Nuclear axial currents and selected applications to few-nucleon systems

Alessandro Baroni
University of South Carolina

User Group Meeting
Jefferson Lab, Virginia
June 19, 2018
Nuclear weak processes

- β decays (single and double) important for
 - Precision tests of the Standard Model
 - g_A quenching (implications for $0\nu\beta\beta$)
 - Nuclear astrophysics (Sun chain reaction)

- $\nu -$ nucleus scattering important for
 - Neutrino oscillations (SNO, ...)
 - Leptonic CP violation
 - Nuclear astrophysics (Supernovae, ..)

Well - known experimentally excellent test for the theory

Less - known experimentally need of theoretical input
• Solar neutrino problem

\(\Phi_{8B}^{\text{Expt.}} \sim \Phi_{8B}^{\text{SSM}} \)

Heavy-water Cherenkov counter built to study neutrinos coming from \(^8\text{B} \beta\)-decay (5-15 MeV)

• CC: \(\nu_e + d \rightarrow e^- + p + p \)

NC: \(\nu_l + d \rightarrow \nu_l + n + p \)

ES: \(\nu_l + e^- \rightarrow \nu_l + e^- \)
Nuclear electroweak interactions?

Atomic nuclei are a complex quantum-many body systems of strongly interacting nucleons.

Hadronic matrix elements difficult because of QCD

Lattice QCD (non perturbative method)

Effective field theories (expansion in kinematic variables)

http://www.tunl.duke.edu/nucldata/HalfLife.shtml
Build the most general Lagrangian with hadronic d.o.f. with the same exact symmetries and approximate symmetries of the underlying theory.

\[\mathcal{L}_{\chi EFT} = \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \cdots \]

\[\mathcal{L}^{(n)} \sim \left(\frac{Q}{\Lambda_{\chi}} \right)^n \] nucleon momenta .. \(\sim 1 \text{ GeV} \)

Approximate chiral symmetry requires the pion to couple to other pions and to nucleons by powers of its momentum.

- S. Weinberg (1968-1979)
Nuclear χ EFT I

Nuclear bound states cannot be obtained from perturbation theory alone

LECs $\mathcal{L}_{\chi EFT}$

Calculate amplitudes+prescription to obtain potentials + regularization (of high momentum components)

π, N

Predictions

NOT YET!

$\psi_{2N}, \psi_{3N}, \cdots$

$J_{1N}^\mu, J_{2N}^\mu, \cdots$

observables for $\pi \pi, \pi N, \cdots$

Nuclear observables in two and three body systems

$ab\ initio$ methods for $A>2$: HH, QMC, NCS, CC, ….
Nuclear χEFT II

Nuclear observables in two and three body systems

LECs $\mathcal{L}_{\chi EFT}$

Calculate amplitudes + some prescription to obtain potentials + regularization

LECs v_{2N}, v_{3N}, \ldots $J_{1N}^{\mu}, J_{2N}^{\mu}, \ldots$

Predictions

Observed for $\pi\pi, \pi N, \ldots$

Nuclear bound states cannot be obtained from perturbation theory alone...

τ^N π^N

Perturbation theory? Useful to keep in mind...
• Define a weak transition potential \(v_5 = A_0^a \rho_{5,a} - \mathbf{A} \cdot \mathbf{j}_{5,a} \) (similar to EM)

• We require the weak interaction potential to match the on shell scattering amplitude

\[
T_5 = v_5 + v_5 \frac{1}{E_i - H_0 + i\epsilon} T_5
\]

• Perturbative expansion in powers of the nucleon momenta

\[
T_5 = T_5^{\text{LO}} + T_5^{\text{NLO}} + T_5^{\text{N2LO}} + \cdots
\]
\[
v_5 = v_5^{\text{LO}} + v_5^{\text{NLO}} + v_5^{\text{N2LO}} + \cdots
\]

