GLUEX and Hall-D

Yves Van Haarlem
for the GLUEX collaboration

Carnegie Mellon

Users Group Workshop and Annual Meeting, June 9, 2009
Confinement

Quantum Chromodynamics
- Gluons have color-charge
 → are self interacting
- Gives rise to flux tubes
 (Bernard et al. - 2004)
- \(V(r) = \kappa r \)
- Non-perturbative
Confinement

- **Quantum Chromodynamics**
 - Gluons have color-charge → are self-interacting
 - Gives rise to flux tubes (Bernard *et al.* - 2004)
 - $V(r) = \kappa r$
 - Non-perturbative

- **Mesons**
 - 2 quarks ($q\bar{q}$)
 - Studied/mapped in spectroscopy
 - Characterized by J^{PC} quantum numbers
 - Some J^{PC} are not allowed ($q\bar{q}$) (e.g. 0^{+-}):
 → Exotic mesons

0$^{+-}$: π^+
1$^{--}$: ρ^+
Can the glue be excited?

- Mesons with excited flux tube
 - Hybrids: L in flux tube
 - $J^{PC} = 1^{+-}$ and 1^{--}
 - About 1 GeV/c^2 above ground state meson spectrum
 - Exotic quantum numbers possible

Lattice calculations predict:

- 1^{+-}: ~ 1.9 GeV/c^2 (lightest nonet)
- 2^{++}: ~ 2.1 GeV/c^2
- 0^{+-}: ~ 2.3 GeV/c^2

→ Exotic quantum numbers!

GlueX wants to map out the hybrid mesons

Measurement of the excited QCD potential
Can the glue be excited?

- Mesons with excited flux tube
 - Hybrids: L in flux tube
 - $J^{PC} = 1^{+-}$ and 1^{--}
 - About 1 GeV/c^2 above ground state meson spectrum
 - Exotic quantum numbers possible

- Lattice calculations predict:
 - $1^{--}: \sim 1.9$ GeV/c^2 (lightest nonet)
 - $2^{+-}: \sim 2.1$ GeV/c^2
 - $0^{+-}: \sim 2.3$ GeV/c^2
 → Exotic quantum numbers!

...
Can the glue be excited?

- Mesons with excited flux tube
 - Hybrids: L in flux tube
 - $J^{PC} = 1^{+-}$ and 1^{-+}
 - About 1 GeV/c^2 above ground state meson spectrum
 - Exotic quantum numbers possible

Lattice calculations predict:

- 1^{-+}: ~ 1.9 GeV/c^2 (lightest nonet)
- 2^{+-}: ~ 2.1 GeV/c^2
- 0^{+-}: ~ 2.3 GeV/c^2

→ Exotic quantum numbers!

→ GlueX wants to map out the hybrid mesons

Measurement of the excited QCD potential
\[\pi/\gamma \text{ BEAM?} \]

π beam

- \(\pi \) with excited flux tube:
 - \(m=1, S=0, L=0, J=1 \rightarrow 1^{++} 1^{--} \)
- Quark spin flip \(\rightarrow \) exotic hybrids

BUT \(\sigma_{\text{exotic-meson}} \) reduced \((\ll \sigma_{\text{meson}}) \)

- A lot of data but little evidence for hybrids
π/γ BEAM?

π beam
- π with excited flux tube:
 - $m=1$, $S=0$, $L=0$, $J=1 \rightarrow 1^{++}$ 1^{--}
- Quark spin flip \rightarrow exotic hybrids
 - **BUT** $\sigma_{exotic-meson}$ reduced ($\ll \sigma_{meson}$)
- A lot of data but little evidence for hybrids

γ beam
- $q\bar{q}$ with excited flux tube:
 - $m=1$, $S=1$, $L=0$, $J=0,1,2$
 $\rightarrow 0^{-+}$ 0^{++} 1^{--} 1^{++} 2^{-+} 2^{++}
 - Exotic hybrids!
- $\sigma_{exotic-meson} \approx \sigma_{meson}$
- Almost no data available
- Linear polarized $\gamma \rightarrow$ parity measurement
Hybrid decays in the fluxtube model

One decay meson gets L_{flux}:
→ $L=0$ meson + $L=1$ meson (most models)

Examples of final states:
- $\eta_1 \rightarrow a_1^+ \pi^- \rightarrow \ldots \rightarrow \pi^+ \pi^- \pi^+ \pi^-$
- $h_0 \rightarrow b_1^0 \pi^0 \rightarrow \ldots \rightarrow \pi^+ \pi^- \gamma \gamma \gamma \gamma \gamma$
- $h'_2 \rightarrow K_1^+ K^- \rightarrow \ldots \rightarrow \pi^+ \pi^- K^+ K^-$

GlueX needs to detect:
- Charged particles
- Multiple γs
 - 70% involved at least one π^0
 - 50% more than one π^0
- Strange particles

