Pion Form Factor in Holographic QCD Backgrounds

Herry Kwee

Florida State University

JLAB User Group Meeting 2009, June 9, 2009
Outline

Introduction
- Anti-de Sitter Space (AdS)
- Conformal Field Theory (CFT)
- Holographic Principle Original Conjecture

Holographic QCD
- Holographic QCD Action
- Chiral Symmetry Breaking
- Three Models with Different Backgrounds
- Model Calculation e.g.: Obtaining g_5

Pion Electromagnetic Form Factor

Results and Discussions
- Pion EM Form Factor
- Low-energy QCD observables
- Discussions

Conclusion
Anti-de Sitter Space

- Anti-de Sitter space: maximally symmetric space with negative curvature.
Anti-de Sitter Space

- Anti-de Sitter space: maximally symmetric space with negative curvature.
- We used: 5-dimensional AdS (AdS$_5$) metric,

\[ds^2 = g_{MN} \, dx^M \, dx^N = \frac{1}{z^2} \left(\eta_{\mu\nu} \, dx^\mu \, dx^\nu - dz^2 \right), \]

where \(\eta_{\mu\nu} = \text{diag}(+,-,-,-) \).
Anti-de Sitter Space

► Anti-de Sitter space: maximally symmetric space with negative curvature.

► We used: 5-dimensional AdS (AdS$_5$) metric,

\[ds^2 = g_{MN} \, dx^M \, dx^N = \frac{1}{z^2} (\eta_{\mu\nu} \, dx^\mu \, dx^\nu - dz^2), \]

where \(\eta_{\mu\nu} = \text{diag}(+, -, -, -) \).

► a little exercise in GR \(\kappa \equiv \frac{R}{n(n-1)} = -1 \),
where \(R \): Ricci Scalar, \(n \): number of dimensions = 5.
Anti-de Sitter Space

- Anti-de Sitter space: maximally symmetric space with negative curvature.
- We used: 5-dimensional AdS (AdS\(_5\)) metric,
 \[
 ds^2 = g_{MN} \, dx^M \, dx^N = \frac{1}{z^2} (\eta_{\mu\nu} \, dx^\mu \, dx^\nu - dz^2),
 \]
 where \(\eta_{\mu\nu} = \text{diag}(+, -, -, -, -)\).
- a little exercise in GR \(\kappa \equiv \frac{R}{n(n-1)} = -1\),
 where \(R\): Ricci Scalar, \(n\): number of dimensions = 5.
- Bulk/Louiville coordinate \(z \leftrightarrow \text{inverse energy scale } (Q \sim \frac{1}{z})\)
Anti-de Sitter Space

- Anti-de Sitter space: maximally symmetric space with negative curvature.
- We used: 5-dimensional AdS (AdS$_5$) metric,

$$ds^2 = g_{MN} \, dx^M \, dx^N = \frac{1}{z^2} (\eta_{\mu\nu} \, dx^\mu \, dx^\nu - dz^2),$$

where $\eta_{\mu\nu} = \text{diag}(+, -, -, -)$.
- a little exercise in GR $\rightarrow \kappa \equiv \frac{R}{n(n-1)} = -1$, where R: Ricci Scalar, n: number of dimensions $= 5$.
- Bulk/Louiville coordinate $z \leftrightarrow$ inverse energy scale $(Q \sim \frac{1}{z})$
- one boundary at $z = 0$, our "brane".
- modified boundary $z = \epsilon$ with $\epsilon \equiv$ UV cutoff \rightarrow "UV brane"
Conformal Field Theory

- Conformal symmetry: includes symmetry under scale transformation
 1. $x^\mu \rightarrow \lambda x^\mu$.
 2. scale invariance: physics looks the same at all scale.
Conformal Field Theory

- Conformal symmetry: includes symmetry under scale transformation
 1. $x^\mu \rightarrow \lambda x^\mu$.
 2. scale invariance: physics looks the same at all scale.
 3. Field theory: β-function vanish ($\mu \frac{dg}{d\mu} = \beta(g) = 0$).
Conformal Field Theory

- Conformal symmetry: includes symmetry under scale transformation
 1. $x^\mu \rightarrow \lambda x^\mu$.
 2. Scale invariance: physics looks the same at all scale.
 3. Field theory: β-function vanish ($\mu \frac{dg}{d\mu} = \beta(g) = 0$).

- QCD is not conformal:
Conformal Field Theory

- **Conformal symmetry:** includes symmetry under scale transformation
 1. \(x^\mu \rightarrow \lambda x^\mu \).
 2. Scale invariance: physics looks the same at all scale.
 3. Field theory: \(\beta \)-function vanish \((\mu \frac{dg}{d\mu} = \beta(g) = 0) \).

- **QCD is not conformal:**
 1. Quark mass
 2. QCD scale \((\Lambda_{QCD}) \)
Conformal Field Theory

- Conformal symmetry: includes symmetry under scale transformation
 1. \(x^\mu \rightarrow \lambda x^\mu \).
 2. scale invariance: physics looks the same at all scale.
 3. Field theory: \(\beta \)-function vanish (\(\mu \frac{dg}{d\mu} = \beta(g) = 0 \)).
 4. no S-matrix: no asymptotic state.

- QCD is not conformal:
 1. quark mass
 2. QCD scale (\(\Lambda_{QCD} \))

- we address this issue in our model.
Holography

- in general, holographic principle:
 classical field theory coupled to gravity in (d+1) spatial dimensions
 corresponds to
d-dimensional quantum field theory without gravity on the surface.
Holography

- in general, holographic principle: classical field theory coupled to gravity in \((d+1)\) spatial dimensions corresponds to \(d\)-dimensional quantum field theory without gravity on the surface.

