Differential cross sections and spin density matrix elements for $\gamma p \rightarrow \phi p$ from the CLAS g11a experiment

Biplab Dey
1 Introduction and Event Selection

2 Signal-background separation

3 Acceptance Calculation, $d\sigma/dt$, and the SDME’s
 - Data-driven acceptance calculation
 - Spin structure for vector mesons
 - Results

4 Features of the data
 - Forward-angle “bump” structure
 - $g_{\phi NN}$ and strangeness content in the nucleon
 - SCHC/TCHC and Pomeron coupling

5 Summary
OUTLINE

1 Introduction and Event Selection

2 Signal-background separation

3 Acceptance Calculation, $d\sigma/dt$, and the SDME's
 - Data-driven acceptance calculation
 - Spin structure for vector mesons
 - Results

4 Features of the data
 - Forward-angle “bump” structure
 - $g_{\phi NN}$ and strangeness content in the nucleon
 - SCHC/TCHC and Pomeron coupling

5 Summary
Vector meson photo- and electro-production

- Vector mesons $V \in \{\rho, \omega, \phi, J/\psi, \ldots\}$ have played an important role in our understanding of photo-hadro reactions (QED and QCD).

- $\gamma^{(*)}$ has both $I = 0$ and $I = 1$, and same $J^{PC} = 1^{--}$ as V. It can fluctuate into a virtual V during interactions with hadrons.

- Vector-meson dominance (Feynman), photon beam acts like a beam of polarized hadrons:

$$A_{\gamma p \rightarrow V' p'} = \sum_V \frac{e}{\gamma_V} A_{\gamma V p \rightarrow V' p'},$$

Diagram:

- $\gamma^{(*)}$
 - exch. of Reggeons, Pomeron, ...
 - $V \rightarrow V'$
 - $p \rightarrow p'$
Special role of the $\phi(1020)$

- In SU(3), almost pure $s\bar{s}$ state (simplest 3S_1 “strangeonuem”) – OZI rule suppresses quark/meson exchanges during interaction with ordinary nucleons.

- Chief attraction – very “clean” system to study gluonic exchanges; gluonic structure of the Pomeron, for example.

- Near threshold and forward angles, access to the scalar glueball $J^P = 0^+$ expected (LQCD predicts mass ≈ 1.73 GeV).
Special role of the $\phi(1020)$

- In SU(3), almost pure $s\bar{s}$ state (simplest 3S_1 “strangeoneum”) – OZI rule suppresses quark/meson exchanges during interaction with ordinary nucleons.

- Chief attraction – very “clean” system to study gluonic exchanges; gluonic structure of the Pomeron, for example.

- Near threshold and forward angles, access to the scalar glueball $J^P = 0^+$ expected (LQCD predicts mass ≈ 1.73 GeV).

Wide interest in this channel, but very little world data!
Charged- and neutral-mode topologies

- ϕ predominantly decays to two kaons:
 - $\phi \rightarrow K^+K^-$ is the “charged-mode” ($bf = 0.491$)
 - $\phi \rightarrow K^0_SK^0_L$ is the “neutral-mode” ($bf = 0.34$).

- Charged-mode: kinematic fit to $\gamma p \rightarrow \phi p \rightarrow K^+(K^-)p$.

- Neutral-mode: kinematic fit to $\gamma p \rightarrow \phi p \rightarrow K^0_S(K^0_L)p \rightarrow \pi^+\pi^-(K^0_L)p$.

- Event selection: 10% confidence level cut from kinematic fit, timing cuts for particle-identification.

- K^0_S selection cut (neutral-mode): $M(\pi^+\pi^-) \in [0.488, 0.508]$ GeV.
Charged-mode and $\phi p - K^+ \Lambda(1520)$ overlap

- Phase-space overlap with $\gamma p \rightarrow K^+ \Lambda(1520) \rightarrow K^+ K^- p$ between 2 and 2.2 GeV in \sqrt{s}.
- Hard $|M(pK^-) - 1.52| < 0.015$ GeV cut
- Only for the charged-mode (important!).
OUTLINE

1. **Introduction and Event Selection**

2. **Signal-background separation**

3. **Acceptance Calculation, $d\sigma/dt$, and the SDME’s**
 - Data-driven acceptance calculation
 - Spin structure for vector mesons
 - Results

