Exploring the Antiquark Structure of Matter with Drell-Yan Scattering: Fermilab E-906/Drell-Yan

Paul E. Reimer
Argonne National Laboratory
Representing the Fermilab E-906/Drell-Yan collaboration

Why Drell-Yan?

Where will we measure it?

What will we learn?

This work is supported in part by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
Why talk about Drell-Yan at JLab?

- **Similar Physics Goals**
 - Parton level understanding of nucleon
 - Electromagnetic probe

Diagram:

- **e-**
- **e-**
- **γ**
- **hadron**
- **proton**
- **X**
Why talk about Drell-Yan at JLab?

- Similar Physics Goals
 - Parton level understanding of nucleon
 - Electromagnetic probe

- Differences
 - Timelike (Drell-Yan) vs. spacelike (DIS) virtual photon.
 - Hadron beam and convolution of parton distributions (Drell-Yan)
 - Factorization/Hadronization (SI-DIS)
 - Ability to select sea quark distributions
What’s in the proton?

Just three valence quarks?

http://www.sciencecartoonsplus.com/index.htm
What’s in the proton?

- Just three valence quarks?
- NO!!
- And quark distributions change in a nucleus

http://www.sciencecartoonsplus.com/index.htm
What is the distribution of sea quarks?

In the nucleon:
- Sea and gluons are important:
 - 98% of mass; 60% of momentum at $Q^2 = 2\text{ GeV}^2$

- Not just three valence quarks and QCD. Shown by E866/NuSea d-bar/u-bar data
- What are the origins of the sea?
- Significant part of LHC beam.

In nuclei:
- The nucleus is not just protons and neutrons
- What is the difference?
 - Bound system
 - Virtual mesons affects antiquarks distributions
Simple view of parton distributions: A historic approach

- Constituent Quark/Bag Model motivated valence approach
 - Use valence-like (primordial) quark distributions at some very low scale, Q^2, perhaps a few hundred MeV

- It was quickly realized that some valence-like (primordial) sea was needed. Gluck, Reya, Vogt, ZPC 53, 127 (1992)
 - Driven by need to agree with BCDMS and EMC data
 - Assumption of symmetric sea remained
Light Antiquark Flavor Asymmetry: Brief History

- Naïve Assumption:

\[\bar{d}(x) = \bar{u}(x) \]
Light Antiquark Flavor Asymmetry: Brief History

- Naïve Assumption:
 \(\bar{d}(x) = \bar{u}(x) \)

- NMC (Gottfried Sum Rule)
 \[\int_0^1 \left[\bar{d}(x) - \bar{u}(x) \right] dx \neq 0 \]
Light Antiquark Flavor Asymmetry: Brief History

- Naïve Assumption:
 \[\bar{d}(x) = \bar{u}(x) \]

- NMC (Gottfried Sum Rule)
 \[\int_0^1 \left[\bar{d}(x) - \bar{u}(x) \right] dx \neq 0 \]

Graph showing the comparison of different models (NA51, MRSr2, CTEQ4m) with data points from GSR, NMC, and NA51 experiments. The graph indicates that the NA51 Drell-Yan confirms \(\bar{d}(x) > \bar{u}(x) \).
Light Antiquark Flavor Asymmetry: Brief History

- Naïve Assumption:
 \[\bar{d}(x) = \bar{u}(x) \]

- NMC (Gottfried Sum Rule)
 \[\int_0^1 \left[\bar{d}(x) - \bar{u}(x) \right] dx \neq 0 \]

- NA51 (Drell-Yan)
 \(\bar{d} > \bar{u} \) at \(x = 0.18 \)

- E866/NuSea (Drell-Yan)
 \(\frac{\bar{d}(x)}{\bar{u}(x)} \) for \(0.015 \leq x \leq 0.35 \)

- Knowledge of distributions is data driven
 - Sea quark distributions are difficult for Lattice QCD
Light Antiquark Flavor Asymmetry: Brief History

- Naïve Assumption:
 \[\bar{d}(x) = \bar{u}(x) \]

- NMC (Gottfried Sum Rule)
 \[\int_0^1 \left[\bar{d}(x) - \bar{u}(x) \right] \, dx \neq 0 \]

- NA51 (Drell-Yan)
 \(\bar{d} > \bar{u} \) at \(x = 0.18 \)

- E866/NuSea (Drell-Yan)
 \(\bar{d}(x)/\bar{u}(x) \) for \(0.015 \leq x \leq 0.35 \)

- Knowledge of distributions is data driven
 - Sea quark distributions are difficult for Lattice QCD
Proton Structure: By What Process Is the Sea Created?