- original AdS/CFT conjecture: type IIB String theory in the \(\text{AdS}_5 \times S_5\) background is equivalent to Large \(\mathcal{N} = 4\) \(\text{SU}(N)\) Super YM in \(d=4\) (Maldacena)
Holography

- in general, holographic principle:
 classical field theory coupled to gravity in \((d+1)\) spatial dimensions
 corresponds to
 \(d\)-dimensional quantum field theory without gravity on the surface.

- original AdS/CFT conjecture:
 type IIB String theory in the \(\text{AdS}_5 \times S_5\) background
 is equivalent to
 Large \(N\) \(\mathcal{N} = 4\) SU(\(N\)) Super YM in \(d=4\) (Maldacena)

- practically:
 every CFT operator \(\mathcal{O}(x)\)
 is associated with
 \(\Psi(x)|_{z=\varepsilon}\) a bulk field at the “UV brane”
Details of the Correspondence

- \(Z_{\text{CFT}}[\phi_0] = Z_S(\phi_0) \).
Details of the Correspondence

- $Z_{CFT}[\phi_0] = Z_S(\phi_0)$.
- AdS side: partition function on S_{d+1},
 $Z_S(\phi_0) = \exp(-I_S(\phi))|_{\phi_0}$.
- ϕ_0: the value of the value of the field ϕ on the boundary.
- $I_S(\phi)$: classical SUGRA action.
Details of the Correspondence

- \(Z_{CFT}[\phi_0] = Z_S(\phi_0) \).
- AdS side: partition function on \(S_{d+1} \),
 \(Z_S(\phi_0) = \exp(-I_S(\phi))|_{\phi_0} \).
- \(\phi_0 \): the value of the value of the field \(\phi \) on the boundary.
- \(I_S(\phi) \): classical SUGRA action.
- CFT side, on the boundary of AdS:
 \[Z_{CFT}[\phi_0] = \int_{S^d} \text{D}\psi \exp(i\phi_0 \mathcal{O}). \]
 \(\mathcal{O} \): operator with \(\phi_0 \) as source (the corresponding operator),
 constructed from the \(\psi' \)s fields.
Details of the Correspondence

- $Z_{CFT}[\phi_0] = Z_S(\phi_0)$.
- AdS side: partition function on S_{d+1},
 \[Z_S(\phi_0) = \exp(-I_S(\phi))|_{\phi_0}. \]
- ϕ_0: the value of the field ϕ on the boundary.
- $I_S(\phi)$: classical SUGRA action.
- CFT side, on the boundary of AdS:

\[
Z_{CFT}[\phi_0] = \int_{S^d} \mathcal{D}\psi \exp(i\phi_0 \mathcal{O}).
\]

- \mathcal{O}: operator with ϕ_0 as source (the corresponding operator), constructed from the ψ’s fields.
- can work out two-point correlation function:

\[
\langle 0|\mathcal{O}(x)\mathcal{O}(y)|0 \rangle = \frac{\delta^2 Z_S[\phi_0]}{\delta \phi_0(x) \delta \phi_0(y)}.
\]
Holographic QCD

Motivation: AdS/CFT \rightarrow AdS/QCD approach

1. "top-bottom" approach
deforming SYM \rightarrow QCD.
Holographic QCD

- **Motivation**: AdS/CFT \rightarrow AdS/QCD approach
 1. "top-bottom" approach
deforming SYM \rightarrow QCD.
 2. "bottom-top" approach
start from QCD (operators) and construct its (their) 5D dual
“gravity” theory (fields).
Holographic QCD

- **Motivation**: AdS/CFT \rightarrow AdS/QCD approach
 1. “top-bottom” approach
 deforming SYM \rightarrow QCD.
 2. “bottom-top” approach
 start from QCD (operators) and construct its (their) 5D dual “gravity” theory (fields).

- **Method**:
 1. construct a 5D action S_{5D}, containing:
 1.1 all the interest field \leftrightarrow needed operators
Holographic QCD

- **Motivation**: AdS/CFT → AdS/QCD approach
 1. “top-bottom” approach
 - deforming SYM → QCD.
 2. “bottom-top” approach
 - start from QCD (operators) and construct its (their) 5D dual “gravity” theory (fields).

- **Method**:
 1. construct a 5D action S_{5D}, containing:
 1.1 all the interest field ↔ needed operators
 1.2 right quantum numbers and Lorentz symmetry
Holographic QCD

- **Motivation**: AdS/CFT \rightarrow AdS/QCD approach
 1. “top-bottom” approach
deforming SYM \rightarrow QCD.
 2. “bottom-top” approach
start from QCD (operators) and construct its (their) 5D dual
“gravity” theory (fields).

- **Method**:
 1. construct a 5D action S_{5D}, containing:
 1.1 all the interest field \leftrightarrow needed operators
 1.2 right quantum numbers and Lorentz symmetry
 2. $SU(2)$ light quarks isospin symmetry \leftrightarrow gauged $SU(2)$
symmetry in the bulk.
Holographic QCD

- **Motivation:** AdS/CFT \rightarrow AdS/QCD approach
 1. “top-bottom” approach
 deforming SYM \rightarrow QCD.
 2. “bottom-top” approach
 start from QCD (operators) and construct its (their) 5D dual
 “gravity” theory (fields).