4. **Features of the data**
 - Forward-angle “bump” structure
 - $g_{\phi NN}$ and strangeness content in the nucleon
 - SCHC/TCHC and Pomeron coupling

5. **Summary**
Lineshape issue

- The basic problem is that the ϕ has non-negligible width (~ 4 MeV) and a mass close to the KK threshold
 - What is the signal lineshape for a channel opening near the threshold?
 - What are the background (PID) lineshapes + “other” (eg. $f_0(980)$) channels opening near the threshold?
 - Side-band subtraction ineffective since nothing on the low-mass side

- Having a high statistics dataset is awesome, but greater demand on reducing systematic uncertainties

- With g_{11a} statistics, we are very sensitive to lineshape systematics!
YIELD EXTRACTION FOR THIS ANALYSIS

- Start with a phenomenological ansatz – mass-dependent non-rel. BW (true lineshape) convoluted with Gaussian (detector resolution).

- Blatt-Weisskopf barrier term gives typical asymmetric lineshape with long tail. Gaussian parameters kept floating.

- Neutral is a 3-track \((p\pi^+\pi^- (K_L))\) topology while charged is 2-track \((pK^+(K^-))\) topology. Resolution, and thereby lineshapes are inherently different.
Yield extraction for this analysis (cntd)

- Keep the *functional form* for signal fixed, and keep the local background shape completely floating.

- Perform independent fits in small phase-space regions.

- Very different from employing global background “template” shapes!
SAMPLE BACKGROUND SEPARATION FROM CLAS g6a

- Cumulative $E_\gamma \in [3.3, 3.6]$ GeV, $\sim 1000 \phi$-skimmed events
Sample fit-quality checks, this analysis

- For $\sqrt{s} \in [2.12, 2.15]$ GeV, $|\cos_{\text{c.m.}}| < 0.33$ (mid-angles), charged-mode.

- ζ and φ are the $\phi \rightarrow KK$ breakup angles.

- Enough statistics to look at small ($\sqrt{s}, \cos \theta_{\text{c.m.}}, \zeta, \varphi$) regions.

- Note the strong phase-space dependence of background.
Caveats I

- At forward-most angles, lots of statistics, but hardly any events below ϕ peak.

- Impossible to do side-band subtraction if a peak arises right at the threshold

$$\sqrt{s} \in [2.59, 2.63] \text{ GeV}, \cos_{c.m}^\phi = 0.8 \text{ and } 0.9$$

- We currently quote the charged/neutral difference as the systematic uncertainty, but inputs from theory will help here.

- Affects Pomeron characterization – one of our chief goals
Caveats II – S-P wave interference

- S-wave (f_0) exists and has to interfere with the P-wave (ϕ)

- KK angular distribution bears this out – FB asymmetry flips sign at $M(KK) = 1.019$ GeV

- Our background method puts the interference to zero “by hand”

- g_{11a} is an excellent resource to investigate this
Final ϕ data yields and binning

- **Charged-mode:** ~ 0.475 million ϕ events. $\sqrt{s} = 10$-MeV-wide energy bins.

- **Neutral-mode:** ~ 0.101 million ϕ events. $\sqrt{s} \approx 30$-MeV-wide energy bins.

- Angular binning is always 0.1 in the center-of-mass production angle, $\cos \theta^{\phi}_{c.m.}$.
OUTLINE

1 INTRODUCTION AND EVENT SELECTION

2 SIGNAL-BACKGROUND SEPARATION

3 ACCEPTANCE CALCULATION, $d\sigma/dt$, AND THE SDME’S
 - Data-driven acceptance calculation
 - Spin structure for vector mesons
 - Results

4 FEATURES OF THE DATA
 - Forward-angle “bump” structure
 - $g_{\phi NN}$ and strangeness content in the nucleon
 - SCHC/TCHC and Pomeron coupling

5 SUMMARY
Acceptance Calculation

100 million flat phase-space “Raw” Monte Carlo events generated for each topology and passed thru GSIM to give a set of “Accepted” (Acc) Monte Carlo events.

Acc. MC underwent same set of analysis cuts as actual Data.

