First Round of Experiments in Hall D

V. Credé

Florida State University, Tallahassee, Florida

JLab Users Group Workshop

Jefferson Lab

05/31/2013
Outline

1. Introduction
2. The GlueX Experiment
 - Status and Construction Progress
 - Light-Meson Spectroscopy
3. Gluonic Excitations
 - Lattice QCD and Hybrid Mesons
 - Experimental Evidence
4. Other Physics Projects in Hall D
5. Summary and Outlook
Outline

1 Introduction

2 The GlueX Experiment
 • Status and Construction Progress
 • Light-Meson Spectroscopy

3 Gluonic Excitations
 • Lattice QCD and Hybrid Mesons
 • Experimental Evidence

4 Other Physics Projects in Hall D

5 Summary and Outlook
QCD is the theory of the strong nuclear force which describes the interactions of quarks and gluons making up hadrons. Strong processes at larger distances and at small (soft) momentum transfers belong to the realm of non-perturbative QCD. Quarks are confined within hadrons.

Confinement of quarks and gluons within hadrons is a non-perturbative phenomenon, and QCD is extremely hard to solve in non-perturbative regimes: Knowledge of internal structure of hadrons is still limited.
Non-Perturbative QCD

How does QCD give rise to excited hadrons?

1. What is the origin of confinement?
2. How are confinement and chiral symmetry breaking connected?
3. What role do gluonic excitations play in the spectroscopy of light mesons, and can they help explain quark confinement?

Hadron Spectroscopy: (Baryons) What are the fundamental degrees of freedom inside the nucleon? (Mesons) What are the properties of the predicted states beyond simple quark-antiquark systems (hybrid mesons, glueballs, ...)?

→ Gluonic Excitations provide a measurement of the excited QCD potential.
Outline

1. Introduction

2. The GlueX Experiment
 - Status and Construction Progress
 - Light-Meson Spectroscopy

3. Gluonic Excitations
 - Lattice QCD and Hybrid Mesons
 - Experimental Evidence

4. Other Physics Projects in Hall D

5. Summary and Outlook
The GlueX Collaboration

Acadia University, Arizona State U, Athens University, Carnegie Mellon University, Catholic University, Christopher Newport University, University of Connecticut, Florida International University, Florida State U, University of Glasgow, Indiana U, University of Massachusetts Amherst, MIT, MEPHI, Norfolk State U, North Carolina A&T State University, University of North Carolina Wilmington, Northwestern U, Old Dominion University, University of Oxford, University of Pittsburgh, Universidad Técnica Federico Santa María, University of Regina, and Jefferson Lab.
Search for exotic mesons:

- Linearly-polarized photons; coherent edge at 9 GeV.
- High intensity ($\sim 10^8 \gamma/s$).
- Sophisticated analysis tools.
 ➜ Partial Wave Analysis (PWA).
BCAL: all 48 4-m long modules at JLab

2.2 T superconducting solenoid

CDC: 28-layer straw-tup chamber

FCAL: 2800 lead glass blocks

FDC: four six-plane forward drift chambers

TOF: two planes of 2.5 cm scintillator bars
Quark-Model Classification: Ordinary Mesons

Quantum Numbers $J^{PC} \equiv 2S+1 L_J$

- **Parity:** $P = (-1)^{L+1}$
- **Charge Conjugation:** $C = (-1)^{L+S}$ (defined for neutral mesons)
- **G parity:** $G = C (-1)^I$

States

- $L = 0, \ S = 0$:
 - e.g. π, η ($J^{PC} = 0^{-+}$)

- $L = 0, \ S = 1$:
 - e.g. ρ, ω, ϕ ($J^{PC} = 1^{--}$)

- $L = 1, \ S = 0$:
 - e.g. h_1, b_1 ($J^{PC} = 1^{+-}$)

Diagram

- *ground-state flux-tube m=0*
Quark-Model Classification: Ordinary & Exotic Mesons

Quantum Numbers $J^{PC} \equiv 2S+1L_J$

- Parity: $P = (-1)^{L+1}$
- Charge Conjugation: $C = (-1)^{L+S}$ (defined for neutral mesons)
- G parity: $G = C (-1)^I$