- **Method:**
 1. construct a 5D action S^{5D}, containing:
 1.1 all the interest field \leftrightarrow needed operators
 1.2 right quantum numbers and Lorentz symmetry
 2. $SU(2)$ light quarks isospin symmetry \leftrightarrow gauged $SU(2)$
 symmetry in the bulk.
 3. holographic version QCD sum rule.
Holographic QCD continue

- Conformal symmetry is broken:
 1. limit the ability of the fields to penetrate into the bulk
Conformal symmetry is broken:

1. limit the ability of the fields to penetrate into the bulk
2. achieved with: cutoff z_0 in the bulk for hardwall or certain feature of dilaton fields $\Phi(z)$.
Holographic QCD continue

Conformal symmetry is broken:
1. limit the ability of the fields to penetrate into the bulk
2. achieved with: cutoff z_0 in the bulk for hardwall or certain feature of dilaton fields $\Phi(z)$.
3. introducing IR scale $\rightarrow \Lambda_{QCD}$
Holographic QCD continue

- Conformal symmetry is broken:
 1. limit the ability of the fields to penetrate into the bulk
 2. achieved with: cutoff z_0 in the bulk for hardwall or certain feature of dilaton fields $\Phi(z)$.
 3. introducing IR scale $\rightarrow \Lambda_{QCD}$

- Features of our holographic QCD:
 1. Confinement.
Holographic QCD continue

Conformal symmetry is broken:
1. limit the ability of the fields to penetrate into the bulk
2. achieved with: cutoff \(z_0 \) in the bulk for hardwall or certain feature of dilaton fields \(\Phi(z) \).
3. introducing IR scale \(\Lambda_{QCD} \)

Features of our holographic QCD:
1. Confinement.
2. Chiral Symmetry Breaking.
Holographic QCD continue

- Conformal symmetry is broken:
 1. limit the ability of the fields to penetrate into the bulk
 2. achieved with: cutoff z_0 in the bulk for hardwall or certain feature of dilaton fields $\Phi(z)$.
 3. introducing IR scale $\rightarrow \Lambda_{QCD}$

- Features of our holographic QCD:
 1. Confinement.
 2. Chiral Symmetry Breaking.
 3. Vector Meson Dominance.
Holographic QCD continue

Conformal symmetry is broken:
1. limit the ability of the fields to penetrate into the bulk
2. achieved with: cutoff z_0 in the bulk for hardwall or certain feature of dilaton fields $\Phi(z)$.
3. introducing IR scale $\rightarrow \Lambda_{QCD}$

Features of our holographic QCD:
1. Confinement.
2. Chiral Symmetry Breaking.
3. Vector Meson Dominance.
4. No running of QCD coupling constant.
The full 5-dimensional action:

$$S = \int d^5 x \ e^{-\Phi(z)} \ \sqrt{g} \ \text{Tr} \left\{ |DX|^2 + 3|X|^2 - \frac{1}{4g_5^2}(F_L^2 + F_R^2) \right\},$$

where $g \equiv |\det g_{MN}|$.
Holographic QCD Action

1. The full 5-dimensional action:

\[S = \int d^5x \ e^{-\Phi(z)} \sqrt{g} \ \text{Tr} \left\{ |DX|^2 + 3|X|^2 - \frac{1}{4g_5^2}(F_L^2 + F_R^2) \right\}, \]

where \(g \equiv |\det g_{MN}|. \)

2. \(D^M X \equiv \partial^M X - iA^M_L X + iX A^M_R. \)
1. The full 5-dimensional action:

\[S = \int d^5x \ e^{-\Phi(z)} \sqrt{g} \ \text{Tr} \left\{ |D \! X|^2 + 3|X|^2 - \frac{1}{4g_5^2}(F_L^2 + F_R^2) \right\}, \]

where \(g \equiv |\det g_{MN}|. \)

2. \(D^M X \equiv \partial^M X - iA^M_L X + iX A^M_R. \)

3. \(A^M_{L,R} \equiv A^M_{L,R} t^a, \)

\(t^a: \) generators of the gauged isospin symmetry.
1. The full 5-dimensional action:

$$S = \int d^5 x \ e^{-\Phi(z)} \ \sqrt{g} \ \text{Tr} \left\{ |DX|^2 + 3|X|^2 - \frac{1}{4g_5^2} (F_L^2 + F_R^2) \right\},$$

where $g \equiv |\det g_{MN}|$.

2. $D^M X \equiv \partial^M X - iA^M_L X + iX A^M_R$.

3. $A^M_{L,R} \equiv A^M_{L,R} t^a$,

 t^a: generators of the gauged isospin symmetry.

4. $F^M_{L,R} \equiv \partial^M A^N_{L,R} - \partial^N A^M_{L,R} - i[A^M_{L,R}, A^N_{L,R}]$.
Chiral Symmetry Breaking

1. $X^{\alpha\beta}$ [more precisely $(2/z)X^{\alpha\beta}$]: associated with $\bar{q}^\alpha_R q^\beta_L$, incorporates all chiral symmetry-breaking behavior.
Chiral Symmetry Breaking

1. $X^{\alpha\beta}$ [more precisely $(2/z)X^{\alpha\beta}$]: associated with $\bar{q}_R^\alpha q_L^\beta$, incorporates all chiral symmetry-breaking behavior.

2. solving for X in the vacuum to satisfy the UV boundary condition ($\frac{2}{\epsilon}X(\epsilon) = M$), gives X_0:

 $$X_0(z) = \frac{1}{2}Mz + \frac{1}{2}\sum z^3.$$
1. $X^{\alpha\beta}$ [more precisely $(2/z)X^{\alpha\beta}$]: associated with $\bar{q}^{\alpha}_R q^{\beta}_L$, incorporates all chiral symmetry-breaking behavior.