Expand the scattering amplitude using a large number (almost complete basis) of s-channel J^P waves:

$$\mathcal{M}(\sqrt{s}, \cos \theta_{c.m.}) \sim \sum_{J^P} \alpha_{MP,LS}^{J^P} \mathcal{A}_{\gamma p \rightarrow J^P \rightarrow \phi p, MP, LS}^{\gamma p \rightarrow J^P \rightarrow \phi p, MP, LS}(\sqrt{s}, \cos \theta_{c.m.})$$

Perform a unbinned extended maximum likelihood partial-wave analysis (PWA) fit independently in each \sqrt{s}-bin.
Charged-mode, center-of-mass production-angle:

$$\sqrt{s} = 2.155 \text{ GeV}$$

- PWA-fit weighted Monte Carlo matched the Data in all distributions for both modes.
Acceptance from PWA-fit results

- PWA-fit-weighted acceptance is: \(\eta_{wtd.} = \frac{\left(\sum_{i}^{N_{acc}} l_{i} \right)}{\left(\sum_{j}^{N_{raw}} l_{j} \right)} \) where

 \[
l_{i} = \sum_{m_{incoh.}} \left| \sum_{m_{coh.}} M_{m_{coh.},m_{incoh.}} \right|^2.
\]

- Note that this PWA-fit result is \emph{not} to be interpreted as \emph{physics} (in terms of resonances). We have simply expanded the production amplitude in a semi-complete basis of \(s \)-channel \(J^{P} \) waves in order to best fit the data.

- Applied in previous CLAS \(\omega p \) (PRC 80, 06528 (2009)), \(\eta p/\eta' p \) (PRC 80, 045213, (2009)), \(K^+\Lambda \) (PRC 81, 025201 (2010)) and \(K^+\Sigma^0 \) (PRC 82, 025202 (2010)) analyses, with excellent results.
Structure of Spin Information Content

- Consider the general case $\vec{\gamma} \vec{p} \rightarrow \vec{V} \vec{p}'$. There are $2 \times 2 \times 3 \times 2 = 24$ complex amplitudes A tagged by helicities.

- Parity halves this to 12 independent A's, $12 \times 12 = 144$ bilinears.

- 290 single-, double- triple- and quadruple correlations, but lots of redundancies as well!

- What is the least number of polarizations observables to make a complete measurement?
 - Recall, answer is 7 for the pseudo-scalar case ($\vec{\gamma} \vec{p} \rightarrow K^+ \bar{\Lambda}$).
Consider the general case $\bar{\gamma}\vec{p} \rightarrow \vec{V}\vec{p}'$. There are $2 \times 2 \times 3 \times 2 = 24$ complex amplitudes A tagged by helicities.

Parity halves this to 12 independent A's, $12 \times 12 = 144$ bilinears.

290 single-, double- triple- and quadruple correlations, but lots of redundancies as well!

What is the least number of polarizations observables to make a complete measurement?

- Recall, answer is 7 for the pseudo-scalar case ($\bar{\gamma}\vec{p} \rightarrow K^+\bar{\Lambda}$).
- For vector-mesons, still an open question.
Spin Density Matrix Elements (SDME’s)

- Average over the (unobserved) p and p' spins and look at $\gamma p \rightarrow \nabla p'$. Transfer of spin information from initial to final vector-particle.

- Spin info encoded in the density matrix. Massive V has 8 real elements:

$$\rho = \frac{1}{3} \left[I + \frac{3}{2} \vec{S} \cdot \vec{P} + \sqrt{3} \tau \cdot T \right]$$

- \vec{S} is the pure spin-1 operator and \vec{P} is the vector polarization. τ is a tensor operator containing correlations of the type $S_i S_i$. T is the tensor polarization.

- For $\phi \rightarrow KK$, $\rho \rightarrow \pi\pi$, $\omega \rightarrow \pi\pi\pi$: \vec{P} fully inaccessible and only 3 out of 5 T elements available in ρ^V.
SDME’s cntd.