$L = 0, S = 0$:

- e.g. π, η ($J^{PC} = 0^{-+}$)

$L = 0, S = 1$:

- e.g. ρ, ω, ϕ ($J^{PC} = 1^{--}$)

Forbidden States (Exotics):

$J^{PC} = 0^{+-}, 0^{--}, 1^{++}, 2^{--} \cdots$

12 GeV CEBAF upgrade has high priority (DOE Office of Science, Long Range Plan)

“[key area] is experimental verification of the powerful force fields (flux tubes) believed to be responsible for quark confinement.”

excited flux-tube

$m=1$
Introduction
The GlueX Experiment
Gluonic Excitations
Other Physics Projects in Hall D
Summary and Outlook

Outline

1. Introduction
2. The GlueX Experiment
 - Status and Construction Progress
 - Light-Meson Spectroscopy
3. Gluonic Excitations
 - Lattice QCD and Hybrid Mesons
 - Experimental Evidence
4. Other Physics Projects in Hall D
5. Summary and Outlook
Hybrid Meson Decays and Interesting Channels

Hybrid-Meson Decays:
(angular momentum in the flux tube stays in one of the daughter mesons)

Evidence for $J^{PC} = 1^{-+}$ wave
→ Interpretation controversial

\begin{align*}
0^{+-} & \quad h_0 \rightarrow b_1 \pi \rightarrow \pi^+ \pi^- \pi^0 \pi^0 \pi^0; \ h_1 \eta \\
& \quad b_0 \rightarrow \pi(1300)\pi; \ h_1 \pi \\
1^{-+} & \quad \eta_1 \rightarrow a_1 \pi \rightarrow 2\pi^+ 2\pi^-; \ \pi(1300)\pi \\
& \quad \pi_1 \rightarrow f_1 \pi \rightarrow \eta \pi \pi \pi; \ b_1 \pi, \ \pi \rho, \ \eta a_1 \\
2^{+-} & \quad h_2 \rightarrow \rho \pi \rightarrow \pi \pi \pi; \ b_1 \pi, \ \omega \eta \\
& \quad b_2 \rightarrow a_2 \pi; \ a_1 \pi, \ h_1 \pi, \ \omega \pi \\
\end{align*}

→ Multi-particle final states with neutral and charged particles!

Lattice calculations:
(lightest hybrid) $M_{1^{-+}} \approx (1.9 \pm 0.2)$ GeV/c^2
Hybrid Meson Decays and Interesting Channels

Hybrid-Meson Decays:
(angular momentum in the flux tube stays in one of the daughter mesons)

Evidence for $J^{PC} = 1^{-+}$ wave
→ Interpretation controversial

0$^{+-}$ \[h_0 \rightarrow b_1 \pi \rightarrow \pi^+\pi^-\pi^0\pi^0; \ h_1 \eta \]
\[b_0 \rightarrow \pi(1300)\pi; \ h_1 \pi \]

1$^{-+}$ \[\eta_1 \rightarrow a_1 \pi \rightarrow 2\pi^+2\pi^-; \ \pi(1300)\pi \]
\[\pi_1 \rightarrow f_1 \pi \rightarrow \eta\pi\pi\pi; \ b_1 \pi, \ \pi\rho, \ \eta a_1 \]

2$^{+-}$ \[h_2 \rightarrow \rho\pi \rightarrow \pi\pi\pi; \ b_1 \pi, \ \omega \eta \]
\[b_2 \rightarrow a_2 \pi; \ a_1 \pi, \ h_1 \pi, \ \omega \pi \]

→ Multi-particle final states with neutral and charged particles!