2. solving for X in the vacuum to satisfy the UV boundary condition ($\frac{2}{\epsilon}X(\epsilon) = M$), gives X_0:

 $$X_0(z) = \frac{1}{2}Mz + \frac{1}{2}\Sigma z^3.$$

3. $M = m_q1$: explicit χ_{SB} (nonnormalizable solution).
Chiral Symmetry Breaking

1. $X^{\alpha\beta}$ [more precisely $(2/z)X^{\alpha\beta}$]: associated with $\bar{q}_{R}^{\alpha}q_{L}^{\beta}$, incorporates all chiral symmetry-breaking behavior.

2. solving for X in the vacuum to satisfy the UV boundary condition ($\frac{2}{\epsilon}X(\epsilon) = M$), gives X_{0}:

 $$X_{0}(z) = \frac{1}{2} Mz + \frac{1}{2} \Sigma z^{3}.$$

3. $M = m_{q}1$: explicit χ_{SB} (nonnormalizable solution).

4. $\Sigma = \sigma 1$: spontaneous χ_{SB} (normalizable solution).

5. Σ: actually determined by the IR BC's, but in this model it is chosen to be an input parameter.
1. polar gauge fields V: $V^M \equiv \frac{1}{2}(A^M_L + A^M_R)$ (Vector Meson).
Physical Mesons

1. polar gauge fields V: $V^M \equiv \frac{1}{2} (A_L^M + A_R^M)$ (Vector Meson).
2. axial gauge fields A: $A^M \equiv \frac{1}{2} (A_L^M - A_R^M)$ (Axial Meson).
1. polar gauge fields V: $V^M \equiv \frac{1}{2}(A^M_L + A^M_R)$ (Vector Meson).

2. axial gauge fields A: $A^M \equiv \frac{1}{2}(A^M_L - A^M_R)$ (Axial Meson).

3. modified $D^M X$, F^M_{VN} and F^M_{AN}:
 - $D^M X = \partial^M X - i[V^M, X] - i\{A^M, X\}$.
 - $F^M_{VN} \equiv \partial^M V^N - \partial^N V^M - i \left([V^M, V^N] + [A^M, A^N] \right)$.
 - $F^M_{AN} \equiv \partial^M A^N - \partial^N A^M - i \left([V^M, A^N] + [A^M, V^N] \right)$.
Physical Mesons

1. polar gauge fields V: $V^M \equiv \frac{1}{2}(A^M_L + A^M_R)$ (Vector Meson).
2. axial gauge fields A: $A^M \equiv \frac{1}{2}(A^M_L - A^M_R)$ (Axial Meson).
3. modified $D^M X$, F^M_{VN} and F^M_{AN}:
 - $D^M X = \partial^M X - i[V^M, X] - i\{A^M, X\}$.
 - $F^M_{VN} \equiv \partial^M V^N - \partial^N V^M - i([V^M, V^N] + [A^M, A^N])$.
 - $F^M_{AN} \equiv \partial^M A^N - \partial^N A^M - i([V^M, A^N] + [A^M, V^N])$.
4. Pions:
 - $X = X_0 \exp(2i\pi^a t^a)$ (chiral perturbation style).
 - pion field π^a: dimensionless, related to $\tilde{\pi}^a$ of chiral Lagrangians via $\pi^a = \tilde{\pi}^a / f_\pi$, with $f_\pi = 93$ MeV.
Physical Mesons

1. polar gauge fields \(V \): \(V^M \equiv \frac{1}{2}(A^M_L + A^M_R) \) (Vector Meson).
2. axial gauge fields \(A \): \(A^M \equiv \frac{1}{2}(A^M_L - A^M_R) \) (Axial Meson).
3. modified \(D^M X \), \(F^{MN}_V \) and \(F^{MN}_A \):
 - \(D^M X = \partial^M X - i[V^M, X] - i\{A^M, X\} \).
 - \(F^{MN}_V \equiv \partial^M V^N - \partial^N V^M - i ([V^M, V^N] + [A^M, A^N]) \).
 - \(F^{MN}_A \equiv \partial^M A^N - \partial^N A^M - i ([V^M, A^N] + [A^M, V^N]) \).
4. Pions:
 - \(X = X_0 \exp(2i\pi^a t^a) \) (chiral perturbation style).
 - pion field \(\pi^a \): dimensionless, related to \(\tilde{\pi}^a \) of chiral Lagrangians via \(\pi^a = \tilde{\pi}^a / f_\pi \), with \(f_\pi = 93 \) MeV.
 - \(A_\mu \): decomposed into transverse piece \(A_{\mu\perp} \) and longitudinal piece \(\varphi \), \(A_\mu = A_{\mu\perp} + \partial_\mu \varphi \).
Recap of the Model

1. The Action in physical fields:

\[S = \int d^5 x \, e^{-\Phi(z)} \sqrt{g} \, \text{Tr} \left\{ |D X|^2 + 3 |X|^2 - \frac{1}{2 g_5^2} (F_V^2 + F_A^2) \right\}. \]
Recap of the Model

1. The Action in physical fields:

\[S = \int d^5 x \ e^{-\Phi(z)} \ \sqrt{g} \ \text{Tr} \left\{ |D\mathbf{X}|^2 + 3|X|^2 - \frac{1}{2g_5^2}(F_V^2 + F_A^2) \right\} . \]

2. The model free parameters:
 - coupling constant: \(g_5 \)
 - confinement: \(Z_{IR} \)
 - chiral symmetry breaking: \(m_q \) and \(\sigma \)
Recap of the Model