- General structure:
 \[
 \rho^V_{mVm'} = \left(\sum_{m_pm_{\gamma}m'_{\gamma}} A_{mVm_p'm_i m_{\gamma}} (\rho^\gamma)_{m_{\gamma}m'_{\gamma}} A^*_{mVm_p'm_p'm_{\gamma}} \right) / \text{norm}
 \]

- If \(P^S \) is the Stokes’ vector for beam, \(\rho^V = \rho^0 + P^S_i \rho^i \)
 - \(\rho^0 \) for unpolarized beam (\(\Rightarrow g11a \), 3 elements).
 - \(\rho^1 \) and \(\rho^2 \) for linearly polarized beam (\(g8 \), 6 elements).
 - \(\rho^3 \) for circularly polarized beam (\(g1c \), 3 elements).

- Note: \(\rho \)'s are not Lorentz invariants, choice of frame “inspired by” production mechanism under study (important!)
\(\rho_{mm'}^0 \) ELEMENTS

- Spin quantitation axis as the beam dirn. \(\hat{z}_{CM} \) (Adair frame).

- \(\phi \) rest frame decay angles: \(\theta_{Ad} \) and \(\varphi_{Ad} \).

Conventional Schilling’s method: fit to an \(\phi \rightarrow KK \) decay angular intensity distribution:

\[
I(\sqrt{s}, \cos \theta^{c.m.}) \sim \frac{1}{2} (1 - \rho^{00}) + \frac{1}{2} (3 \rho^{00} - 1) \cos^2 \theta_{Ad} - \rho^{1-1}_1 \sin^2 \theta_{Ad} \cos 2 \varphi_{Ad} \\
- \sqrt{2} \text{Re} \rho^{10}_0 \sin 2 \theta_{Ad} \cos \varphi_{Ad}
\]

Equivalently, direct construction of the \(\phi \) density matrix using PWA fit results:

\[
\rho_{mm'}^0 = \frac{\sum A^m A^{m'}*}{\sum |A^m|^2 + |A^{m'}|^2},
\]

where \(m, m' \) are \(\phi \) spin-projections and incoherent sum is over the spins of \(\gamma, p, \) and \(p' \).
Acceptance Calculation, $d\sigma/dt$, and the SDME's

\sqrt{s}-bin-wise $d\sigma/d\cos\theta^c.m.$ and Adair frame SDME's

Charged-mode:

- 10-MeV-wide, 87 \sqrt{s} bins
- 1530 kinematic points

Neutral-mode:

- 30-MeV-wide, 26 \sqrt{s} bins
- 461 kinematic points
Angular-binned \(d\sigma/dt\) results

Backward-angles

\[-0.55 < \cos\theta_{\text{c.m.}} < -0.45\]

\(\sqrt{s}\) (GeV)

\(d\sigma/dt\) (\(\mu\text{b}/\text{GeV}^2\))

- Charged-mode
- Neutral-mode
Angular-binned $d\sigma/dt$ results

Mid-angles

$0.05 < \cos\theta_{c.m.} < 0.15$

- Charged-mode
- Neutral-mode
Angular-binned \(\frac{d\sigma}{dt} \) results

Forward-angles

\(0.85 < \cos \theta_{c.m.} < 0.95 \)

- Charged-mode
- Neutral-mode

\(\sqrt{s} \) (GeV)

\(\frac{d\sigma}{dt} \) (\(\mu b/GeV^2 \))
Angular-binned SDME results (charged-mode)
Comparison with LEPS (charged-mode)

- Previous SDME measurements: *highly* statistics limited, wide energy bins.

- Often averaged over angular variables in Schilling’s intensity expression, *without* proper acceptance correction.

- Latest forward-angle LEPS results (Chang PRC 82, 015205 (2010)) incorporates several improvements and are in overall *good agreement* with us.

Gottfried-Jackson frame:

<table>
<thead>
<tr>
<th>E_γ = 1.87 GeV</th>
<th>E_γ = 2.07 GeV</th>
<th>E_γ = 2.27 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.5 0 0.5 1</td>
<td>-0.2 0 0.2 0.4</td>
<td>-0.5 0 0.5 1</td>
</tr>
</tbody>
</table>

- CLAS (2011)
- LEPS (2010)
In all ...

