Neutron stars at JLAB and the Pb Radius Experiment

PREX uses parity violating electron scattering to accurately measure the neutron radius of ^{208}Pb.

This has many implications for nuclear structure, astrophysics, atomic parity non-conservation, and low energy tests of the Standard Model.

JLAB Users Group Meeting, June 2009
C. J. Horowitz, Indiana University
PREX and Related Physics

- Introduction: PREX exp.
- PREX and:
 - Atomic PNC.
 - Nuclear structure.
 - Neutron stars.
- Radiative corrections to PREX and Qweak.
Parity Violation Isolates Neutrons

- In Standard Model Z^0 boson couples to the weak charge.
- Proton weak charge is small:
 \[Q_{W}^p = 1 - 4\sin^2\Theta_W \approx 0.05 \]
- Neutron weak charge is big:
 \[Q_{W}^n = -1 \]
- Weak interactions, at low Q^2, probe neutrons.
- Parity violating asymmetry A_{pv} from interference of photon and Z^0 exchange. In Born approximation
 \[A_{pv} = \frac{G_F Q^2}{2\pi\alpha\sqrt{2}} \frac{F_W(Q^2)}{F_{ch}(Q^2)} \]
 \[F_W(Q^2) = \int d^3r \frac{\sin(Qr)}{Qr} \rho_W(r) \]
- PREX will measure A_{pv} for 1.05 GeV electrons scattering from 208Pb at 5 degrees to 3%. This gives neutron radius to 1% (± 0.05 fm).
 - Donnelly, Dubach, Sick first suggested using PV to measure neutrons.

\[A_{pv} = \frac{d\sigma/d\Omega_+ - d\sigma/d\Omega_-}{d\sigma/d\Omega_+ + d\sigma/d\Omega_-} \]
Weak and E+M charge densities

Relativistic mean field calculation showing point proton and neutron densities (dashed) and weak and electromagnetic charge densities (solid).

\[
\rho_W(r) = \int d^3 r' \left[G_W^m (r' - r) \rho_n(r') + \frac{Q_W^p}{Q_W^n} G_W^p (r' - r) \rho_p(r') \right]
\]

Total weak charge of nucleus

\[
Q_W = \int d^3 r \rho_W(r) = N - (1 - 4 \sin^2 \Theta_W) Z
\]
New 5^0 Septum being developed

Increases the Figure of Merit
High Resolution Spectrometers

Spectrometer Concept:
Resolve Elastic

1st excited state Pb 2.6 MeV

Left-Right symmetry to control transverse polarization systematic

R. Michaels
Systematic Error Challenges

- Small asymmetry: \(500 \pm 15 \text{ ppb}\)
- High precision: \(\delta A_{pv}/A_{pv} \pm 3\%\)
- No backgrounds (not what you might think ---\> spectrometers)
- 1\% normalization (polarimetry).
- Analyzing power \(\sim 10 A_{pv}\). Need to measure and control transverse components of polarization.
- Need excellent control of helicity correlated beam properties.
- Hall A parity collaboration has completed a number of successful parity experiments.
PREX and Atomic Parity Nonconservation

^{208}Pb
Atomic Parity Nonconservation

• Atomic PNC depends on overlap of electrons with neutrons in nucleus.

• Cs experiment good to 0.3%. Not limited by R_n but future 0.1% exp would need R_n to 1%

• Measurement of R_n in 208Pb constrains nuclear theory for R_n in other atomic PNC nuclei.

• Combine neutron radius from PV e scattering with an atomic PNC exp for best low energy test of standard model.

• Recent Atomic PNC Progress:
 • Improved atomic theory for Cs.
 • First PNC results from Berkeley Yb experiment.
 • Start of TRIUMF program for laser trapped radioactive Fr.
 • KVI program on PNC in Ra+.
Density Functional Theory (DFT)

Hohenberg-Kohn: There exists an energy functional $E_{\text{vext}}[\rho]$.

$$
E_{\text{vext}}[\rho] = F_{\text{HK}}[\rho] + \int d^3 x v_{\text{ext}}(x) \rho(x)
$$

F_{HK} is universal (same for any external v_{ext}) $\Rightarrow H_{2\text{toDNA}}$

Introduce orbitals and minimize energy functional $= \Rightarrow E_{\text{gs}}, \rho_{\text{gs}}$

Useful if you can approximate the energy functional

Construct microscopically or fit a "general" form

PREX and Nuclear Structure

Experimental charge densities from electron scattering
Neutron Skin and Symmetry E

- 208Pb has $Z=82$ protons and $N=126$ neutrons.
- **Where do the $N-Z=44$ extra neutrons go?** In the center of the nucleus? At the surface?
- Relevant microphysics: A pn pair in bound 3S_1 state has more attractive interaction than pp or nn pair in unbound 1S_0 state.

The symmetry energy $S(n)$ describes how E of nuclear matter rises when one goes away from $N=Z$.

$$E(n, \delta) \approx E(n, \delta = 0) + \delta^2 S(n)$$

$$\delta = (N - Z)/A$$

PREX will constrain density dependance of sym. E, dS/dn.