<table>
<thead>
<tr>
<th>Exotic Meson</th>
<th>J^{PC}</th>
<th>I</th>
<th>G</th>
<th>Possible Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>0$^{+-}$</td>
<td>1</td>
<td>+</td>
<td>$b_1 \pi$</td>
</tr>
<tr>
<td>h_0</td>
<td>0$^{+-}$</td>
<td>0</td>
<td>−</td>
<td>$b_1 \pi$</td>
</tr>
<tr>
<td>π_1</td>
<td>1$^{-+}$</td>
<td>1</td>
<td>−</td>
<td>$\rho \pi$, $b_1 \pi$</td>
</tr>
<tr>
<td>η_1</td>
<td>1$^{-+}$</td>
<td>0</td>
<td>+</td>
<td>$a_2 \pi$</td>
</tr>
<tr>
<td>b_2</td>
<td>2$^{+-}$</td>
<td>1</td>
<td>+</td>
<td>$a_2 \pi$</td>
</tr>
<tr>
<td>h_2</td>
<td>2$^{+-}$</td>
<td>0</td>
<td>−</td>
<td>$\rho \pi$, $b_1 \pi$</td>
</tr>
</tbody>
</table>
Requirements for hybrid spectroscopy

- **γ - beam** ($\sigma_{exotic-meson}$)
 - Linearly polarized (parity)
 - High enough in energy (to produce hybrids)
 - High luminosity

- **Detector**
 - Large & uniform acceptance
 - Good calorimetry (multiple γs)
 - Good momentum resolution
 - Charged particle ID
 - Handle high luminosity
Requirements for hybrid spectroscopy

γ - beam ($\sigma_{\text{exotic-meson}}$)
- Linearly polarized (parity)
- High enough in energy (to produce hybrids)
- High luminosity

Detector
- Large & uniform acceptance
- Good calorimetry (multiple γs)
- Good momentum resolution
- Charged particle ID
- Handle high luminosity

Hall-D integrated in 12 GeV upgrade of JLab
Ground Breaking Ceremony - Apr. 14, 2009
(Construction started in May 2009)
- $e^-(12\ \text{GeV}/c)$ on $20\ \mu m$ diamond
- Coherent bremsstrahlung - γ-beam
- $8.4-9\ \text{GeV} \ \vec{\gamma}_s$ (tagged)
- $10^8 \ \vec{\gamma}/s$ on p target (collimated)
- Solenoid based detector
LINEARLY POLARIZED \(\gamma \)-BEAM

- 10^8 \(\gamma / \text{s} \) on target:
 - 12 GeV/c e-momentum
 - 2.2 \(\mu \text{A} \) e-beam
 - 20 \(\mu \text{m} \) diamond crystal
 - 75 m diamond-collimator
 - Active collimator aperture: 3.5 mm
- Peak linear polarization: 40%
- Electron pair spectrometer
 - Measures post-collimated \(\gamma \)-beam spectrum
 - Essential for determination of the beam polarization
TAGGER

- 1.5 T dipole, 6 m long, 30 mm pole gap
- Deflects electrons ($13.4° = 12$ GeV)
- 190 Hodoscopes: scintillator + PMTs (12 m long)
 \rightarrow 3 - 11.7 GeV
- Microscope: 124 scintillating fibers (movable) + SiPMs
 \rightarrow 8.3 - 9.1 GeV ± 8 MeV
Spectrometer

- Liquid H target - 30 cm long
- Solenoid: 2.24 T
- Tracking (inside solenoid):
 - Start counter
 - Central Drift Chamber (CDC)
 - Forward Drift Chamber (FDC)
- Calorimetry
 - Barrel Calorimeter (BCAL)
 - Forward Calorimeter (FCAL)
- Time-of-flight wall (ToF)
- Custom read-out & trigger
Which tagged e^- belongs to γ?

- Together with tagger
- 40 scintillators (+PMTs or SiPMs)
- $r = 8 \text{ cm}$
- 50 cm Straight $+$ 10 cm bended (35°)
- Only used in initial phase (lower rate)
- Energy and timing measurements
Central Drift Chamber

- 3500 Straws ($r=8\ mm$): 28 layers
- 6 - 150° optimal angular coverage
- Resolution: $\sigma_{r\phi} = 150\ \mu m$, $\sigma_z = 1.5\ mm$
- $\frac{dE}{dx}$ for π/proton ID ($p < 450\ MeV/c$)
Forward Drift Chamber

- 4 packages: ground - cathode(75°) - wire(0°) - spacer - cathode plane(-75°)
 → suppression of ambiguities
- 1 - 30° angular coverage
- $\sigma_{xy} = 200 \ \mu m$
Barrel Calorimeter

 - 28 segments
 - inner segment → SiPMs
 - Outer segment → PMTs
- \(\sigma_E/E \text{ (\%)} = 5.54/\sqrt{E} + 1.6 \) (testbeam)
- Charged particle PID (ToF: TDC)
Barrel Calorimeter

