
From JLab12 to EIC: QCD in nuclei

C. Weiss (JLab), 2018 JLab User Group Meeting, 19-Jun-2018

Nucleon interactions

Hadronic and QCD description

Non-nucleonic degrees of freedom

Partonic structure of nuclei

EMC effect x > 0.3JLab12, EIC Antishadowing $x \sim 0.1$ EIC Shadowing, coherence $x \ll 0.1$ UPC, EIC

Nonlinear effects and saturation

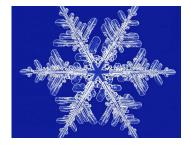
• QCD phenomena in final states Color transparency, propagation JLab12, EIC

Nucleon interactions: Context

Q: How do nucleon interactions arise from QCD?

• Intellectual gain: Emergent phenomena

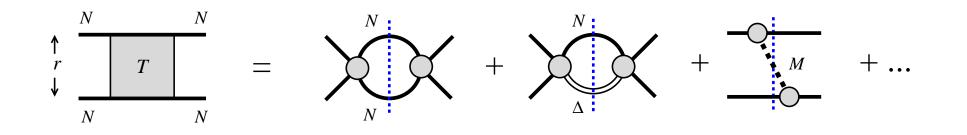
General concept in complex systems

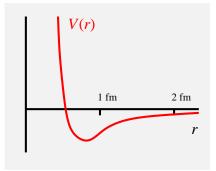

• Predictive power: EFT methods and matching

Effective DoF and dynamics at scales $M_{\pi}, \sqrt{\epsilon_d m}$

Import short-distance information through effective interactions derived from QCD

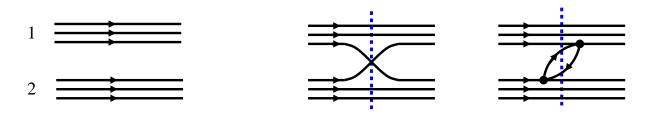
• Extreme temperatures and densities


Astrophysical systems, neutron stars, early universe Heavy-ion collisions



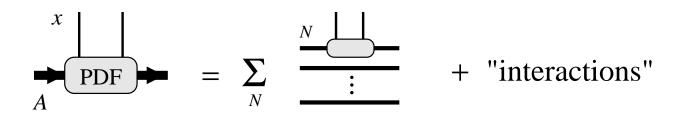
Nucleon interactions: Hadronic description

- Interactions involve non-nucleonic degrees of freedom: $\rm QM$ + relativity
- Low-energy nuclear structure and reactions $(k \sim k_{\rm F})$ do not resolve intermediate states: NN potential, EFT contact interactions


• High-energy processes can resolve intermediate states: "Origin" of interactions

JLab 6/12 GeV: Short-range correlations, high-momentum components \rightarrow Talks Cruz Torres, Schmookler, Schmidt, Hauenstein

Nucleon interactions: QCD description

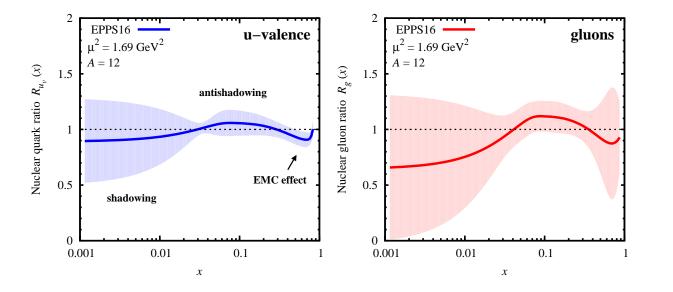

$$|N\rangle = \sum_{\text{configs}} |qqq...\bar{q}q...\rangle$$
 coherent superposition

 $|N_1N_2\rangle_{\rm int} = (...)_1(...)_2 + \text{other configs!}$

- NN interactions change superposition of quark/gluon configurations compared to free nucleons (\leftrightarrow non-nucleonic DoF) Frankfurt, Strikman 81+
- High-energy short-distance processes on nuclei (DIS, etc.) can give insight into QCD origin of NN interactions

Nucleon interactions: Nuclear parton densities

DIS on nucleus: QCD factorization, nuclear PDF $\langle A | \hat{\mathcal{O}}_{QCD}(\mu^2) | A \rangle$


Compare nuclear PDF with sum of nucleons \times Fermi motion $\ \rightarrow \$ interactions

Physical questions

- What are the modifications of quarks/gluon densities at different x?
- What are the relevant distances in the nucleon interactions?
- What are the relevant non-nucleonic configurations/states?