Symmetry E very important to extrapolate to neutron rich systems in astrophysics.
Pb Radius Measurement

- Pressure forces neutrons out against surface tension. Large pressure gives large neutron radius.
- Pressure depends on derivative of energy with respect to density.
- Energy of neutron matter is E_{nuc} of nuc. matter plus symmetry energy.

\[E_{\text{neutron}} = E_{\text{nuclear}} + S(\rho) \]

\[P \rightarrow dE/d\rho \rightarrow dS/d\rho \]

- Neutron radius determines P of neutron matter at $\approx 0.1 \text{ fm}^{-3}$ and the density dependence of the symmetry energy $dS/d\rho$.

Neutron minus proton rms radius of Pb versus pressure of pure neutron matter at $\rho=0.1 \text{ fm}^{-3}$.
PREX and Neutron Stars
Neutron Star Crust vs ^{208}Pb Neutron Skin

- Neutron star has solid crust (yellow) over liquid core (blue).
- Nucleus has neutron skin.
- Both neutron skin and NS crust are made out of neutron rich matter at similar densities.
- Common unknown is EOS at subnuclear densities.

Liquid/Solid Transition Density

- Thicker neutron skin in Pb means energy rises rapidly with density \rightarrow quickly favors uniform phase.
- Thick skin in Pb \rightarrow low transition density in star.

J Piekarewicz, CJH
Neutron Star Quadrupole Moment and Gravitational Waves

- A solid crust can support an off axis mass quadrupole moment.
- Rapidly rotating NS quad. moment efficiently radiates gravitational waves.
- Very active ongoing/ future searches for continuous GW at LIGO, Virgo, Advanced LIGO...
- How big can the quad. moment be? This depends on the thickness and strength of the crust (before any mountain collapses under the extreme gravity of a NS).
- We have performed large scale molecular dynamics simulations of the crust breaking stress, including effects of defects, impurities, and grain boundaries...
- We find: neutron star crust is the strongest material known. It is 10 billion times stronger than steel. Very promising for GW searches.
Pb Radius vs Neutron Star Radius

- The \(^{208}\text{Pb}\) radius constrains the pressure of neutron matter at subnuclear densities.
- The NS radius depends on the pressure at nuclear density and above. Central density of NS few to 10 x nuclear density.
- Important to have both low density and high density measurements to constrain density dependence of EOS from a possible phase transition.
 - If Pb radius is relatively large: EOS at low density is stiff with high P. If NS radius is small than high density EOS soft.
 - This softening of EOS with density could strongly suggest a transition to an exotic high density phase such as quark matter, strange matter, color superconductor…

J Piekarewicz, CJH
Measuring Neutron Star Radii

- Deduce surface area from luminosity, temperature from X-ray spectrum.

- Complications:
 - Need distance (from parallax for nearby isolated NS...)
 - Non-blackbody corrections from atmosphere models can depend on composition and B field.
 - Curvature of space: measure combination of radius and mass.

- Proposed International X-ray Observatory (larger collecting area) can measure both R and mass.

\[L_\gamma = 4\pi R^2 \sigma_{SB} T^4 \]

IXO could be an important machine to study dense QCD.
Radiative Corrections
γ-Z Box Diagrams

• Elastic intermediate states are coherent, order $Z\alpha$. Important for PREX (Pb has $Z=82$).

• Inelastic is order α/Q_w compared to tree level. Possibly important for Qweak exp on proton. Note inelastic involves weak transition form factor and not weak charge Q_w!
Coulomb Distortions for PREX

- We sum elastic intermediate states to all orders in $Z\alpha$ by solving Dirac equ for e moving in coulomb V and weak axial A potentials.

\[A \propto G_F \rho_W(r) \approx 10 \text{ eV} \quad V(r) \approx 25\text{MeV} \]

- Right handed e sees $V+A$, left handed $V-A$

\[A_{pv} = \frac{[d\sigma/d\Omega|_{V+A} - d\sigma/d\Omega|_{V-A}]}{2d\sigma/d\Omega} \]

- Coulomb distortions reduce A_{pv} by $\sim30\%$, but they are accurately calculated.

--- With E.D. Cooper!
Inelastic γZ box correc. for Qweak

- Not obviously big for PREX, but important for the Qweak experiment because of the small weak charge of the proton.

- We sum over excited nucleon states with a dispersion integral using a model that fits photo-absorption data.

- Two main contributions: Resonances $\sim 2\%$, dominated by Delta.

- High E non resonant contribution that we evaluate using a generalized vector meson dominance model $\sim 4\%$.

- For 1.16 GeV kinematics of Qweak we find a total correction of 5.7\% to the parity violating asym. compared to the exp error goal of 2\% (statistical).

with M. Gorchtein, Phys. Rev. Let. 102, 091806
We don’t want Qweak to be another NuTeV

- NuTeV is a beautiful Fermi Lab neutrino experiment that has proved difficult to interpret as a Standard Model test.

- Important to have more work on radiative corrections to Qweak involving excited nucleon intermediate states. This should be done soon.
Pb Radius Experiment

- PREX uses parity violating electron scattering to accurately measure the neutron radius of ^{208}Pb. This has implications for nuclear structure, astrophysics, and atomic parity nonconservation.

- People:
 - Coulomb distortions with E.D. Cooper.
 - Correlations with J. Piekarewicz.
 - Radiative corrections with M. Gorshtein.

- Supported in part by DOE and State of Indiana.