- Roughly **8000 individual data points** for ϕ

- Together with the published $g_{11a} \omega$ (PRC 80, 065208 (2009)) results, the most **extensive** world-dataset on **vector mesons**
OUTLINE

1. INTRODUCTION AND EVENT SELECTION

2. SIGNAL-BACKGROUND SEPARATION

3. ACCEPTANCE CALCULATION, $d\sigma/dt$, AND THE SDME’S
 - Data-driven acceptance calculation
 - Spin structure for vector mesons
 - Results

4. FEATURES OF THE DATA
 - Forward-angle “bump” structure
 - $g_{\phi NN}$ and strangeness content in the nucleon
 - SCHC/TCHC and Pomeron coupling

5. SUMMARY
Features of the data

Forward-angle “bump” structure

$\phi - \Lambda(1520)$ OVERLAP

- "Classic" Dalitz problem involving multiple channels (see Kei Moriya's CLAS g11a analysis)
“Classic” Dalitz problem involving multiple channels (see Kei Moriya’s CLAS g_{11a} analysis), but overlaps are E_γ dependent.

For ϕ-$\Lambda(1520)$, need to look at only the narrow $E_\gamma \sim 2.2$ GeV region (if statistics can afford it).
What about on the $\Lambda(1520)$ side?

- Compare $\Sigma^+\pi^-$ and pK^- decay modes of $\Lambda(1520)$.
- Note *strong gradient* for pK^- around $E_\gamma \sim 2.2$ GeV, $t \rightarrow t_{min}$

Currently, the $\Sigma^+\pi^-$ binning is too wide to make a statement, but ...
What about on the $\Lambda(1520)$ side?

- Compare $\Sigma^+\pi^-$ and pK^- decay modes of $\Lambda(1520)$.
- Note *strong gradient* for pK^- around $E_\gamma \sim 2.2$ GeV, $t \to t_{min}$

Currently, the $\Sigma^+\pi^-$ binning is too wide to make a statement, but ...

- Hard to believe $\Sigma^+\pi^-$ will track pK^- with finer binning \Rightarrow “real” physics issue here
Features of the data
Forward-angle “bump” structure

Resonance Interpretation – \(\phi(1020) \) Side

- Work by Kiswandhi *et al.*, arXiv:1112.6105v2: fits to forward-angle LEPS data shows prominence of \(J^P = \frac{3}{2}^\pm \), mass around 2080 MeV.

![Graph showing resonance interpretation](image)

\[\cos \theta_\text{c.m.} = 0.9 \]
Work by Kiswandhi et al., arXiv:1112.6105v2: fits to forward-angle LEPS data shows prominence of $J^P = \frac{3}{2}^\pm$, mass around 2080 MeV.

But “bump” only at forward-angles. With a single resonance, impossible to get a structure only at forward-angles. Even a set of resonances must be highly tuned to do this.

New CLAS data: resonance(s) interpretation looks unlikely
Charged/neutral comparisons

After a lot of effort, charged and neutral mostly agree now,

<table>
<thead>
<tr>
<th>√s (GeV)</th>
<th>2.2</th>
<th>2.4</th>
<th>2.6</th>
<th>2.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helicity frame</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ρ</td>
</tr>
<tr>
<td>φ</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.9</td>
</tr>
</tbody>
</table>
After a lot of effort, charged and neutral mostly agree now, except at forward-angles, especially for $\sqrt{s} \in [2, 2.2]$ GeV:

- **Pomeron slope**

- ϕ-$\Lambda(1520)$ coupled-channel analyses (Ozaki et al., PRC 80, 035201 (2009)), an interesting prospect but we need $\Lambda(1520)$ data of comparative binning as well.
In SU(3), the ϕ-ω mixing angle is $\theta_V \approx 35^\circ$.

Experimental deviation $\Delta \theta_V \approx 4^\circ$, $g_{\phi NN} = -\tan(\Delta \theta_V) \chi_{OZI} g_{\omega NN}$, where χ_{OZI} is the OZI evading parameter denoting strangeness content in the nucleon.

CLAS 2000 $g6a$ data first showed a u-channel rise (large $|t|$) for $\phi \Rightarrow$ larger values of $g_{\phi NN}$

CLAS 2011 $g11a$ confirms this. Coupled channel ϕ-ω fits can shed light on strangeness in the nucleon.
Helicity conservation in $\gamma p \rightarrow Vp$

- $\rho_{00}^0 \sim |A_{m_V=0, m_\gamma=1}|^2 + |A_{m_V=0, m_\gamma=-1}|^2$ measures spin flip. But, in which frame?
Helicity conservation in $\gamma p \rightarrow Vp$

- $\rho_{00}^0 \sim |A_{m_V=0,m_\gamma=1}|^2 + |A_{m_V=0,m_\gamma=-1}|^2$ measures spin flip. But, in which frame? Depends on mechanism of interest.