• Matching order by order

\[
v_5^{\text{LO},a} = T_5^{\text{LO}}
\]
\[
v_5^{\text{NLO},a} = T_5^{\text{NLO}} - \left(v_5^{\text{LO},a} \frac{1}{E_i - E_I + i\epsilon} v_5^{\text{LO}} + \text{permutations} \right)
\]
\[
\cdots
\]
\[
\rho_{5,a} = \rho_{5,a}^{\text{LO}} + \rho_{5,a}^{\text{NLO}} + \rho_{5,a}^{\text{N2LO}} + \cdots
\]
\[
\mathbf{j}_{5,a} = \mathbf{j}_{5,a}^{\text{LO}} + \mathbf{j}_{5,a}^{\text{NLO}} + \mathbf{j}_{5,a}^{\text{N2LO}} + \cdots
\]
• A subtle point: operators derived are not unique!

\[v_{5,a}^{\text{LO}} = T_5^{\text{LO}} \]
\[v_{5,a}^{\text{NLO}} = T_5^{\text{NLO}} - \left(\frac{1}{v_{5,a}^{\text{LO}}} \frac{1}{E_i - E_I + i\epsilon} v^{\text{LO}} + \text{permutations} \right) \]

• Biblio

N. Kaiser et al. for nuclear potentials Feynman diagrams (1998)

S. Pastore et al. (2008-2011) for em currents, M. Piarulli et al. (2013) for em currents, TOPT

AB et al. (2016) for axial currents, TOPT

• Alternative approach using unitary transformations:

Epelbaum, Krebs, Meissner, et al. (1998-2017), for nuclear potentials, em and axial currents
Summary

- Axial current and charge derived up to N4LO

- Self consistency checks:
 - Current conservation in the chiral limit
 \[\mathbf{q} \cdot \mathbf{j}_{5,a} = [H, \rho_{5,a}] \rightarrow \text{satisfied order by order} \]
 - Renormalization of the axial charge (delicate cancellation of divergences)
 - Independence of the choice of the parametrization of the pion field

- Technical challenges:
 - "New" class of diagrams appear respect to EM currents, formalism had to be
 adjusted to include them
 - >1000 diagrams in TOPT (no software infrastructure available)

- Difference for some loop topologies with another recent derivation
 - H. Krebs, E. Epelbaum, and Meissner, Unitary transformation
Axial currents

Strong and EM LECs partially known

1+4 “Weak” LECs ??

How do we fix them before?
Actually…

LO chiral 3N force $\cdots \cdots \cdots$ c_E Fixed to 3N binding energies $\cdots \cdots$

Gazit et al. (2009), Marcucci et al. (2011), AB et al. (2017)
R. Schiavilla private communications (2018) (correct relation)

Axial current 2N contact term \cdots Can be fixed with beta decays \cdots
• We look at tritium beta decay rate (simplest beta decay), transition rate well known experimentally:

\[
(1 + \delta_R) \, t f_V = \frac{K / G_V^2}{\langle F \rangle^2 + f_A / f_V \, g_A^2 \langle GT \rangle^2} \quad \langle \bar{3}\text{He} | \rho^+ | 3\text{H} \rangle \quad \langle 3\text{He} | j_5^+ | 3\text{H} \rangle
\]

• Wave functions are obtained solving the 3-body Schrödinger equation
 (Pisa group specialty, Hyperspherical Harmonics, \textit{ab initio} method)

\[
\hat{H}_{\chi\text{EFT}}(c_D) | 3\text{H}(c_D) \rangle = E_{3\text{H}} | 3\text{H}(c_D) \rangle \\
\hat{H}_{\chi\text{EFT}}(c_D) | 3\text{He}(c_D) \rangle = E_{3\text{He}} | 3\text{He}(c_D) \rangle
\]

• Since the 3N potential depends on 2 unknown LECs we fix \(c_E \) to three-nucleon binding energies and we get a family of wave functions

Marcucci, Kievsky, Viviani, Rosati (1990-2018)
Fix the LEC in the axial current II

- Fitting of the triton GT matrix element using AV18+UIX and N4LO currents

AB, Schiavilla, Marcucci et al. (2016)
Fix the LEC in the axial current III

- Fitting of the triton GT matrix element

\[\langle {}^3\text{He}(c_D)|H_{\text{EFT}}(c_D)|^3\text{H}(c_D)\rangle = f(c_D) \]