Different interactions & configurations are at work at different x!

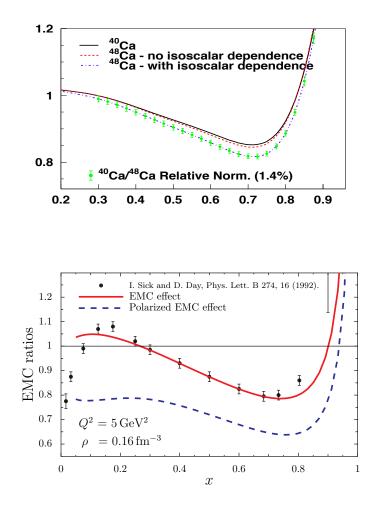
Nucleon interactions: Physical regimes

0.3 < x < 0.8	EMC effect
$0.05 \lesssim x < 0.2$	antishadowing
x < 0.01	shadowing

Global analysis Eskola et al. 16

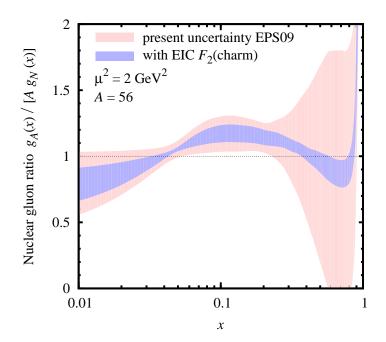

EMC effect

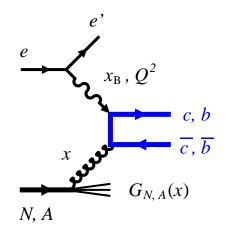
Suppression of valence quark density in nucleus


Likely caused by short-range NN interactions r < 1 fm

Configurations? Dynamical models and critique Review: Malace, Gaskell, Higinbotham, Cloet 14

Basic properties unknown: Isospin, spin dependence? Gluons? Distances?


EMC effect: JLab12



- Leading vs. higher twist Q^2 scaling of F_{2A} at large xNuclear dependence of $R = \sigma_L/\sigma_T$
- Isospin dependence ${}^{3}\mathrm{H} \leftrightarrow {}^{3}\mathrm{He}$ comparison, ${}^{40}\mathrm{Ca}/{}^{48}\mathrm{Ca}$ ratio
- Polarized valence quarks
 Model predictions Cloet, Bentz, Thomas 05+
- [• Tagging, EMC-SRC connection \rightarrow later

JLab12: Comprehensive study of EMC effect in valence quarks

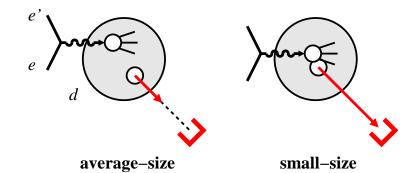
EMC effect: EIC

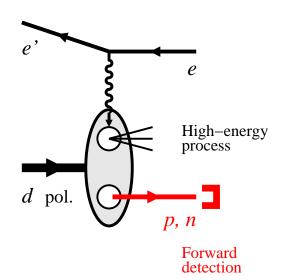
• Gluonic EMC effect?

Relevant quark/gluon configurations?

- EIC: Q^2 -dependence of F_{2A}, F_{LA} Wide kinematic coverage
- EIC: Heavy quark production

Good sensitivity to large-x gluons


Medium-energy collider well suited (e/N \sim 10/100 GeV)


New methods of charm reconstruction

Feasibility and impact studied JLab LDRD Project 2016/17 CW et al. [webpage] [arXiv:1610.08536], [arXiv:1608.08686]

See also: Aschenauer et al. PRD 96 114005 (2017)

