The 12 GeV Parity Violation Program

David S. Armstrong
College of William & Mary

Jlab User Group Meeting June 9 2009
Outline

• Precision tests of Standard Model
• Parity-violation in electron scattering
 Early work: SLAC E122 etc.
• Weak Charges & Physics Reach
 6 GeV: Qweak, PVDIS-6
• PVDIS with Base Equipment
• PVDIS with SoLID
• Moller at 11 GeV

• Conclusions
Precision Tests of the Standard Model

• Received Wisdom: *Standard Model is the effective low-energy theory of underlying more fundamental physics*

• Finding new physics: Two complementary approaches:
 - Energy Frontier (direct): *eg. Tevatron, LHC*
 - Precision Frontier (indirect): *(aka Intensity Frontier)*
 - *eg.*
 - $\mu(g-2)$, EDM, $\beta\beta$ decay, $\mu \rightarrow e \gamma$, $\mu A \rightarrow e A$, $K^+ \rightarrow \pi^+\nu\nu$, etc.
 - ν - oscillations
 - Atomic Parity violation
 - Parity-violating electron scattering

Hallmark of Precision Frontier:
choose observables that are *zero* or *suppressed* in Standard Model

When new physics found in direct measurements, precision measurements useful to determine *e.g.* couplings...
Parity Violating Electron Scattering: Weak Neutral Current Amplitudes

\[M^{EM} = \frac{4\pi\alpha}{Q^2} Q_\ell \ell^\mu J^{EM}_\mu \]
\[M^{NC}_{PV} = \frac{G_F}{2\sqrt{2}} \left[g_A \ell^{\mu 5} J^{NC}_\mu + g_V \ell^{\mu} J^{NC}_{\mu 5} \right] \]

Interference: \(\sigma \sim |M^{EM}|^2 + |M^{NC}|^2 + 2\text{Re}(M^{EM*}M^{NC}) \)

scatter electrons of opposite helicities from unpolarized target

Interference with EM amplitude makes Neutral Current (NC) amplitude accessible

\[A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \sim \left| \frac{M^{NC}_{PV}}{M^{EM}} \right| \sim \frac{Q^2}{(M_Z)^2} \]

First discussed: Ya. B Zel'dovich JETP 36 (1959)
PARITY NON-CONSERVATION IN INELASTIC ELECTRON SCATTERING

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94305, USA

J.E. CLENDEEN, V.W. HUGHES, N. SASAO and K.P. SCHÜLER
Yale University, New Haven, CT 06520, USA

M.G. BORGHINI
CERN, Geneva, Switzerland

K. LÜBELSMeyer
Technische Hochschule Aachen, Aachen, West Germany

and

W. JENTSCHKE
II. Institut für Experimentalphysik, Universität Hamburg, Hamburg, West Germany

Received 14 July 1978

We have measured parity violating asymmetries in the inelastic scattering of longitudinally polarized electrons from deuterium and hydrogen. For deuterium near $Q^2 = 1.6$ (GeV/c)^2 the asymmetry is $(-9.5 \times 10^{-3}) Q^2$ with statistical and systematic uncertainties each about 10%.

Textbook Physics: High Energy Physics (D.H. Perkins); Quarks and Leptons (Halzen & Martin)
Pivotal to establishing Weinberg-Salam-Glashow SU(2) × U(1) gauge theory

Techniques

Optically pumped electron source: rapid helicity reversal
integrate scattered flux
monitoring & feedback to control electron beam fluctuations

Followed by:

1989: Mainz 9Be
W. Heil et al.

1990: MIT/Bates 12C
P.A. Souder et al.
Weak Charges: Vector

Govern strength of neutral current interaction with fermion

<table>
<thead>
<tr>
<th>Charge Particle</th>
<th>Electric</th>
<th>Weak (vector)</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>+2/3</td>
<td>$C_{1u} = -1/2 + 4/3 \sin^2 \theta_W$</td>
</tr>
<tr>
<td>d</td>
<td>-1/3</td>
<td>$C_{1d} = 1/2 - 2/3 \sin^2 \theta_W$</td>
</tr>
<tr>
<td>Proton uud</td>
<td>+1</td>
<td>$Q_{w}^p = 1 - 4 \sin^2 \theta_W \approx 0.06$</td>
</tr>
<tr>
<td>Electron e</td>
<td>-1</td>
<td>$Q_{w}^e = 1 - 4 \sin^2 \theta_W \approx 0.06$</td>
</tr>
</tbody>
</table>