 - 28 segments
 - inner segment → SiPMs
 - Outer segment → PMTs
- \(\sigma_E/E \) (\%) = 5.54/\(\sqrt{E} \) + 1.6 (testbeam)
- Charged particle PID (ToF: 62 ps TDC)
Time-of-Flight Scintillator Wall

- 5.5 meters downstream the target
- 2 layers of 42 scintillator bars/each
- Time resolution/plane: 80 ps

![Diagram of scintillator wall with dimensions and features]
Time-of-Flight Scintillator Wall

- 5.5 m downstream the target
- 2 layers of 42 scintillator bars/each
- Time resolution/plane: 80 ps
- Good charged PID up to 2 GeV/c

Graph:

TOF distance 550 cm
solid 3σ p-res. 4%
dot 3σ TDC 60ps + TOF 80ps

Yves Van Haarlem (CMU)
Forward Calorimeter

- 5.6 m away from target
- 2800 lead glass blocks (used before in E852 and RadPhi)
- Stacked in circular shape: 2.4 m diameter
- $\sigma/E \, (\%) = \frac{5.6}{\sqrt{E}} + 2.0$
- $\sigma_{xy} \approx 0.64 \, cm/\sqrt{E}$
Forward Calorimeter

As used in E852 at BNL
Trigger

3 \cdot 10^8 \text{ tagged } \gamma \text{s/s:}

- EM background
 - Pair production
 - Compton scattering
 - Dominant background
- Hadronic photoproduction
 - 360 kHz
3 \cdot 10^8$ tagged γs/s:
- **EM background**
 - Pair production
 - Compton scattering
 - Dominant background
- **Hadronic photoproduction**
 - 360 kHz

Level-1 trigger: $\to \sim 200$ kHz
- Studied with Geant simulation
 - hadronic + em (pile up)
- Energy deposition in FCAL and BCAL
- $\#$ hits in Tagger, ToF wall, and start-counter
- Trigger efficiency for exotic decays: >98

![Graph showing photon beam energy and events accepted by Level-1 trigger](image)
3 \cdot 10^8 \text{ tagged } \gamma/s/s:
- EM background
 - Pair production
 - Compton scattering
 - Dominant background
- Hadronic photoproduction
 - 360 kHz

- **Level-1 trigger**: $\rightarrow \sim 200$ kHz
 - Studied with Geant simulation
 - hadronic + em (pile up)
 - Energy deposition in FCAL and BCAL
 - # hits in Tagger, ToF wall, and start-counter
 - Trigger efficiency for exotic decays: $>98\%$

- **Level-3 trigger**: $\rightarrow \sim 20$ kHz
 - Computer farm
 - Only for high lumi runs

![Photon beam energy](image1)

![N_{TRIG}/N_{TOTAL}](image2)
STATUS

- (DOE) CD-3 granted in September 2008
- HALL-D civil construction started May 2009
- BCal is being built
- Procurement for other detectors is in progress
- Beam on target: 2014
Physics potentials with Hall-D

Photon-hadron physics workshop (PHP) (March 2008)

⇒ http://conferences.jlab.org/php2008/index.html

- Primakoff effect
 - Good forward calorimetry needed
- Photo-production on nuclear targets
 - Medium effects on hadron production
- Charm photo-production (near threshold)
- Baryon (Ξ^-) spectroscopy
 - Good PID needed
- Inverse Virtual Compton Scattering (iVCS)
- Your idea

New collaborators are welcome!

Yves Van Haarlem (CMU)
Physics potentials with Hall-D

Photon-hadron physics workshop (PHP) (March 2008)

⇒ http://conferences.jlab.org/php2008/index.html

- Primakoff effect
 - Good forward calorimetry needed
- Photo-production on nuclear targets
 - Medium effects on hadron production
- Charm photo-production (near threshold)
- Baryon (Ξ−) spectroscopy
 - Good PID needed
- Inverse Virtual Compton Scattering (iVCS)
- Your idea

New collaborators are welcome!
The GlueX collaboration

- Carnegie Mellon (CDC)
- Catholic University
- Christopher Newport
- Florida International (start-counter)
- Florida State (ToF wall)
- Glasgow (γ-beam)
- Indiana University (FCal)
- IUCF (CDC, FDC)

- Jefferson Lab (CDC, FDC, BCal, γ-beam)
- Langzou University
- University of Connecticut (γ-beam)
- University of Alberta (BCal)
- University of Athens (BCal)
- University of Pennsylvania (CDC, FDC)
- University of Regina (BCal)
- Yerevan (γ-beam)
The GlueX collaboration

- Will map out the hybrid mesons ($< 2.5 \text{ GeV/c}$) and will do other interesting physics
 - High intensity 9 GeV linear polarized photons
 - Large acceptance spectrometer
 - In the new experimental Hall-D at JLab
- Procurement and construction in progress
- We welcome new participants