \langle \delta | y \rangle & \langle \delta | \phi \rangle \\ \langle \theta | x \rangle & \langle \theta | \theta \rangle & \langle \theta | y \rangle & \langle \theta | \phi \rangle \\ \langle y | x \rangle & \langle y | \theta \rangle & \langle y | y \rangle & \langle y | \phi \rangle \\ \langle \phi | x \rangle & \langle \phi | \theta \rangle & \langle \phi | y \rangle & \langle \phi | \phi \rangle \end{bmatrix} \begin{bmatrix} x \\ \theta \\ y \\ \phi \end{bmatrix}_{\mathrm{fp}}$$

Target Coordinates

Optics Calibration Results

Sieve Slit

Angular Reconstruction

Optics Calibration Results

– p.41/55

Hysteresis of the Septum Magnet

- The septum shows
 signs of hysteresis at
 higher currents.
- An interpolation between
 optimized settings was used
 to correct shifts seen in
 the target quantities.

Acceptance for ³He Data

Black: Data, Red: Simulation

³*He Elastic Asymmetry*

- Monte Carlo prediction: 1.390%
- Preliminary data analysis: $(1.403 \pm 0.044)\%$ (stat. only) $\chi^2 / N_{\rm dof} = 1.08.$
- Four target and beam confi gurations
- For seven out of the twelve beam energies, elastic data were acquired.

³He Inelastic Asymmetries

No Radiative Corrections!

³He Inelastic Asymmetries

Nitrogen Subtraction

Preliminary ³He Cross Sections

Preliminary ³He Cross Sections

Cross Section Differences

Cross Section Differences

³*He Spin Structure Functions*

³*He Spin Structure Functions*

The GDH Integrand: σ_{TT}

The GDH Integrand: σ_{TT}

Jefferson Lab

- p.50/55

Spin Polarizabilities

M. Amarian et al., PRL 93, 152301 (2004)

Electron Beam Polarization

 $\langle P_{\text{beam}} \rangle$ was 74.7% from Møller and 74.9% from Compton.

Polarized ³He System

- Both longitudinal and transverse configurations.
- Two independent polarimetries: NMR and EPR.

Preliminary Target Polarization

Spin Exchange Optical Pumping

³He nucleus is polarized via spin-exchange with optically pumped Rb atoms.

