Precision Measurement of η Radiative Decay Width via the Primakoff Effect

Liping Gan
University of North Carolina Wilmington

Outline

1. Physics motivation
2. How do we measure?
3. Current status
Confinement QCD

- Frontier of QCD
- Sensitive probe \rightarrow\text{symmetry test}
QCD Lagrangian in Chiral limit ($m_q \to 0$) is invariant under:

$$SU_L(3) \times SU_R(3) \times U_A(1) \times U_B(1)$$

- **Chiral symmetry** $SU_L(3) \times SU_R(3)$ spontaneously broken:
 - 8 Goldstone Bosons (π, K, η)
- **$U_A(1)$** is explicitly broken:
 - (Chiral anomalies)
 - $\Gamma(\pi^0 \to \gamma\gamma), \Gamma(\eta \to \gamma\gamma), \Gamma(\eta' \to \gamma\gamma)$
 - Mass of η_0
- **Massive quarks**, $SU(3)$ broken:
 - GB are massive
 - Mixing of π^0, η, η'

The π^0, η, η' system provides a rich laboratory to study the symmetry structure of QCD at low energies.
PrimEx Program at JLab

Precision measurements of electromagnetic properties of π^0, η, η' via Primakoff effect.

I. Two-Photon Decay Widths:
1) $\Gamma(\pi^0 \rightarrow \gamma\gamma)$ @ 6 GeV
2) $\Gamma(\eta \rightarrow \gamma\gamma)$
3) $\Gamma(\eta' \rightarrow \gamma\gamma)$

Input to Physics:
- Test chiral symmetry and chiral anomalies
- Determine light quark mass ratio
- η-η' mixing angle

II. Transition Form Factors at low Q^2 (0.001–0.5 GeV2/c2):
$F(\gamma\gamma^* \rightarrow \pi^0)$, $F(\gamma\gamma^* \rightarrow \eta)$, $F(\gamma\gamma^* \rightarrow \eta')$

Input to Physics:
- π^0, η and η' electromagnetic interaction radii
- Is η' an approximate Goldstone boson?
- Muon g-2
Impact of $\Gamma(\eta \rightarrow \gamma\gamma)$ Measurement

1. Improve all decay widths in η-sector

2. Extract $\eta-\eta'$ mixing angle:

3. Determine light quark mass ratio:

$$Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}, \quad \text{where } \hat{m} = \frac{1}{2}(m_u + m_d)$$

Input for Cabibbo Angle Determination

\[V_{us} = \sin(\theta_c) \]

- Light quark masses are input to extract \(V_{us} \) from kaon decays or hyperon decays.

- \(V_{us} \) is a cornerstone for CKM unitarity test

\[|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 \]
Primakoff Method

\[\frac{d\sigma_{\text{Pr}}}{d\Omega} = \Gamma_{\gamma\gamma} \frac{8\alpha Z^2 \beta^3 E^4}{m_{\eta}^3 Q^4} \left| F_{\text{e.m.}}(Q) \right|^2 \sin^2 \theta_{\eta} \]

Features of Primakoff cross section:
- Peaked at very small forward angle
 \[\langle \theta_{\text{Pr}} \rangle_{\text{peak}} \propto \frac{m^2}{2E^2} \]
- Beam energy sensitive
 \[\left\langle \frac{d\sigma_{\text{Pr}}}{d\Omega} \right\rangle_{\text{peak}} \propto E^4, \int d\sigma_{\text{Pr}} \propto Z^2 \log(E) \]
- Coherent process

Requirement:
- Luminosity
- Beam energy
- Coherency
Primakoff Method

\[\frac{d\sigma_{Pr}}{d\Omega} = \Gamma_{\gamma\gamma} \frac{8\alpha Z^2}{m^3_\eta} \frac{\beta^3 E^4}{Q^4} |F_{\text{e.m.}}(Q)|^2 \sin^2 \theta_\eta \]

Features of Primakoff cross section:
- Peaked at very small forward angle
 \[\langle \theta_{Pr} \rangle_{\text{peak}} \propto \frac{m^2}{2E^2} \]
- Beam energy sensitive
 \[\left\langle \frac{d\sigma_{Pr}}{d\Omega} \right\rangle_{\text{peak}} \propto E^4, \int d\sigma_{Pr} \propto Z^2 \log(E) \]
- Coherent process

Requirement:
- Luminosity
- Beam energy
- Coherency

E_{\text{beam}} = 11 \text{ GeV}
\gamma + ^4\text{He} \rightarrow \eta + ^4\text{He}
Experimental Setup in Hall D