Wave functions from Entem-Machleidt Chiral potential N3LO currents

<table>
<thead>
<tr>
<th>Λ</th>
<th>500 MeV</th>
<th>600 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_D</td>
<td>0.65-1.24</td>
<td>0.92-1.37</td>
</tr>
</tbody>
</table>

AB, Schiavilla, Marcucci et al. (2017)
L. Marcucci et al. (2018)
AB, Schiavilla, Marcucci et al. (2018), in preparation

Courtesy of L. Marcucci
CONTRIBUTIONS

<table>
<thead>
<tr>
<th></th>
<th>500 MeV</th>
<th>600 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>0.9363</td>
<td>0.9322</td>
</tr>
<tr>
<td>N2LO</td>
<td>-0.569×10^{-2}</td>
<td>-0.457×10^{-2}</td>
</tr>
<tr>
<td>N3LO($^{1}\pi$)</td>
<td>0.825×10^{-2}</td>
<td>0.043×10^{-2}</td>
</tr>
<tr>
<td>N4LO(loop)</td>
<td>-0.486×10^{-1}</td>
<td>-0.600×10^{-1}</td>
</tr>
<tr>
<td>N4LO(3Bd)</td>
<td>-0.143×10^{-2}</td>
<td>-0.153×10^{-2}</td>
</tr>
</tbody>
</table>

- **Major contribution**
- **Relativistic correction to 1-body**
- **2-body tree level, pion range**
- **Loop big effect**
- **3-body currents, suppressed**
Take home message

- LEC in the axial current determined using tritium beta decay
- Loop give important contribution
- Axial current acquires predictive power
- For axial charge as a first step we will assume LECs ~ 1
- Second not trivial application is low energy neutrino deuteron scattering
Neutrino deuterium

\[
\frac{d\sigma}{de'd\Omega} \propto G_F^2 L_{\mu\nu} W_{\mu\nu}^{CC} \frac{1}{3} \sum_{M,\{f\}} \delta(E_i - E_f) \langle f | j_{\mu CC}^\nu | d, M \rangle \langle d, M | j_{\mu CC}^\nu | f \rangle^* \]

Can be computed numerically

• Similar for neutral current process

• Nakamura et al. (2002), Phenomelogical interactions
• Shen et al. (2011), Phenomenological interactions
• AB and Schiavilla 2017 (first chiral EFT calculation)
Results I: Differential cross sections

$\theta=90^\circ$ $E_\nu=10$ MeV

\[\frac{d\sigma}{d\varepsilon'} \text{[10}^{-17} \text{fm}^2/(\text{MeV sr})] \]

\[\varepsilon' (\text{MeV}) \]

\[\nu_e-\text{CC} \]

\[\bar{\nu}_e-\text{CC} \]

This paper Nakamura et al. (2002)
Results II: Total cross sections

\(\Lambda = 500 \text{ MeV} \)

\(\nu_e\text{-CC} \)

\(\bar{\nu}_e\text{-CC} \)

\(\nu_e\text{-NC} \)

for \(\Lambda = 600 \text{ MeV} \) variation \(\leq 1\% \)

\(\chi \text{EFT} \)

\(\text{Nakamura et al. (2002)} \)
Currents used for beta decays

Electroweak currents, with phenomenological potentials, GFMC 2-body currents play a big role

Pastore et al. (2018)
Outlook

- Currents derived up to N4LO
- LEC in the axial current fixed with experimental GT matrix element
- Prediction for neutrino deuteron→confirm phenomenological approaches
- Hybrid calculations in beta decays denote big effect of two-body currents
- Systematic study of theoretical uncertainty
- LQCD to determine the LEC in the axial current (validation) (Savage et al. 2017)
- Refine calculations for beta decays/include delta in the currents (?) (Goity et al. 2012)
<table>
<thead>
<tr>
<th>Collaborators</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. Girlanda</td>
<td>INFN Lecce, Italy</td>
</tr>
<tr>
<td>L. E. Marcucci</td>
<td>Univ. Pisa, Italy</td>
</tr>
<tr>
<td>A. Kievsky</td>
<td>INFN Pisa, Italy</td>
</tr>
<tr>
<td>S. Pastore</td>
<td>LANL, Washington University, USA</td>
</tr>
<tr>
<td>R. Schiavilla</td>
<td>JLab/ODU, USA</td>
</tr>
<tr>
<td>M. Viviani</td>
<td>INFN Pisa, Italy</td>
</tr>
</tbody>
</table>