Lattice calculations:
(lightest hybrid) $M_{1^{-+}} \approx (1.9 \pm 0.2)$ GeV/c2
Meson Spectroscopy on the Lattice

negative parity

positive parity

exotics

\[m_\pi = 396 \text{ MeV} \]

→ isoscalar

→ isovector

Meson Spectroscopy on the Lattice

Lattice QCD Predictions

Constituent glue with $J^{PC} = 1^{+-}$

\rightarrow Lightest nonet: 1^{--}, $(0^{+-}, 1^{+-}, 2^{--})$

J. J. Dudek et al., PRD 83, 111502 (2011)
Experimental Evidence: $J^{PC} = 1^{--}$ Exotic Wave

There is convincing evidence for an exotic $J^{PC} = 1^{--}$ wave.

→ The interpretation remains controversial.

Exotic waves are (all) observed in diffraction-like reactions.

→ Observation of $\pi_1(1400) \rightarrow \eta\pi$ in $p\bar{p}$ remains exception.

1. $\pi_1(1400) \rightarrow \eta\pi$ → Tetraquark? Nothing? (too low in mass for hybrid)

Resonant Interpretation

Nonresonant Interpretation

 (includes background phase)
Experimental Evidence: $J^{PC} = 1^{--}$ Exotic Wave

There is convincing evidence for an exotic $J^{PC} = 1^{--}$ wave.

→ The interpretation remains controversial.

Exotic waves are (all) observed in diffraction-like reactions.

→ Observation of $\pi_1(1400) \rightarrow \eta \pi$ in $p\bar{p}$ remains exception.

$\pi_1(1400) \rightarrow \eta \pi$ ➜ Tetraquark? Nothing? (too low in mass for hybrid)

Diffractive Production Process

- Natural parity exchange: $J^P = 0^+, 1^-, 2^+, ...$

- Unnatural parity exchange: $J^P = 0^-, 1^+, 2^-, ...$

- Same production mechanism, M^ϵ, expected for all decay modes.
The $J^{PC} = 1^{-+}$ Exotic Wave: E852 Experiment

There is convincing evidence for an exotic $J^{PC} = 1^{-+}$ wave.

1. $\pi_1(1400) \rightarrow \eta\pi$

2. $\pi_1(1600) \rightarrow \eta'\pi$; $f_1(1285)\pi$ \Rightarrow Natural-parity exchange.

$\pi^- p \rightarrow \eta'\pi^- p$

$M = 1597 \pm 10^{+45}_{-10} \text{ MeV}$

$\Gamma = 340 \pm 40 \pm 50 \text{ MeV}$
The $J^{PC} = 1^{-+}$ Exotic Wave: E852 Experiment

There is convincing evidence for an exotic $J^{PC} = 1^{-+}$ wave.

1. $\pi_1(1400) \rightarrow \eta \pi$
2. $\pi_1(1600) \rightarrow \eta' \pi$; $f_1(1285)\pi$
 → Natural-parity exchange.
3. $\pi_1(1600) \rightarrow b_1 \pi$
 → Unnatural-parity dominates.

$\pi(1600) \rightarrow b_1 \pi$
(E852: $\pi^- p \rightarrow \omega \pi^0 \pi^- p$)

$M = 1664 \pm 8 \pm 10 \text{ MeV}$
$\Gamma = 185 \pm 25 \pm 38 \text{ MeV}$
There is convincing evidence for an exotic $J^{PC} = 1^{-+}$ wave.

1. $\pi_1(1400) \rightarrow \eta \pi$

2. $\pi_1(1600) \rightarrow \eta' \pi$; $f_1(1285)\pi$ → Natural-parity exchange.
 $\pi_1(1600) \rightarrow b_1 \pi$ → Unnatural-parity exchange dominates.
 $\pi_1(1600) \rightarrow \rho \pi$

$\pi(1600) \rightarrow \rho \pi$
(E852 : $\pi^- p \rightarrow \pi^+ 2\pi^- p$)

$M = 1598 \pm 8^{+29}_{-47}$ MeV
$\Gamma = 168 \pm 20^{+150}_{-12}$ MeV
There is convincing evidence for an exotic $J^{PC} = 1^{--}$ wave.