1. The Action in physical fields:

\[
S = \int d^5x \, e^{-\Phi(z)} \sqrt{g} \ \text{Tr} \left\{ |DX|^2 + 3|X|^2 - \frac{1}{2g_5^2}(F_V^2 + F_A^2) \right\}.
\]

2. The model free parameters:
 - coupling constant: \(g_5 \)
 - confinement: \(Z_{IR} \)
 - chiral symmetry breaking: \(m_q \) and \(\sigma \)

3. the low-energy QCD observables (to be calculated):
 \(m_\rho, F_\rho, \ m_{a_1}, \ F_{a_1}, \ m_\pi, \ f_\pi, \ g_{\rho\pi\pi} \) and \(\pi \) electromagnetic form factor \((F_\pi) \)
Three different backgrounds

Table: Comparison of hard-wall, soft-wall soft-wall with modified scalar field $X(z)$ and Saxon-Woods hybrid model.

<table>
<thead>
<tr>
<th></th>
<th>hard-wall</th>
<th>soft-wall</th>
<th>Saxon-Woods hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>cut-off</td>
<td>cut-off at $z = z_0$</td>
<td>no cutoff</td>
<td>no cutoff</td>
</tr>
<tr>
<td>$\Phi(z)$</td>
<td>$\Phi(z) = 0$</td>
<td>$\Phi(z) = \kappa^2 z^2$</td>
<td>$e^{-\Phi(z)} = \frac{e^{\lambda^2 z_0^2} - 1}{e^{\lambda^2 z_0^2} + e^{\lambda^2 z^2} - 2}$</td>
</tr>
<tr>
<td>$\partial_z \psi(x, z)</td>
<td>_{z=z_0} = 0$</td>
<td>$\psi(x, z)</td>
<td>_{z \to \infty} = 0$</td>
</tr>
<tr>
<td>$X_0(z)$</td>
<td>$\frac{1}{2} \nu(z)$</td>
<td>$\frac{1}{2} \nu(z)$</td>
<td>$\frac{1}{2} \nu(z)$</td>
</tr>
</tbody>
</table>

with $\nu(z) = m_q z + \sigma z^3$
Equations of motion of the fields

1. Equation of motion of the Fourier transformed $\Psi(q, z)$:

$$\partial_z \left(\frac{1}{z} \partial_z V_\mu^a \right) + \frac{q^2}{z} V_\mu^a = 0$$

$$\left[\partial_z \left(\frac{1}{z} \partial_z A_\mu^a \right) + \frac{q^2}{z} A_\mu^a - \frac{g_5^2 \nu(z)^2}{z^3} A_\mu^a \right] \perp = 0$$

$$\partial_z \left(\frac{1}{z} \partial_z \phi^a \right) + \frac{g_5^2 \nu(z)^2}{z^3} (\pi^a - \phi^a) = 0$$

$$- q^2 \partial_z \phi^a + \frac{g_5^2 \nu(z)^2}{z^2} \partial_z \pi^a = 0$$

where $\nu(z) = 2X_0(z) = m_q z + \sigma z^3$.
Solving the Vector EOM and Obtaining g_5

1. Equation of motion of the Fourier transformed $V_\mu(q, z)$:

$$\partial_z \left(\frac{1}{z} \partial_z V^a_\mu \right) + \frac{q^2}{z} V^a_\mu = 0,$$
Solving the Vector EOM and Obtaining g_5

1. Equation of motion of the Fourier transformed $V_\mu(q, z)$:

$$\partial_z \left(\frac{1}{z} \partial_z V^a_\mu \right) + \frac{q^2}{z} V^a_\mu = 0,$$

2. Decompose $V^a_\mu(q, z) = \mathcal{V}(q, z) \tilde{V}^a_\mu(q)$,

$\tilde{V}^a_\mu(q)$: Fourier transform of the source of $J^a_\mu = \bar{q} \gamma_\mu t^a q$ at $z = \epsilon$

$\mathcal{V}(q, z)$: “bulk-to-boundary propagator”, normalized to $\mathcal{V}(q, \epsilon) = 1$.

Solving the Vector EOM and Obtaining g_5

1. Equation of motion of the Fourier transformed $V_\mu(q, z)$:

 \[
 \partial_z \left(\frac{1}{z} \partial_z V^a_\mu \right) + \frac{q^2}{z} V^a_\mu = 0,
 \]

2. decompose $V^a_\mu(q, z) = V(q, z) \tilde{V}^a_\mu(q)$,
 \[
 \tilde{V}^a_\mu(q): \text{Fourier transform of the source of } J^a_\mu = \bar{q} \gamma_\mu t^a q \text{ at } z = \epsilon
 \]
 $V(q, z)$: “bulk-to-boundary propagator”, normalized to $V(q, \epsilon) = 1$.

3. Boundary Conditions:
 - axial-like gauge, $V_z(q, z) = 0$.
 - z_0 boundary condition.

4. $V(q, z)$: Bessel functions.
Surface Term

1. Referring to the 5^{th}-D surface ($z = \epsilon$) term, the 4D surface term $\rightarrow 0$.

2. Substituting EOM to the F^2_V portion of the action:

$$S_{Surf} = -\frac{1}{2g_5^2} \int d^4x \; \tilde{V}_a^\mu(-q) \tilde{V}^{\mu a}(q) \frac{1}{z} \partial_z V(q, z) \Bigg|_{z=\epsilon}.$$
1. Referring to the 5^{th}-D surface ($z = \epsilon$) term, the 4D surface term $\rightarrow 0$.