- There is a gluon splitting component which is symmetric
 \[\bar{d}(x) = \bar{u}(x) = \bar{q}(x) \]

- \[\bar{d} - \bar{u} \]
 - Symmetric sea via pair production from gluons subtracts off
 - No Gluon contribution at 1st order in \(\alpha_s \)
 - Nonperturbative models are motivated by the observed difference

- A proton with 3 valence quarks plus glue cannot be right at any scale!!
Proton Structure: By What Process Is the Sea Created?

- There is a gluon splitting component which is symmetric
 \[\bar{d}(x) = \bar{u}(x) = \bar{q}(x) \]

- \[\bar{d} - \bar{u} \]
 - Symmetric sea via pair production from gluons subtracts off
 - No Gluon contribution at 1st order in \(\alpha_s \)
 - Nonperturbative models are motivated by the observed difference

- A proton with 3 valence quarks plus glue cannot be right at any scale!!
Models Relate Antiquark Flavor Asymmetry and Spin

- Meson Cloud in the nucleon—Sullivan process in DIS

\[\langle P|P\rangle = (1 - a - b) \langle P_0|P_0\rangle + a \langle N_0\pi|N_0\pi\rangle + b \langle \Delta_0\pi|\Delta_0\pi\rangle \ldots \]

- Chiral Quark models—effective Lagrangians

\[\langle q|q\rangle = \left[1 - \frac{3a}{2} \right] \langle q|q\rangle + \frac{3a}{2} \langle q\pi|q\pi\rangle \]

- Instantons

\[\mathcal{L} \propto \bar{u}_R u_L \bar{d}_R d_L + \bar{u}_L u_R \bar{d}_L d_R \]

- Statistical Parton Distributions
Models Relate Antiquark Flavor Asymmetry and Spin

- **Meson Cloud in the nucleon—Sullivan process in DIS**

 \[
 \langle P|P \rangle = (1 - a - b) \langle P_0|P_0 \rangle + a \langle N_0 \pi|N_0 \pi \rangle + b \langle \Delta_0 \pi|\Delta_0 \pi \rangle \ldots
 \]

 \[
 \int_0^1 [\bar{d}(x) - \bar{u}(x)] = \frac{2a - b}{3} = 0.10 \to a = 0.2 = 2b \quad g_A = \int_0^1 [\Delta u - \Delta d] \, dx = \frac{5}{3} - \frac{20}{27} \sqrt{2ab} \to 1.5
 \]

- **Chiral Quark models—effective Lagrangians**

 \[
 \langle q|q \rangle = \left[1 - \frac{3a}{2} \right] \langle q|q \rangle + \frac{3a}{2} \langle q\pi|q\pi \rangle
 \]

 \[
 \int_0^1 [\bar{d}(x) - \bar{u}(x)] = \frac{2a}{3} = 0.10 \to a = 0.14 \quad g_A = \int_0^1 [\Delta u - \Delta d] \, dx = \frac{5}{3} \cdot 3a \to 1.43
 \]

- **Instantons**

 \[
 \mathcal{L} \propto \bar{u}_R u_L \bar{d}_R d_L + \bar{u}_L u_R \bar{d}_L d_R \quad \bar{d}_I(x) - \bar{u}_I(x) = \frac{3}{5} [\Delta u_I(x) - \Delta d_I(x)]
 \]

- **Statistical Parton Distributions**

 \[
 \bar{d}(x) - \bar{u}(x) \approx \Delta \bar{u}(x) - \Delta \bar{d}(x)
 \]
Proton Structure: By What Process Is the Sea Created?