- Tagged photon beam (~9.5-11.7 GeV)
- Pair spectrometer and a TAC detector for the photon flux control
- Liquid Hydrogen (3.5% R.L.) and 4He targets (~4% R.L.)
- Forward Calorimeter (FCAL) detects the $\eta \rightarrow \gamma \gamma$ decay photons
- CompCal and FCAL to measure electron Compton scattering for control of overall systematics.
Experimental Challenges

Compared to π^0:

- η mass is a factor of 4 larger
- smaller cross section
 \[
 \left< \frac{d\sigma_{Pr}}{d\Omega} \right>_{\text{peak}} \propto \frac{E^4}{m^3}
 \]
- larger overlap between Primakoff and hadronic processes:
 \[
 \left< \theta_{Pr} \right>_{\text{peak}} \propto \frac{m^2}{2E^2} \quad \left< \theta_{NC} \right>_{\text{peak}} \propto \frac{2}{E \cdot A^{1/3}}
 \]
- larger momentum transfer (coherency, form factors, FSI,...)

1. Higher beam energy
2. Light targets
Advantage of Light Targets

Low A targets to control:

- Coherency: compact nucleus
- Separate background

\[
\langle \theta_{\text{pr}} \rangle_{\text{peak}} \propto \frac{m^2}{2E^2} \quad \langle \theta_{\text{NC}} \rangle_{\text{peak}} \propto \frac{2}{E \cdot A^{1/3}}
\]

- Well known form factors

Hydrogen:

- No inelastic hadronic contribution
- No nuclear final state interactions

\(^4\text{He}:

- Higher Primakoff cross section: \(\sigma_{\text{pr}} \propto Z^2 \)
Current Status

• Recently passed the Experiment Readiness Review and is recommended for 2018 beam request.

• CompCal Calorimeter

• Liquid 4He target
CompCal Calorimeter

1. 96 of PWO crystal modules coupled to Hamamatsu R4125HA PMTs (from NPS in Hall C)

2. Central 2x2 crystals are removed for beam to pass through

- Engineering design is done
- Calorimeter will be ready by Aug 2018.
The existing cryotarget in Hall D with a new, two-piece heat shield:

- A 0.75 mm copper upstream of target cell
- A 0.25 mm aluminum surrounding the cell
Beam Time

<table>
<thead>
<tr>
<th>Activity</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup calibration, checkout</td>
<td>2</td>
</tr>
<tr>
<td>Tagger efficiency, TAC runs</td>
<td>1</td>
</tr>
<tr>
<td>Liquid 4He target run</td>
<td>30</td>
</tr>
<tr>
<td>LH$_2$ target run</td>
<td>40</td>
</tr>
<tr>
<td>Empty target run</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>79</td>
</tr>
</tbody>
</table>
Estimated Error Budget

Systematical uncertainties:

<table>
<thead>
<tr>
<th>Contributions</th>
<th>Estimated Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity</td>
<td>1.2%</td>
</tr>
<tr>
<td>Background subtraction</td>
<td>2.0%</td>
</tr>
<tr>
<td>Event selection</td>
<td>1.7%</td>
</tr>
<tr>
<td>Acceptance and misalignment</td>
<td>0.5%</td>
</tr>
<tr>
<td>Beam energy</td>
<td>0.2%</td>
</tr>
<tr>
<td>Detection efficiency</td>
<td>0.5%</td>
</tr>
<tr>
<td>Branching ratio (PDG)</td>
<td>0.51%</td>
</tr>
<tr>
<td>Total Systematic</td>
<td>3.0%</td>
</tr>
</tbody>
</table>

Total uncertainty:

<table>
<thead>
<tr>
<th>Statistical</th>
<th>1.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic</td>
<td>3.0%</td>
</tr>
<tr>
<td>Total</td>
<td>3.2%</td>
</tr>
</tbody>
</table>
A precision measurement of $\Gamma(\eta \rightarrow \gamma \gamma)$ is developed.

Experiment is preparing to run in 2018.

Physics impact:

- Improve all decay widths in the η-sector of PDG
- Quark mass ratio
- Mixing angle of η-η'
- Input for V_{us} determination and CKM unitarity test

This project is supported by NSF PHY-1506303 award.
Control Systematics with Compton Scattering $(\gamma + e \rightarrow \gamma' + e')$

CompCal is needed for systematics control:

- Luminosity
- Monitoring the experimental stability

$E_\gamma = 11$ GeV
CompCal Prototype (25 lead glass assembly)

- Lead glass (4 cm x 4 cm x 45 cm)
- FEU 84 PMT
- HyCal divider (passive)

Prototype assembly
CompCal Prototype Beam Test Result

- Measure counter rate at different distances from the beam line.
 - use the same thresholds as FCAL
 - magnetic field was turned on
 - CompCal was not calibrated

- Estimated rate of the CompCal (PWO) counter $R \leq R^{FCAL}_{INNER}$