2. Substituting EOM to the F^2_V portion of the action:

$$S_{\text{Surf}} = -\frac{1}{2g_5^2} \int d^4x \, \tilde{V}^a_{\mu}(-q) \tilde{V}^{\mu a}(q) \frac{1}{z} \partial_z V(q, z) \bigg|_{z=\epsilon}.$$

3. Isospin conservation ($q_{\mu} V^{\mu} = 0$):
 - $\tilde{V}^a_{\mu} \tilde{V}^{\mu a} \rightarrow \tilde{V}^a_{\mu} \tilde{V}^{b}_{\nu} \Pi^{\mu \nu} \delta^{ab}$.
 - $\Pi^{\mu \nu} \equiv \eta^{\mu \nu} - q^{\mu} q^{\nu} / q^2$.

Surface Term
Two-point Correlation Function

Quadratic variation of the action with respect to the source \tilde{V} produces the vector current two-point function:

$$\int d^4 x \, e^{i q x} \langle J^a_{\mu}(x) J^b_{\nu}(0) \rangle = \delta^{ab} \ \Pi_{\mu\nu} \ \Sigma_V(q^2)$$

$$\begin{align*}
\text{AdS/CFT} & = \left(\frac{\delta}{\delta \tilde{V}^a_{\mu}(-q)} \right) \left(\frac{\delta}{\delta \tilde{V}^b_{\nu}(q)} \right) S[\tilde{V}^c_{\alpha}] \\
\Rightarrow \Sigma_V(q^2) & = - \frac{1}{g_5^2} \frac{\partial_z V(q, z)}{z} \bigg|_{z=\epsilon}
\end{align*}$$

And in the large Euclidean $Q^2 = -q^2$ limit:

$$\Sigma_V(-Q^2) = \frac{Q^2}{2g_5^2} \ln Q^2.$$
Matching to the original QCD sum rule result for currents J_μ, Shifman et al. (1979):

\[
\Sigma_V(-Q^2) = \frac{Q^2 N_c}{24\pi^2} \ln Q^2 ,
\]

\[
\Rightarrow g_5^2 = \frac{12\pi^2}{N_c} \rightarrow 4\pi^2 .
\]
1. Pion EM FF: obtained from $V_{\pi\pi}$, V_{AA} and $V_{A\pi}$ terms in the action: longitudinal modes of A contribute.

$|DX|^2 \supset (\partial_{\pi})(V_{\pi})$ and $(V_{\pi})(A)$.

$F^2_V \supset (\partial V)(AA)$.

F^2_A: does not contribute because the longitudinal modes cancel each other.
Pion Electromagnetic Form Factor

1. Pion EM FF: obtained from $V_\pi\pi$, VAA and $VA\pi$ terms in the action: longitudinal modes of A contribute.

$|DX|^2 \supset (\partial_\pi)(V_\pi)$ and $(V_\pi)(A)$.

$F^2_V \supset (\partial V)(AA)$.

F^2_A: does not contribute because the longitudinal modes cancel each other.

2. The complete related action:

$$S^{V_\pi\pi}_{AdS} = \epsilon_{abc} \int d^4x \int dz \left[\frac{1}{g_5^2 z} (\partial_z \partial_\mu \varphi^a) V^b_\mu (\partial_z \varphi^c)
+ \frac{v(z)^2}{z^3} (\partial_\mu \pi^a - \partial_\mu \varphi^a) V^b_\mu (\pi^c - \varphi^c) \right].$$
1. The 3-point correlation function:

\[\langle J^a_\pi(p_1) J^{\mu,b}_V(q) J^c_\pi(-p_2) \rangle = \epsilon^{abc} F(p_1^2, p_2^2, q^2) (p_1 + p_2)^\mu \times i(2\pi)^4 \delta^{(4)}(p_1 - p_2 + q). \]
Form Factor and 3-point Correlation Function

1. The 3-point correlation function:

\[
\langle J^a_\pi(p_1) J^{\mu,b}_V(q) J^c_\pi(-p_2) \rangle = \epsilon^{abc} F(p_1^2, p_2^2, q^2) (p_1 + p_2)^\mu \\
\times i(2\pi)^4 \delta^{(4)}(p_1 - p_2 + q).
\]

2. The dynamical form factor \(F(p_1^2, p_2^2, q^2) \) in terms of transition form factors:

\[
F(p_1^2, p_2^2, q^2) = \sum_{n,k=1}^{\infty} \frac{f_n f_k F_{nk}(q^2)}{(p_1^2 - M^2_n) (p_2^2 - M^2_k)},
\]

where \(F_{nk}(q^2) \) correspond to form factors for \(n \to k \) transitions.
Form Factor and 3-point Correlation Function

1. The 3-point correlation function:
\[
\langle J^a_\pi(p_1) j^{\mu,b}_V(q) j^c_\pi(-p_2) \rangle = \epsilon^{abc} F(p_1^2, p_2^2, q^2)(p_1 + p_2)^\mu
\times i(2\pi)^4 \delta^{(4)}(p_1 - p_2 + q) .
\]

2. The dynamical form factor \(F(p_1^2, p_2^2, q^2) \) in terms of transition form factors:
\[
F(p_1^2, p_2^2, q^2) = \sum_{n,k=1}^{\infty} \frac{f_nf_k F_{nk}(q^2)}{(p_1^2 - M_n^2)(p_2^2 - M_k^2)},
\]
where \(F_{nk}(q^2) \) correspond to form factors for \(n \rightarrow k \) transitions.