Advisor

Thank you!
Collaborators
Axial current

For n vertices $n!$ diagrams (TOPT)

- Loop diagrams have been regularized (dim reg)

No new contacts
Convergence pattern

\[E_{\nu} \text{(MeV)} \]

\[N(1|2)_{\text{LO}} / N(1|2)_{\text{LO}} \]

\[N(2|3)_{\text{LO}} / N(1|2)_{\text{LO}} \]

\[N(3|4)_{\text{LO}} / N(2|3)_{\text{LO}} \]

\[\nu_e - \text{CC} \]

\[\bar{\nu}_e - \text{CC} \]

\[\nu_e - \text{NC} \]

\[\bar{\nu}_e - \text{NC} \]
Axial charge

Loop diagrams have been regularized (dim reg) divergences are reabsorbed by contact terms and higher order πN couplings

Many thousands of diagrams for n vertices $n!$ diagrams (TOPT)
Comparison with others?
\beta decays Saori
Results: Neutral currents

\[\Lambda = 500 \text{ MeV} \]

\(\nu_e \)-NC

\(\bar{\nu}_e \)-NC

for \(\Lambda = 600 \text{ MeV} \) variation \(\leq 1\% \)
Triton calculation

N3LO/N2LO chiral potentials

Hyperpherical harmonics \textit{ab initio} method (developed by Pisa group over last two decades)

family of wave functions

Standard Monte Carlo techniques

Matrix element

Pisa group citations
Triton Results

- Loop give not negligible contribution
- Preliminary three-body currents seem negligible

<table>
<thead>
<tr>
<th>LO</th>
<th>500 MeV</th>
<th>600 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>0.9363 (0.9224)</td>
<td>0.9322 (0.9224)</td>
</tr>
<tr>
<td>N2LO</td>
<td>(-0.569(-0.844) \times 10^{-2})</td>
<td>(-0.457(-0.844) \times 10^{-2})</td>
</tr>
<tr>
<td>N3LO (OPE)</td>
<td>(0.825(1.304) \times 10^{-2})</td>
<td>(0.043(7.517) \times 10^{-2})</td>
</tr>
<tr>
<td>N4LO (Loop)</td>
<td>(-0.486(-0.650) \times 10^{-1})</td>
<td>(-0.600(-0.852) \times 10^{-1})</td>
</tr>
<tr>
<td>N4LO (3Bd)</td>
<td>(-0.143(-0.183) \times 10^{-2})</td>
<td>(-0.153(-0.205) \times 10^{-2})</td>
</tr>
</tbody>
</table>

- N3LO/N2LO full chiral
- AV18/UIX hybrid
Matching holds for on shell scattering amplitude
• Matching is not unique → Nuclear operators are not unique
 • iterations of LS depend on the off-the-energy-shell extension of lower order currents and potentials
 • Not unique operators **should** be related by a unitary transformation (**no general proof at the moment**)
Outlook
Backup slides
Effective field theory

- Pion and nucleons degrees of freedom
- Exact
- Lagrangian is an expansion in powers of Q/Λ_{χ}
 \[\mathcal{L}_{\chi\text{EFT}} = \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \cdots \]
- Low energy constants (encode our ignorance)

Experiments (past and present) Lattice QCD (near future)
Theory approaches

Theory \rightleftharpoons \text{Experiment}

Lattice QCD

Effective theories
Effective field theories

Low energy approximations of an underlying theory

- Exploit separation of scales
- Build the most general Lagrangian consistent with the symmetries of the underlying theory

- Weinberg 1979
Strategy

Theory ➔ ? ➔ Experiment
Pipeline

\mathcal{L}_{QCD}

$\mathcal{L}_{\chi EFT}$

Derivation → Interactions and currents → ab initio methods → Fix LECs

ab initio methods → Predictions → Validation → Expt.

Input for expts.