EMC effect: Tagging

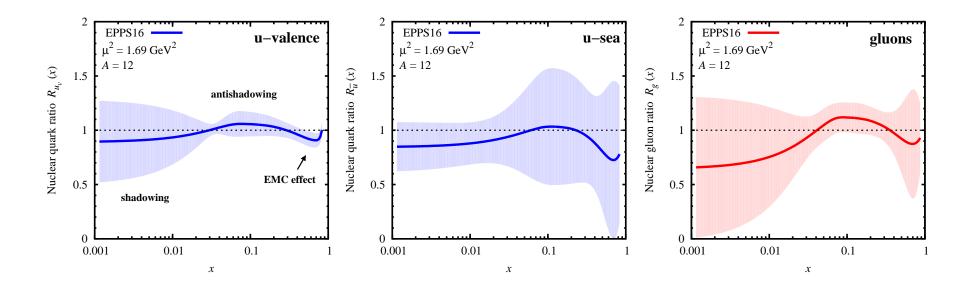
• What NN distances cause modification?

Nuclear breakup detection can control nucleon configuration during DIS process

Deuteron: Spectator nucleon tagging

- JLab12: Tagged DIS experiments CLAS12 BONuS, Hall A \rightarrow Talk Horn
- EIC: Spectator tagging program

Forward detection of p, n


Good coverage and momentum resolution

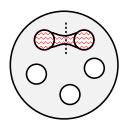
Polarized deuteron tagging possible JLab 2014/15 LDRD project CW et al. [webpage]

• Theoretical questions

Initial-state effects vs. final-state interactions in spectator momentum distribution Ciofi degli Atti, Kopeliovich, Kaptari 03+; Strikman CW 2018

Antishadowing: Physics

Enhancement of nuclear quark density $q+\bar{q}$ at $x\sim 0.1$


Likely caused by NN interactions at average distances

Quarks vs. antiquarks, flavor separation?

Nucleon interactions through quark or meson exchange?

Gluon antishadowing?

Gluon shadowing at $x\ll 0.1$ requires compensating antishadowing for momentum sum rule. Dynamical model: Frankfurt, Guzey, Strikman 17



quark exchange

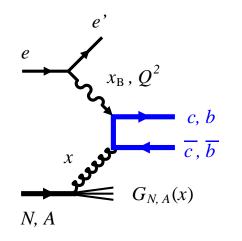
meson exchange

Antishadowing: EIC

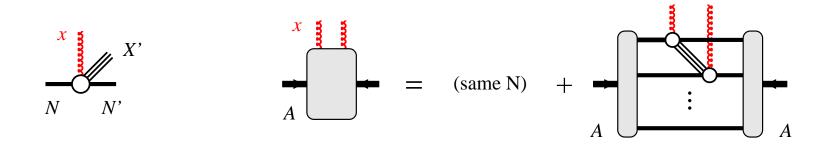
• Charge-flavor separation of nuclear PDFs at $x\sim 0.1$ with semi-inclusive π^{\pm}, K^{\pm}

Same techniques as $ep\ {\sf SIDIS}$

Separate charges/flavors using cross section ratios


Distinguish initial-state effects from nuclear final-state interactions using $A{\rm -}{\rm dependence}$

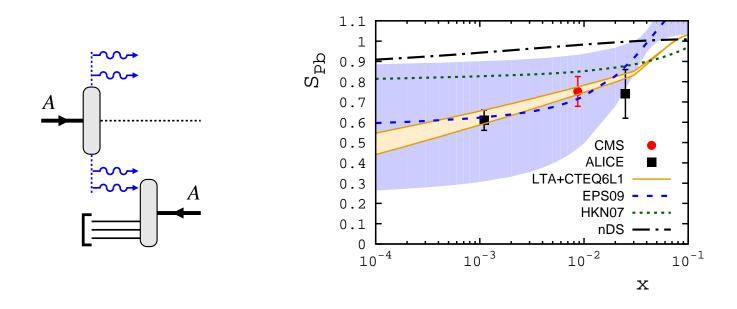
Simulations in progress Zhihong Ye, Hauenstein, Higinbotham, CW


• Nuclear gluons at $x\sim 0.1$ with open charm

Large antishadowing effect expected

• Enlarged data set for global analysis

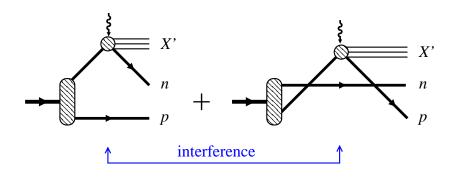
Shadowing: Physics


- Nucleon: Removal of gluon with $x \ll 0.1$ can leave nucleon intact $N \to g + X' + N'$. "Diffraction." Observed at HERA
- Nuclear gluon density: Interference of gluon attachments to different nucleons Interaction effect. QCD analogue of Gribov's theory of shadowing 70s

Suppresses nuclear gluon density at $x \ll 0.1$. "Shadowing." Leading-twist effect!