3. the pion form factor \(F_\pi(q^2) \equiv F_{11}(q^2) \).
AdS QCD and 3-point Correlation Function

1. Trilinear variation of the action with respect to the source $\tilde{V}\tilde{\pi}\tilde{\pi}$ produces the 3-point function:

$$\langle J_{\pi}^{a}(p_{1})J_{V}^{\mu,b}(q)J_{\pi}^{c}(-p_{2}) \rangle^{AdS/CFT} = \left(\frac{\delta}{\delta \tilde{\pi}^{a}(p_{1})} \right) \left(\frac{\delta}{\delta \tilde{V}^{b,\mu}(q)} \right) \left(\frac{\delta}{\delta \tilde{\pi}^{c}(-p_{2})} \right) S_{AdS}^{V\pi\pi}.$$
1. Trilinear variation of the action with respect to the source $\tilde{V}\tilde{\pi}\tilde{\pi}$ produces the 3-point function:

$$\langle J^a_\pi(p_1)J^\mu,b_\pi(q)J^c_\pi(-p_2) \rangle^{AdS/CFT} = \left(\frac{\delta}{\delta \tilde{\pi}^a(p_1)} \right) \left(\frac{\delta}{\delta \tilde{V}^b,\mu(q)} \right) \left(\frac{\delta}{\delta \tilde{\pi}^c(-p_2)} \right) S_{AdS}^{V\pi\pi}.$$

2. Pion EM FF:

$$F_\pi(q^2) = \int_0^{z_{IR}} dz \frac{V(q,z)}{f_\pi^2} \left\{ \frac{1}{g_5^2 z} [\partial_z \varphi(z)]^2 + \frac{v(z)^2}{z^3} [\pi(z) - \varphi(z)]^2 \right\}.$$
Figure: Spacelike scaling behavior for $F_\pi(Q^2)$ as a function of $Q^2 = -q^2$. The continuous line is the prediction of the hard-wall model with $1/z_0 = 323$ MeV. The dotted line is the prediction of the soft-wall model with $\kappa = m_\rho/2$. The crosses use modified $e^{-\Phi(z)}$ with $\lambda z_0 = 2.1$, and the pluses use $\lambda z_0 = 1$. The black stars are from a data compilation from CERN, the blue circles are from DESY, reanalyzed by Tadevosyan et al., the green triangle is data from DESY, and the red boxes and green diamonds are from Jefferson Lab.
Predictions for QCD observables

Table: Comparison of soft-wall model to modified $e^{-\Phi(z)}$ with $\lambda z_0 = 1$; values in MeV (except for $g_{\rho\pi\pi}$).

<table>
<thead>
<tr>
<th>Observable</th>
<th>Experiment</th>
<th>Soft-wall</th>
<th>$\lambda z_0 = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_π</td>
<td>139.6±0.0004</td>
<td>139.6</td>
<td>139.6</td>
</tr>
<tr>
<td>m_ρ</td>
<td>775.5±0.4</td>
<td>777.4</td>
<td>779.2</td>
</tr>
<tr>
<td>m_{a_1}</td>
<td>1230±40</td>
<td>1601</td>
<td>1596</td>
</tr>
<tr>
<td>f_π</td>
<td>92.4±0.35</td>
<td>87.0</td>
<td>92.0</td>
</tr>
<tr>
<td>$f_{\rho}^{1/2}$</td>
<td>346.2±1.4</td>
<td>261</td>
<td>283</td>
</tr>
<tr>
<td>$f_{a_1}^{1/2}$</td>
<td>433±13</td>
<td>558</td>
<td>576</td>
</tr>
<tr>
<td>$g_{\rho\pi\pi}$</td>
<td>6.03±0.07</td>
<td>3.33</td>
<td>3.49</td>
</tr>
</tbody>
</table>
Predictions for QCD observables

Table: Comparison of hard-wall model to the modified $e^{-\Phi(z)}$ with $\lambda z_0 = 2.1$; values in MeV (except for $g_{\rho\pi\pi}$).

<table>
<thead>
<tr>
<th>Observable</th>
<th>Experiment</th>
<th>Hard wall</th>
<th>$\lambda z_0 = 2.1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_π</td>
<td>139.6 ± 0.0004</td>
<td>139.6</td>
<td>139.6</td>
</tr>
<tr>
<td>m_ρ</td>
<td>775.5 ± 0.4</td>
<td>775.3</td>
<td>777.5</td>
</tr>
<tr>
<td>m_{a_1}</td>
<td>1230 ± 40</td>
<td>1358</td>
<td>1343</td>
</tr>
<tr>
<td>f_π</td>
<td>92.4 ± 0.35</td>
<td>92.1</td>
<td>88.0</td>
</tr>
<tr>
<td>$f_{\rho}^{1/2}$</td>
<td>346.2 ± 1.4</td>
<td>329</td>
<td>325</td>
</tr>
<tr>
<td>$f_{a_1}^{1/2}$</td>
<td>433 ± 13</td>
<td>463</td>
<td>474</td>
</tr>
<tr>
<td>$g_{\rho\pi\pi}$</td>
<td>6.03 ± 0.07</td>
<td>4.48</td>
<td>4.63</td>
</tr>
</tbody>
</table>
Discussions

1. the Saxon-Woods hybrid model interpolate between hard-wall and soft-wall model.
Discussions

1. the Saxon-Woods hybrid model interpolate between hard-wall and soft-wall model.