- **Meson Cloud in the nucleon**
 - Sullivan process in DIS
 \[|p\rangle = |p_0\rangle + \alpha |N\pi\rangle + \beta |\Delta \pi\rangle + \ldots \]

- **Chiral Models**
 - Interaction between Goldstone Bosons and valence quarks
 \[|u\rangle \rightarrow |d\pi^+\rangle \text{ and } |d\rangle \rightarrow |u\pi^-\rangle \]

Perturbative sea apparently dilutes meson cloud effects at large-x, but this requires large-x gluons
Proton Structure: By What Process Is the Sea Created?

- **Meson Cloud in the nucleon**
 - Sullivan process in DIS

 \[|p\rangle = |p_0\rangle + \alpha |N\pi\rangle + \beta |\Delta\pi\rangle + \ldots \]

- **Chiral Models**
 - Interaction between Goldstone Bosons and valence quarks

 \[|u\rangle \rightarrow |d\pi^+\rangle \text{ and } |d\rangle \rightarrow |u\pi^-\rangle \]

Diagram:

- **Meson Cloud**
 - Peng et al.
 - Alberg, Henley, and Miller
 - Nikolaev et al.
 - Szczurek et al.
 - Pobylitsa et al.

- **Chiral Perturbation**
 - Dorokhov and Kochelev

Equation:

\[\overrightarrow{d} = \overrightarrow{d\pi} + \overrightarrow{q} \]

Legend:

- E866
- NA51
- HERMES
- CTEQ6
- Peng et al. Meson Cloud
- Alberg, Henley and Miller Meson Cloud
- Nikolaev et al. Meson Cloud
- Szczurek et al. Meson Cloud

Note:

Perturbative sea apparently dilutes meson cloud effects at large-\(x\).
Why talk about Drell-Yan at JLab?

- Other possible answer
 Make Mont feel at home?
Drell-Yan scattering: A laboratory for sea quarks

\[
\frac{d^2\sigma}{dx_1dx_2} = \frac{4\pi\alpha^2}{9x_1x_2} \frac{1}{s} \sum e^2 [\overline{q}_t(x_t)q_b(x_b) + q_t(x_t)\overline{q}_b(x_b)]
\]

Detector acceptance chooses \(x_{\text{target}}\) and \(x_{\text{beam}}\).

- **Fixed target** \(\Rightarrow\) high \(x_F = x_{\text{beam}} - x_{\text{target}}\)
- Valence Beam quarks at high-\(x\).
- Sea-target quarks at low/intermediate-\(x\).
Advantages of 120 GeV Main Injector

The (very successful) past:
Fermilab E866/NuSea
- Data in 1996-1997
- 1H, 2H, and nuclear targets
- 800 GeV proton beam

The future:
Fermilab E906
- Data in 2010
- 1H, 2H, and nuclear targets
- 120 GeV proton Beam

\[
\frac{d^2\sigma}{dx_1 dx_2} = \frac{4\pi\alpha^2}{9x_1 x_2} \frac{1}{s} \sum_i e_i^2 \left[q_{ti}(x_t) \bar{q}_{bi}(x_b) + \bar{q}_{ti}(x_t) q_{bi}(x_b) \right]
\]

- Cross section scales as \(1/s\)
 - \(7 \times \) that of 800 GeV beam

- Backgrounds, primarily from J/ψ decays scale as s
 - \(7 \times \) Luminosity for same detector
 - \(50 \times \) statistics!!

- Limited Phase Space
Drell-Yan Spectrometer for E-906

Solid Iron Magnet, Hadron absorber and beam dump

Station 1: Hodoscope array, MWPC tracking

Station 2 and 3: Hodoscope array, Drift Chamber tracking

Mom. Meas. (KTeV Magnet)

Station 4: Hodoscope array, Prop tube tracking

Hadron Absorber

Solid iron magnet

- Reuse SM3 magnet coils
- Sufficient Field with reasonable coils (amp-turns)
- Beam dumped within magnet

Liquid H₂, d₂, and solid targets
Extracting d-\bar{d}/$-$ubar From Drell-Yan Scattering

- E906/Drell-Yan will extend these measurements and reduce statistical uncertainty.
- E906 expects systematic uncertainty to remain at approx. 1% in cross section ratio.
Structure of nucleonic matter: How do sea quark distributions differ in a nucleus?