Note “accidental” suppression of $Q_{w}^p, Q_{w}^e \rightarrow sensitivity to new physics
Weak Charges: Axial

<table>
<thead>
<tr>
<th>Charge Particle</th>
<th>Electric</th>
<th>Weak (axial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>+2/3</td>
<td>(C_{2u} = -1/2 + 2 \sin^2 \theta_w)</td>
</tr>
<tr>
<td>d</td>
<td>-1/3</td>
<td>(C_{2d} = +1/2 - 2 \sin^2 \theta_w)</td>
</tr>
</tbody>
</table>

\[C_{2i} = 2g_v^{e}g_A^i\]

\[C_{2u} = -C_{2u} \approx -0.04\]

Note: weak axial charge of proton is not “protected” from hadronic effects via current conservation, unlike vector case (CVC)

\[\rightarrow \text{no clean Standard Model prediction}\]

Access \(C_{2u}\) and \(C_{2d}\) via parity-violating Deep Inelastic Scattering (PVDIS)
All Data & Fits Plotted at 1 σ

$Q_{W}^{T}=−2(2C_{1u} + C_{1d})$

Standard Model Prediction

HAPPEx: H, He
G0: H,
PVA4: H
SAMPLE: H, D
Running of $\sin^2 \theta_W$

PDG 2008 Review: “Electroweak and constraints on New Physics Model”
J. Erler & P. Langacker
QWeak (proton)

- Forward-angle elastic scattering 1.16 GeV e's from proton at 8°
 \[Q^2 = 0.026 \text{ (GeV/c)}^2 \]
- Expected Asymmetry: 234 parts per billion
- Installation begins November 2009
- Runs June 2010 to May 2012
 - Final expt. in Hall C before 12 GeV upgrade
Running of $\sin^2\theta_W$: recent developments

1) Atomic Parity Violation (^{133}Cs): W.G. Porsev, K. Beloy, A. Derevianko

 New calculation of many-body atomic theory (up to triple excitations)
 in $6S_{1/2} \rightarrow 7S_{1/2}$ transition (100 Gb basis set)

 $Q_W(\text{Cs})^{exp}$: $-73.25 \pm 0.29 \pm 0.20$
 $Q_W(\text{Cs})^{SM}$: -73.16 ± 0.03

2) NuTeV anomaly: originally quoted 3σ violation of Standard Model

 • Erler & Langacker: include corrections due to asymmetry in strange quark PDFs (from NuTeV and CTEQ)
 • Charge Symmetry violations (eg Londergan & Thomas PL B 558(2003)132)
 (u/d quark mass difference) account for 1σ
 → vector mean fields in nucleus modifies in-medium PDFs
 claim: entire anomaly accounted for
Energy Scale of an Indirect Search

- Estimate sensitivity to new physics Mass/Coupling ratio
 → add new contact term to the electron-quark Lagrangian:

\[
\mathcal{L}_{\text{PV}}^{e-q} = \mathcal{L}_{\text{PV}}^{SM} + \mathcal{L}_{\text{New}}^{PV} \\
= -\frac{G_F}{\sqrt{2}} \bar{e} \gamma_\mu \gamma_5 e \sum_q C_1 q \bar{q} \gamma^\mu q + \frac{g^2}{4\Lambda^2} \bar{e} \gamma_\mu \gamma_5 e \sum_q h_V^q \bar{q} \gamma^\mu q
\]

\[\Lambda = \text{mass} \quad \Lambda = \text{coupling} \]

\[
\frac{\Lambda}{g} = \frac{1}{\sqrt{\sqrt{2}G_F}} \cdot \frac{1}{\sqrt{\Delta Q_W(p)}
\]

Few to 10's of TeV scale can be reached with PV electron scattering at JLab
New Physics: Examples

• Extra neutral gauge bosons: Z' eg. $E6 \rightarrow SO(10) \times U(1)_\psi$ GUT, SUSY, left/right symmetric models, technicolor, string theories...

• Composite fermions

• Leptoquarks (scalar LQs can arise in R-parity violating SUSY)

New physics can show up differently in Q_{W^e}, Q_{W^p}, vector vs. axial couplings...