2. the SW hybrid model with parameter matching it to hard-wall model produces higher-order vector meson poles exhibiting Regge trajectory behavior $m_n^2 \sim n$

Table: Comparison of vector meson masses and decay constants (in MeV) for the hard-wall model and the model using modified $e^{-\Phi(z)}$ with $\lambda z_0 = 2.1$.

<table>
<thead>
<tr>
<th>Original hard wall</th>
<th>m_ρ</th>
<th>$F_\rho^{1/2}$</th>
<th>modified $e^{-\Phi(z)}$ with $\lambda z_0 = 2.1$</th>
<th>m_ρ</th>
<th>$F_\rho^{1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>775.6</td>
<td>392</td>
<td>777.5</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1780.2</td>
<td>734</td>
<td>1608.1</td>
<td>528</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2790.8</td>
<td>1029</td>
<td>2226.8</td>
<td>611</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3802.8</td>
<td>1298</td>
<td>2637.5</td>
<td>644</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4815.2</td>
<td>1549</td>
<td>2986.6</td>
<td>683</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

1. Motivated AdS/CFT correspondence, proposed by Maldacena in 1997, a five-dimensional framework for modeling low-energy properties of QCD is proposed by Erlich et al. in 2005.
Conclusions

1. Motivated AdS/CFT correspondence, proposed by Maldacena in 1997, a five-dimensional framework for modeling low-energy properties of QCD is proposed by Erlich et al. in 2005.

2. This holographic QCD model naturally incorporates properties of QCD such as confinement and chiral symmetry breaking.
Conclusions

1. Motivated AdS/CFT correspondence, proposed by Maldacena in 1997, a five-dimensional framework for modeling low-energy properties of QCD is proposed by Erlich et al. in 2005.

2. This holographic QCD model naturally incorporates properties of QCD such as confinement and chiral symmetry breaking.

3. Prediction for low-energy QCD observables are off only by 10%
Conclusions

1. Motivated AdS/CFT correspondence, proposed by Maldacena in 1997, a five-dimensional framework for modeling low-energy properties of QCD is proposed by Erlich et al. in 2005.

2. This holographic QCD model naturally incorporates properties of QCD such as confinement and chiral symmetry breaking.

3. Prediction for low-energy QCD observables are off only by 10%.

4. Possible improvement on the model and future work:
 - including baryons in the model via Chern-Simons terms.
 - inclusion of strange quark (SU(3)×SU(3) chiral symmetry).
 - including running of the gauge coupling by considering logarithmic corrections to the AdS geometry.
AdS/CFT Dictionary

<table>
<thead>
<tr>
<th>AdS</th>
<th>CFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field</td>
<td>Operator</td>
</tr>
<tr>
<td>Mass</td>
<td>Scaling Dimension</td>
</tr>
<tr>
<td>Non-Normalizable Mode</td>
<td>Source</td>
</tr>
<tr>
<td>Normalizable Mode</td>
<td>State ↔ VEV</td>
</tr>
<tr>
<td>Gauge Field</td>
<td>Global Symmetry</td>
</tr>
</tbody>
</table>
Holographic QCD Dictionary

1. fields ↔ operators:

<table>
<thead>
<tr>
<th>4D: $\mathcal{O}(x)$</th>
<th>5D: $\phi(x, z)$</th>
<th>p</th>
<th>Δ</th>
<th>$(m_5)^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{q}_L \gamma^{\mu} t^a q_L$</td>
<td>$A^{a}_{L\mu}$</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>$\bar{q}_R \gamma^{\mu} t^a q_R$</td>
<td>$A^{a}_{R\mu}$</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>$\bar{q}_R^{\alpha} q^\beta_L$</td>
<td>$(2/z) X^{\alpha\beta}$</td>
<td>0</td>
<td>3</td>
<td>-3</td>
</tr>
</tbody>
</table>

Table: Operators/fields of the model

2. masses ↔ scaling dimensions:

$$(\Delta - p)(\Delta + p - 4) = m^2_5$$ (Witten, Gubser et al.),

m_5: 5D masses of the fields $A^{a}_{L\mu}$, $A^{a}_{R\mu}$, and X

Δ: the dimension of the corresponding p-form operator.
Table: Comparison of hard-wall, soft-wall soft-wall with modified scalar field $X(z)$ and hard-wall-soft-wall hybrid model.

<table>
<thead>
<tr>
<th>hard-wall</th>
<th>soft-wall</th>
<th>modified soft-wall</th>
<th>hard-wall-soft-wall hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>cut-off at $z = z_0$</td>
<td>no cutoff</td>
<td>no cutoff</td>
<td>no cutoff</td>
</tr>
<tr>
<td>$\phi(z) = 0$</td>
<td>$\phi(z) = \kappa^2 z^2$</td>
<td>$\phi(z) = \kappa^2 z^2$</td>
<td>$e^{-\phi(z)} = \frac{e^{\lambda^2 z^2_0} - 1}{e^{\lambda^2 z^2_0} + e^{\lambda^2 z^2} - 2}$</td>
</tr>
<tr>
<td>$\partial_z \Psi(x, z)</td>
<td>_{z=z_0} = 0$</td>
<td>$\Psi(x, z)</td>
<td>_{z \to \infty} = 0$</td>
</tr>
<tr>
<td>$X_0(z) = \frac{1}{2} \nu(z)$</td>
<td>$X_0(z) = \frac{1}{2} \nu(z)$</td>
<td>$X_0(z) = \frac{1}{2} \nu(z)(1 - e^{-A_c / \kappa^4 z^4})$</td>
<td>$X_0(z) = \frac{1}{2} \nu(z)$</td>
</tr>
</tbody>
</table>

with $\nu(z) = m_q z + \sigma z^3$