Calculable in terms of diffractive nucleon PDF and nuclear wave function $_{\rm Frankfurt,\ Guzey,\ Strikman\ 12+}$

Coherent phenomenon, result of action of multiple nucleons


Shadowing: Ultraperipheral collisions LHC

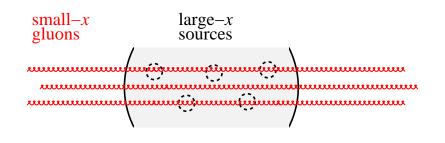


- UPCs at LHC enable high-energy photoproduction $W\sim$ 500-1500 GeV
- Coherent J/ψ production data support leading-twist gluon shadowing $\gamma + A \rightarrow J/\psi + A^*$, involves theoretical analysis
- Open questions

Test interference mechanism? Leading vs. higher-twist shadowing? Quark vs. gluon shadowing, singlet/nonsinglet?

Shadowing: EIC

• Shadowing in tagged DIS on deuteron


Guzey, Strikman, CW, in progress

Large shadowing effect in recoil momentum dependence Detailed test of interference mechanism in ${\cal N}=2$ system

- N = 3 shadowing from other light ions: ³He, ⁴He, ...
- Shadowing in coherent scattering: Impact parameter dependence Guzey et al., Kowalski, Caldwell 10
- Gluon shadowing from global PDF analysis

Leading vs. higher twist

Nonlinear effects and saturation

• New dynamical scale in nuclei at small \boldsymbol{x}

 $Q_s(x) \sim$ gluons / transverse area

Non-linear evolution equations with recombination ${\sf Balitsky}, {\sf Kovchegov}; {\sf JIMWLK}$

Classical fields: Color Glass Condensate McLerran, Venugopalan

Extreme form of "nucleon interactions"

• Phenomena


 $p_T \sim Q_s$ in forward hadron/jet production in $pA/\gamma A/\gamma^* A$

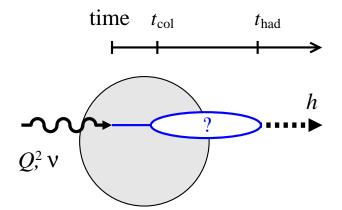
Correlations and multiple hard processes in pA/AA

Breakdown of Bjorken scaling in F_{2A}, F_{LA}

- LHC $pA/\gamma A$ forward hadron/jet production will see **whether** it is there: Highest energy/smallest x, final-state signatures
- EIC $eA/\gamma A$ can explain **how** it happens: Shadowing, initial condition of small-x evolution, Q^2 -dependence, transverse geometry

QCD phenomena in final states

• Color transparency


Fundamental prediction of QCD $\sigma \propto r^2 \ (r \to 0)$

EIC: $l_{\rm coh} \gg R_A, \ Q^2 \sim {\rm few} \ 10 \ {\rm GeV}^2$

Necessary for saturation: Disappearance

• Color propagation in matter \rightarrow Talk Mineeva Mechanisms: Energy loss, attenuation? Time scales: Color neutralization, hadron formation JLab12: Hadronization inside nucleus EIC: $\nu \sim 10$ -100 GeV. Move hadronization in/out Q^2 dependence, heavy-quark probes

Jets and substructure in eA New area for EIC. Great interest. Synergies with heavy-ion physics. Topical workshops 2018

Summary

- Nucleon interactions in QCD as unifying perspective "Next step" after nucleon structure
- JLab12 and EIC complementary

JLab12: Short-range correlations, EMC effect in valence quarks EIC: EMC effect of gluons, antishadowing, shadowing, approach to saturation

- Tagging extends physics reach of nuclear DIS measurements Control nuclear configuration during high-energy process
- EIC physics program in context of LHC

Ultraperipheral collisions explore energy frontier in EM processes

Nonlinear effects should be seen in $pA/\gamma A$

Much to do for EIC: Control partonic kinematics, Q^2 -dependence, initial condition for small-x evolution, . . .