- Pomeron (IP) – “universal”, exchange of vacuum quantum numbers ($?^{++}$), spin-1 energy-behavior (Regge trajectory $\alpha(0) \sim 1$).
Helicity conservation in $\gamma p \rightarrow Vp$

- $\rho_{00}^0 \sim |A_{m_V=0,m_\gamma=1}|^2 + |A_{m_V=0,m_\gamma=-1}|^2$ measures spin flip. But, in which frame? Depends on mechanism of interest.

- Pomeron (IP) – “universal”, exchange of vacuum quantum numbers (??++), spin-1 energy-behavior (Regge trajectory $\alpha(0) \sim 1$).

- If coupling as 0^{++}, expect $\rho_{00}^0 = 0$ in GJ (t-channel) frame. Not seen in data. TCHC is broken.

- Instead, high-energy data (ZEUS, SLAC, etc.) show $\rho_{00}^0 \approx 0$ in Hel (s-channel) frame, SCHC is observed.
How does the Pomeron couple to hadrons?

- Odd that a t-channel process preserves helicity in the s-channel. DL $\mathcal{I}P$ is isoscalar 1^{++} photon (γ^{μ} coupling) and predicts SCHC.

- Phenomenological explanation by Gilman et al. (PLB 31, 387 (1970)). However, no fundamental reason for SCHC.
How does the Pomeron couple to hadrons?

- Odd that a t-channel process preserves helicity in the s-channel. DL IP is isoscalar 1^{++} photon (γ^μ coupling) and predicts SCHC.

- Phenomenological explanation by Gilman et al. (PLB 31, 387 (1970)). However, no fundamental reason for SCHC.

- New CLAS results show $\rho_{00}^0 \neq 0$: both TCHC and SCHC violation at all angles (both ϕ and ω channels, in fact).

- We need to better understand the structure of the $IPqq$ coupling.
OUTLINE

1. Introduction and Event Selection
2. Signal-background separation
3. Acceptance Calculation, $d\sigma/dt$, and the SDME’s
 - Data-driven acceptance calculation
 - Spin structure for vector mesons
 - Results
4. Features of the Data
 - Forward-angle “bump” structure
 - $g_{\phi NN}$ and strangeness content in the nucleon
 - SCHC/TCHC and Pomeron coupling
5. Summary
First ever extensive world data for the ϕ channel. Corresponding ω results already published.

Detailed $d\sigma/dt$ and $^{0}_{\rho_{mm'}}$: coverage from near threshold to $\sqrt{s} = 2.84$ GeV and $-0.85 \leq \cos \theta^{\phi}_{c.m.} \leq 0.95$.

Access to both charged- and neutral-modes results is a very useful tool.

“Structure” around $\sqrt{s} \sim 2.1$ GeV needs careful study. Present results will provide detailed information towards this.

Lots of interesting features visible in the new data – SCHC violation, finite value of g^{NN}_{ϕ}, Pomeron slope etc.

Full partial-wave analysis on both ϕ and ω. CLAS $\Lambda(1520)$ results from the same dataset soon to be available as well for coupled-channel analysis.
Event-selection: Timing cuts

- 2-D calculated mass cut on p, K^+ (charged-mode)

- 2-D Δ time-of-flight ($tof_{\text{meas}} - tof_{\text{calc}}$) cut on p, π^+ (neutral-mode)
Event-selection contd.

- K_S^0 selection cut (neutral-mode): $0.488 \text{ GeV} \leq M(\pi^+, \pi^-) \leq 0.508 \text{ GeV}$.

![Graph of invariant mass vs missing mass off p](image)

Missing Mass Off p (GeV)

- accepted, rejected
Lineshape

- ϕ width is $\Gamma_0 \approx 4$ MeV, however, its mass being so close to the KK threshold (≈ 0.99 GeV) leads to an unsymmetric lineshape.

- All previous world data relied on a Gaussian ϕ lineshape for yield extraction fits.