\rightarrow complementarity

Direct search at Tevatron: $M_{Z'\psi} > 0.82$ TeV
CDF PRL 99 (2007)171802
Electroweak Global Fit

Figure courtesy of Jens Erler

1σ contours:
- $A_{LR}^{(had.)}$ [SLC]
- $A_{FB}^{(b)}$ [LEP]
- M_W
- low-energy
- m_t

all data: 90% CL

95% CL excluded
Parity-violating DIS

Goal: c_{2u} and c_{2d}

$$A_d = -\left(\frac{3G_F Q^2}{\pi \alpha 2\sqrt{2}}\right) \left(2c_{1u} - c_{1d}\right) \left[1 + R_s(x)\right] + \frac{Y \left(2c_{2u} - c_{2d}\right) R_v}{5 + R_s(x)}.$$

Y = kinematic variable (with R_{LT})

$$W^2 > 4 \text{ GeV}^2$$
$$Q^2 > 1 \text{ GeV}^2$$

$$R_s(x) = \frac{s(x) + \bar{s}(x)}{u(x) + \bar{u}(x) + d(x) + \bar{d}(x)}$$

$$R_v(x) = \frac{u_v(x) + d_v(x)}{u(x) + \bar{u}(x) + d(x) + \bar{d}(x)}$$

1. PVDIS-6 GeV - this Fall
2. PVDIS-12 GeV - Hall C SHMS/HMS (approved)
3. SoLID: Large Acceptance Solenoid Spectrometer (cond. approved)

Caveat: hadron structure...
Hadronic Structure and PV DIS

- PDFs, R_{LT}: under sufficient control at moderate x

- Higher-twist: different Q^2 dependence than DGLAP effects on asymmetry of order 1% seem plausible
 \rightarrow PVDIS may provide unique window into higher-twist

- Charge Symmetry Violation (CSV): $u^p(x) \neq d^n(x)$ etc.
 \rightarrow effect expected to grow with x

- $[d/u$ ratio at high x for proton
 \rightarrow PVDIS can access with hydrogen target]

- Standard Model tests require robust understanding of nucleon structure effects

- Untangling structure effects: kinematic range
PVDIS - approved program

\[(Q^2, x) = (1.1 \text{ GeV}^2, 0.25) \& (1.9 \text{ GeV}^2, 0.3) \]
- use HRS in Hall A, custom fast DAQ
- study \(Q^2 \) evolution (higher twist)
- 3\% (stat) precision on \(A_d \)

\[(Q^2, x, W) = (3.3 \text{ GeV}^2, 0.25, 7.3 \text{ GeV}^2) \]
- 0.5\% stats on \(A_d \) in 670 hrs
- 0.7\% systematics goal
- expected \(A_d \): 285 ppm
- \(\sin^2 \theta_W \) to \(\pm 0.0045 \) (2\%)
 (if one assumes CSV and higher-twist under control)
Running of $\sin^2 \theta_W$
Goal: Measure A_d over large kinematic range
\[\rightarrow \text{disentangle New Physics from hadron structure} \]

Factor of 2 in Q^2 for each x; $W^2 > 4 \text{ GeV}^2$
SoLID : Hadronic effects

Disentangle via x, Q^2 and $y (=\nu/E)$ dependences

$$A = A \left[1 + \beta_{HT} \frac{1}{(1-x)^3 Q^2} + \beta_{CSV} x^2 \right]$$

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>Q^2</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher Twist</td>
<td>\Rightarrow</td>
<td>\Rightarrow</td>
<td></td>
</tr>
<tr>
<td>CSV</td>
<td>\Rightarrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Physics</td>
<td></td>
<td></td>
<td>\Rightarrow</td>
</tr>
</tbody>
</table>
SoLID: spectrometer

Solenoid: BaBar, CDF, or CLEO-II

Fast tracking, particle ID, calorimetry, pipeline electronics

Measure tracks after baffles: suppress low-energy backgrounds (Moller, π's...)