- Intermediate-x sea PDF's absolute magnitude set by ν-DIS on iron.
 - Are nuclear effects the same for the sea as for valence?
 - Are nuclear effects with the weak interaction the same as electromagnetic?

- EMC: Parton distributions of bound and free nucleons are different.
- Antishadowing not seen in Drell-Yan—Valence only effect
- What can the sea parton distributions tell us about the effects of nuclear binding?
Structure of nucleonic matter:
How do sea quark distributions differ in a nucleus?

Comparison with Deep Inelastic Scattering (DIS)

- EMC: Parton distributions of bound and free nucleons are different.
- Antishadowing not seen in Drell-Yan—Valence only effect
Structure of nucleonic matter: How do sea quark distributions differ in a nucleus?

Comparison with Deep Inelastic Scattering (DIS)

- EMC: Parton distributions of bound and free nucleons are different.
- Antishadowing not seen in Drell-Yan—Valence only effect

Graph showing Drell-Yan ratios for different elements and comparison with model predictions.
Structure of nucleonic matter: Where are the nuclear pions?

- The binding of nucleons in a nucleus is expected to be governed by the exchange of virtual “Nuclear” mesons.
- No antiquark enhancement seen in Drell-Yan (Fermilab E772) data.
- Contemporary models predict large effects to antiquark distributions as x increases.
- Models must explain both DIS-EMC effect and Drell-Yan
Structure of nucleonic matter: Where are the nuclear pions?

- The binding of nucleons in a nucleus is expected to be governed by the exchange of virtual “Nuclear” mesons.
- No antiquark enhancement seen in Drell-Yan (Fermilab E772) data.
- Contemporary models predict large effects to antiquark distributions as x increases.
- Models must explain both DIS-EMC effect and Drell-Yan
Structure of nucleonic matter: Where are the nuclear pions?

- The binding of nucleons in a nucleus is expected to be governed by the exchange of virtual “Nuclear” mesons.
- No antiquark enhancement seen in Drell-Yan (Fermilab E772) data.
- Contemporary models predict large effects to antiquark distributions as x increases.
- Models must explain both DIS-EMC effect and Drell-Yan
Structure of nucleonic matter: Where are the nuclear pions?

- The binding of nucleons in a nucleus is expected to be governed by the exchange of virtual “Nuclear” mesons.
- No antiquark enhancement seen in Drell-Yan (Fermilab E772) data.
- Contemporary models predict large effects to antiquark distributions as x increases.
- Models must explain both DIS-EMC effect and Drell-Yan
E906/Drell-Yan timeline

- Fermilab PAC approved the experiment in 2001, but experiment was not scheduled due to concerns about “proton economics”
- Spectrometer upgrade funded by DOE/Office of Nuclear Physics (already received $700k by FY09)
- Fermilab PAC reaffirms earlier decision in Fall 2006
- Scheduled to run in 2010 for 2 years of data collection

- Apparatus available for future programs at, e.g. Fermilab, J-PARC or RHIC
 - Significant interest from collaboration for continued program

<table>
<thead>
<tr>
<th>Expt. Funded</th>
<th>Experiment Construction</th>
<th>Experiment Runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>2009</td>
<td>2010</td>
</tr>
</tbody>
</table>
FNAL E866/NuSea Collaboration

Abilene Christian University
Donald Isenhower, Mike Sadler, Rusty Towell, Josh Bush, Josh Willis, Derek Wise

Argonne National Laboratory
Don Geesaman, Sheldon Kaufman, Naomi Makins, Bryon Mueller, Paul E. Reimer

Fermi National Accelerator Laboratory
Chuck Brown, Bill Cooper

Georgia State University
Gus Petitt, Xiao-chun He, Bill Lee

Illinois Institute of Technology
Dan Kaplan

Los Alamos National Laboratory
Melynda Brooks, Tom Carey, Gerry Garvey, Mike Leitch, Pat McGaughey, Joel Moss, Brent Park, Jen-Chieh Peng, Andrea Palounek, Walt Sondheim, Neil Thompson