- We've tried to employ a better approximation by taking a mass-dependent width:

$$\Gamma(m) = \Gamma_0 \left(\frac{q}{q_0} \right)^{2L+1} \left(\frac{m}{m_0} \right) \left(\frac{B_0}{B} \right)$$

- $L = 1$ for P-wave $\phi \rightarrow KK$ decay.

- Break-up momentum $q(m) = \sqrt{m^2 - m_K^2}/2$ for a ϕ mass m.

- Barrier-factor $B_{L=1} = \sqrt{2z/(1+z)}$ with $z = q/d$, $d \sim 1$ fm (≈ 0.1973 GeV).

- Subscript 0 denotes evaluation at the ϕ mean mass $m_0 = 1.01946$ GeV.

- Final signal-function in background fits: Voigtian with Breit-Wigner width taken as $\Gamma(m)$.
FIG. 1. (a) Missing mass distribution for the $p(\gamma, K^+K^-)X$ reaction in KK mode. (b) Missing mass distribution for the $p(\gamma, K^0\bar{p})X$ reaction in Kp mode. (c) and (d) are the K^+K^- invariant mass distributions after the cut on the missing mass for KK and Kp modes, respectively. The hatched histograms are the simulated background.
Fig. 3. Φ separation from the background in the K^+K^- mass spectrum.

Fig. 4. Contributions of phase space, $\Lambda(1520)$ and Φ production to the K^+K^- mass spectrum for photon energies between 2.1 and 2.4 GeV.
Charged-mode

$\sqrt{s} = 2.155$ GeV

Data
Acc MC (unweighted)
Acc MC (weighted)

$\sqrt{s} = 2.155$ GeV

Data
Acc MC (unweighted)
Acc MC (weighted)
Neutral-mode

\[\sqrt{s} = 2.135 \text{ GeV} \]
Comparison between PWA and Schilling’s methods

\[\rho_{00}^0 (PWA) \quad \rho_{00}^0 (Schil) \quad \rho_{1-1}^0 (PWA) \quad \rho_{1-1}^0 (Schil) \quad \rho_{10}^0 (PWA) \quad \rho_{10}^0 (Schil) \]

\[\sqrt{s} = 2.105 \text{ GeV} \quad \sqrt{s} = 2.325 \text{ GeV} \quad \sqrt{s} = 2.615 \text{ GeV} \]

\[\cos \theta_{c.m.} \]
Ozaki et al. (PRC 80, 035201 (2009)): $K\Lambda(1520)$ and ϕp channels couple:
The $\sqrt{s} \approx 2.1$ GeV “structure” (contd.)

$\gamma p \rightarrow K^+ \Lambda(1520)$:

Work of R. De Vita et al.
Yield extraction is complicated since ϕ is so close to KK threshold. Physics model in MC could also make a difference, since forward-angle “bump” around $\sqrt{s} \sim 2.1$ GeV shows that simple diffractive Pomeron phenomenology is no longer valid.
Comparison with Daresbury ’84 and CLAS ’00

- $E_\gamma = 3.3$ GeV

![Graph](image1.png)

- $E_\gamma = 3.6$ GeV

![Graph](image2.png)

- E_γ bin-widths were 1 GeV (Daresbury-84) and 600 MeV (CLAS-00). Systematics of background subtraction/yield extraction in older ϕ results seem questionable.

- CLAS-2000 backward-angle rise confirmed by CLAS-2010: non-negligible $g_{\phi NN}$ for u-channel exchange at high \sqrt{s}.

- Biplab Dey (UCR/CMU)

2012 JLab Thesis Prize June 6th, 2012
$R_{\phi/\omega}$ AND FLAVOR-INDEPENDENCE

\[R_{\phi/\omega} \text{ as a function of } (\cos\theta_{c.m.}, \sqrt{s}): \]

- $R_{\phi/\omega}$ is generally small (*OZI*-suppression).
- In the diffractive limit where Pomeron dominates, $R_{\phi/\omega} \sim O(1)$. Qualitatively agrees with Donnachie-Landshoff model: quark-quark-Pomeron coupling $\sim \beta_u \beta_s \bar{u}' \gamma_\mu u$. Couplings β almost flavor-independent.