1. $\pi_1(1400) \rightarrow \eta\pi$
2. $\pi_1(1600) \rightarrow \eta'\pi; \, f_1(1285)\pi$ \quad \rightarrow Natural-parity exchange.
3. $\pi_1(1600) \rightarrow b_1\pi$ \quad \rightarrow Unnatural-parity exchange dominates.
4. $\pi_1(1600) \rightarrow \rho\pi$

$\pi(1600) \rightarrow \rho\pi$

(E852: $\pi^- p \rightarrow \pi^+ 2\pi^- p$)

$M = 1598 \pm 8^{+29}_{-47} \text{ MeV}$

$\Gamma = 168 \pm 20^{+150}_{-12} \text{ MeV}$

$M^e = 0^-, 1^-$

$M^e = 1^+$

Int. 4000

(a) $(0^-,1^-)1^{--}$

(b) $(1^+)1^{--}$
COMPASS Experiment: $\pi^- Pb \rightarrow \pi^- \pi^- \pi^+ (Pb)$

1$^{-+}$ Exotic Wave

M. Alekseev, PRL 104, 241803 (2010)

Based on $\sim 420,000$ events using a 180 GeV π beam:

$\pi_1(1600)$: $M = 1660$ MeV $\quad \Gamma = 269$ MeV

$\pi_2(1670)$: $M = 1658$ MeV $\quad \Gamma = 271$ MeV

\rightarrow Exotic 1$^{-+}$ wave dominantly produced in natural-parity ($M^e = 1^+$) exchange.
Results on light mesons from CLAS at Jefferson Lab

Search for the photo-excitation of exotic mesons in the $\pi^+\pi^+\pi^-$ system:
(M. Nozar et al., Phys. Rev. Lett. 102, 102002 (2009))

CLAS does not observe a resonant structure in the $1^{-+}(\rho\pi)_P$ partial wave.
Results on light mesons from CLAS at Jefferson Lab

Search for the photo-excitation of exotic mesons in the $\pi^+\pi^+\pi^-$ system:

(M. Nozar et al., Phys. Rev. Lett. 102, 102002 (2009))

A $J^{PC} = 1^{-+}$ gluonic hybrid should be photo-produced at the same rate as the $a_2(1320)$, whereas in pion production it should be suppressed by a factor of 10.

- Upper limit for the $\pi_1(1600)$ of 13.5 nb, less than 2% of the $a_2(1320)$.
- New CLAS-g12 data have an order of magnitude more statistics.

\rightarrow e.g. $\gamma p \rightarrow n \pi^+\pi^+\pi^-$, $\gamma p \rightarrow p \pi^+\pi^-\pi^0$ ($J^{PC} = 1^{-+}$ isoscalar production?)
Sample GlueX Amplitude Analysis

Analyses of mock data:

- $\gamma p \rightarrow \pi^+ \pi^- \pi^+ n$ ($\rho \pi$ Exotic)
- $\gamma p \rightarrow \omega \pi^+ \pi^- p$ ($b_1 \pi$ Exotic)

Assume exotic meson production with a 2 nb cross section, then we expect about 30,000 events per year or about 1000 events per anticipated mass bin of 20 MeV.

- $\rho \pi \rightarrow \pi \pi \pi$ | 5-10 μb
- $b_1 \pi \rightarrow \omega \pi \pi$ | 0.2 μb
- $a_2 \pi \rightarrow \eta \pi \pi$ | 0.2 μb
- $f_1 \pi, \eta' \pi$ | 0.1 μb
Analyses of mock data:

- $\gamma p \rightarrow \pi^+ \pi^- \pi^+ n$ ($\rho\pi$ Exotic)
- $\gamma p \rightarrow \omega \pi^+ \pi^- p$ ($b_1\pi$ Exotic)

Assume exotic meson production with a 2 nb cross section, then we expect about 30,000 events per year or about 1000 events per anticipated mass bin of 20 MeV.
Sample GlueX Amplitude Analysis

Analyses of mock data:

- $\gamma p \rightarrow \pi^+ \pi^- \pi^+ n$ ($\rho\pi$ Exotic)
- $\gamma p \rightarrow \omega\pi^+ \pi^- p$ ($b_1\pi$ Exotic)

J^{PC} exotic wave has been generated with 1.6% relative strength:

- ≈ 3 hrs of GlueX data
- Valid test of GlueX acceptance.
 - Full detector simulation and reconstruction.
- Isobar model; single-π exchange; full and partial photon polarization.
Outline

1. Introduction
2. The GlueX Experiment
 - Status and Construction Progress
 - Light-Meson Spectroscopy
3. Gluonic Excitations
 - Lattice QCD and Hybrid Mesons
 - Experimental Evidence
4. Other Physics Projects in Hall D
5. Summary and Outlook
Gluonic Excitations on the Lattice

The mass scale is \(m - m_\rho \) for mesons and \(m - m_N \) for baryons.

Common scale of \(\sim 1.3 \) GeV for gluonic excitation, but hybrid baryons are difficult to identify experimentally.
Opportunities for Baryon Spectroscopy at GlueX

Spectroscopy of $|ssn\rangle$ Ξ baryons:
- Very few established states
- None of the J^P measured
- Possibly narrow resonances

The multi-strange baryons provide a missing link between light-flavor and heavy-flavor baryons.

Program on Cascades involves:
- Measurement of $\Xi^− - \Xi^0$ splittings.
- J^P measurements.
- Search for new states.

- $\Xi(1820)$
- $10_F \Xi(1530)$
- $8_F \Xi$
Opportunities for Baryon Spectroscopy at GlueX

Spectroscopy of $|ssn\rangle \Xi$ baryons:
- Very few established states
- None of the J^P measured
- Possibly narrow resonances

The multi-strange baryons provide a missing link between light-flavor and heavy-flavor baryons.

Program on Cascades involves:
- Measurement of $\Xi^- - \Xi^0$ splittings.
- J^P measurements.
- Search for new states.

Very few established states
None of the J^P measured
Possibly narrow resonances

The multi-strange baryons provide a missing link between light-flavor and heavy-flavor baryons.
Opportunities for Baryon Spectroscopy at GlueX

Spectroscopy of $|ssn\rangle \Xi$ baryons:
- Very few established states
- None of the J^P measured

Production via excited hyperons:

\[\gamma \rightarrow K^+ \rightarrow K^+ K^- \rightarrow \Lambda^* / \Sigma^* \rightarrow p \]

L. Guo et al. [CLAS], PRC 76, 025208 (2007)

8$F_2 \Xi$

10$F_2 \Xi(1530)$

GlueX Proposal, PAC 40 (arXiv:1305.1523)

Higher energies, $\sim 100\times$ more statistics, ...
Approved and Pending Experiments in Hall D

Broad and rich physics program at Hall D using the GlueX detector:

- Mapping the Spectrum of Light-Quark Mesons and Gluonic Excitations with Linearly Polarized Photons.
- A Precision Measurement of η Radiative Decay Width via the Primakoff Effect.

Recent submissions to Jefferson Lab PAC 40:

- An initial study of mesons and baryons containing strange quarks with GlueX (arXiv:1305.1523).
- Measuring the Charged-π Polarizibility in the $\gamma\gamma \rightarrow \pi^+\pi^-$ Reaction.
- Symmetry Tests of Rare η Decays to All-Neutral Final States: The JLab η Factory (JEF) Experiment.
Introduction
The GlueX Experiment
Gluonic Excitations
Other Physics Projects in Hall D
Summary and Outlook

Summary

The GlueX experiment is ideally suited to study the spectrum of light-flavor mesons up to $M \approx 2.8$ GeV and – if existing – the pattern of the gluonic excitations produced in γp collisions:

- It is important to establish the existence and the nonet nature of the 1^{--} state (and of 0^{+-}, 2^{+-})
- For a given produced resonance, linear polarization will allows us to distinguish between naturalities of exchanged particles.
- About 70 % of the photoproduction cross section in the energy region $E_{\gamma} \sim 7 – 12$ GeV has multiple neutrals and is completely unexplored.
 → Many opportunities for GlueX to make key experimental advances in our knowledge of excited mesons and baryons.

Advances in both theory and experiment will allow us to finally understand QCD and confinement.