> 200 msr
Resolution < 2%
100 kHz
d/u at high x with SoLID

Switch to hydrogen target:

\[a^P(x) \approx \frac{u(x) + 0.91d(x)}{u(x) + 0.25d(x)} \]

3-month run

- QCD fit
- CTEQ4M
- CTEQ4M (modified)
- This proposal, 90 days (follows MRST-2004)
Parity-violating Moller at 11 GeV

Goal: measure 36 ppb asymmetry with 0.7 ppb error
Would determine Q^e_{weak} to 2.3%
$\sin^2 \theta_W$ to $\pm 0.00026(\text{stat}) \pm 0.00013(\text{syst})$

Novel two-toroid spectrometer exploits topology of identical particles to capture full azimuthal acceptance

\[A_{PV} = mE \frac{G_F}{\sqrt{2}\pi\alpha} \frac{4\sin^2 \theta}{(3 + \cos^2 \theta)^2} Q^e_W. \]

Physics reach to 7.5 TeV
Moller: spectrometer concept

Identical particles: avoid double-counting, only take forward or backward in c-o-m.

select backward θ_{CM}

Exploit to gain full azimuthal acceptance: odd-sectored toroid

Lost $\theta_{CM} > 90^\circ$ electrons in one sector detected via partner ($\theta_{CM} < 90^\circ$) in opposing sector!

Angle range: 5.5 – 17 mrad
Energy range: 2.8 – 8.2 GeV
Moller: some details

- 85 μA 150 cm lH2 target: 5 kW
- 150 GHz rate (integrating DAQ)
- 5040 hours
- azimuthal defocusing - full ϕ population at focal plane: complex hybrid toroid
- background discrimination: r, ϕ

Hybrid (2nd) toroid

600 kW

![Diagram of hybrid toroid](image)
Running of $\sin^2 \theta_W$

Moller-12: competitive with most precise collider data at Z-pole
Complementarity: an example
Timeline/status: SoLID and Moller-12

Moller-12

• PAC 34 - full approval - strong endorsement:

 "The proposed physics reach is outstanding and capable of making this effort a flagship experiment at JLab." "The PAC believes the mission of this experiment... is so important that the Laboratory should make every effort to support the securing of the resources required"

• Working with lab management to prepare funding request (DOE nuclear, +...)

• Goals: CD-0 Spring 2010 construction 2012-2015

• First review (JLab-initiated): late this year

SoLID

• PAC 34 - conditional approval. Issues: clarify hadronic issues, esp. higher-twist; portability of apparatus (effect on other experiments)

• Plan to resubmit to next PAC

• Theory workshop last week at UW Madison (M. Ramsey-Musolf). Focus: higher twist in PVDIS

• Securing engineering help on mechanical design/portability of detector package
Summary

• Precision Parity-Violation experiments at JLab will probe new physics at the TeV scale

• May provide critical information for interpretation of “Beyond the Standard Model physics at the LHC

• PVDIS experiments also can address topical issues in hadron structure: higher-twist, charge symmetry violation, u/d at high-x

- finis -
Precision on $\sin^2\theta_w$

<table>
<thead>
<tr>
<th>Experiment</th>
<th>$\delta \sin^2\theta_w$ (10^{-4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>APV (Cs)</td>
<td>11</td>
</tr>
<tr>
<td>NuTeV</td>
<td>16</td>
</tr>
<tr>
<td>SLAC E158</td>
<td>15</td>
</tr>
<tr>
<td>PVDIS - 6</td>
<td>18</td>
</tr>
<tr>
<td>Qweak</td>
<td>7</td>
</tr>
<tr>
<td>PVDIS -12</td>
<td>11</td>
</tr>
<tr>
<td>Moller - 12</td>
<td>3</td>
</tr>
</tbody>
</table>

Caveat: not all theoretical errors on equal basis
Complementarity with Direct Searches (LHC)

This is with luminosity-upgraded SLHC (1000 fb⁻¹)
Comparison to Z-pole data for $\sin^2 \theta_W$
"Oblique" new physics

Gauge field self-energies affected, but no direct coupling to fermions

Gauge field self-energies affected, but no direct coupling to fermions
SUSY “phase space”

- RPV SUSY (no SUSY Dark Matter)
- Future 2.5% Q_e^{Weak}
- Future 2.5% Q_p^{Weak}
- 4% Q_p^{Weak} Measurement
- RPC SUSY
JLab Qweak will provide a stringent stand alone constraint on Leptoquark based extensions to the SM.

- Q^p_{weak} (semi-leptonic) and E158 (pure leptonic) together make a powerful program to search for and identify new physics.
Lower Bound for “Parity Violating” New Physics

Qweak (4%) with PVES

Atomic only

Qweak constrains new PV physics to beyond 2 TeV

Analysis by R.D. Young et al.