Louisiana State University
Paul Kirk, Ying-Chao Wang, Zhi-Fu Wang

New Mexico State University
Mike Beddo, Ting Chang, Gary Kyle, Vassilios Papavassiliou, J. Seldon, Jason Webb

Oak Ridge National Laboratory
Terry Awes, Paul Stankus, Glenn Young

Texas A & M University
Carl Gagliardi, Bob Tribble, Eric Hawker, Maxim Vasiliev

Valparaiso University
Don Koetke, Paul Nord
Additional Physics from beam parton distributions

- High-x_{Bj} Valence quark distributions
- Partonic energy loss in cold nuclear matter

![Parton Loses Energy in Nuclear Medium](image)

Unpolarized Angular distributions

- Lam-Tung Relation
 \[1 - \lambda = 2\nu \frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi \]
- Boer-Mulders Distributions

Possible future programs

- Polarized target of beam
- Pionic Drell-Yan
Drell-Yan at Fermilab

- Drell-Yan scattering is uniquely sensitive to the antiquark distributions of the target.

- The E-906/Drell-Yan Collaboration is constructing a facility to measure Drell-Yan Scattering.

- E-906/Drell-Yan will use this to measure
 - the ratio of anti-d to anti-u distributions in the proton,
 - The modifications to the quark sea in a nucleus, and
 - Many more interesting topics

This work is supported in part by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
Additional Material
I don’t have an answer, but you’ve sure given me a lot to think about
Drell-Yan Acceptance

- Programmable trigger removes likely J/ψ events
- Transverse momentum acceptance to above 2 GeV
- Spectrometer could also be used for J/ψ, ψ′ studies

![Graphs showing Drell-Yan Acceptance](image)

Graphs showing distributions for Mass, X_{beam}, X_{target}, and X_F.
Detector Resolution

- Triggered Drell-Yan events

Mass Res.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2/ndf</td>
<td>51.65 / 196</td>
</tr>
<tr>
<td>Constant</td>
<td>83.33</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.6719E-03</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.2370</td>
</tr>
</tbody>
</table>

Res.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2/ndf</td>
<td>73.73 / 196</td>
</tr>
<tr>
<td>Constant</td>
<td>99.02</td>
</tr>
<tr>
<td>Mean</td>
<td>0.3957E-02</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.1987E-01</td>
</tr>
</tbody>
</table>

- 240 MeV
Drell-Yan Cross Section Ratio and d-bar/u-bar

\[
\frac{\sigma^{pd}}{2\sigma^{pp}} \bigg|_{x_b \gg x_t} \approx \frac{1}{2} \left[1 + \frac{\bar{d}(x_t)}{\bar{u}(x_t)} \right]
\]
Drell-Yan Scattering: What we really measure

- Measure yields of $\mu^+\mu^-$ pairs from different targets
- For each event measure 3-momentum of each μ
- Assume that it is a muon to get 4-momentum

Reconstruct $M_\gamma^2, p_T^\gamma, p_{||}^\gamma$

$M_\gamma^2 = x_1x_2s,$

$x_F = 2p_{||}^\gamma/s^{1/2} \approx x_1 - x_2$

\[
\frac{d^2\sigma}{dx_1dx_2} = \frac{4\pi\alpha^2}{9x_1x_2s} \frac{1}{s} \sum e^2 [\bar{q}_t(x_t)q_b(x_b) + q_t(x_t)\bar{q}_b(x_b)]
\]

\[
\frac{\sigma_{pd}}{2\sigma_{pp}} \bigg|_{x_b \gg x_t} \approx \frac{1}{2} \left[1 + \frac{\bar{d}(x_t)}{\bar{u}(x_t)} \right]
\]
Next-to-Leading Order Drell-Yan

- Next-to-leading order diagrams complicate the picture
- These diagrams are responsible for **50% of the measured cross section**
- Intrinsic transverse momentum of quarks (although a small effect, $\lambda > 0.8$)
Drell-Yan Mass Spectra

Data From Fermilab E-866/NuSea
800 GeV proton beam on hydrogen target

Counts/0.1 GeV

Edge of Spectrometer Acceptance

DiMuon Mass (GeV)