
From JLab12 to EIC: QCD in nuclei
C. Weiss (JLab), 2018 JLab User Group Meeting, 19-Jun-2018
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• Nucleon interactions

Hadronic and QCD description

Non-nucleonic degrees of freedom

• Partonic structure of nuclei

EMC effect x > 0.3 JLab12, EIC

Antishadowing x ∼ 0.1 EIC

Shadowing, coherence x ≪ 0.1 UPC, EIC

Nonlinear effects and saturation

• QCD phenomena in final states

Color transparency, propagation JLab12, EIC



Nucleon interactions: Context 2

Q: How do nucleon interactions arise from QCD?

• Intellectual gain: Emergent phenomena

General concept in complex systems

• Predictive power: EFT methods and matching

Effective DoF and dynamics at scales Mπ,
√
ǫdm

Import short-distance information through
effective interactions derived from QCD

• Extreme temperatures and densities

Astrophysical systems, neutron stars, early universe

Heavy-ion collisions



Nucleon interactions: Hadronic description 3
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• Interactions involve non-nucleonic degrees of freedom:
QM + relativity

• Low-energy nuclear structure and reactions (k ∼ kF)
do not resolve intermediate states: NN potential,
EFT contact interactions

• High-energy processes can resolve intermediate states:
“Origin” of interactions

(r)V

r

2 fm1 fm

JLab 6/12 GeV: Short-range correlations, high-momentum components → Talks Cruz Torres, Schmookler, Schmidt, Hauenstein



Nucleon interactions: QCD description 4

|N〉 =
∑

configs

|qqq...q̄q...g...〉 coherent superposition

|N1N2〉int = (...)1(...)2 + other configs!

1

2

• NN interactions change superposition of quark/gluon configurations
compared to free nucleons (↔ non-nucleonic DoF) Frankfurt, Strikman 81+

• High-energy short-distance processes on nuclei (DIS, etc.)
can give insight into QCD origin of NN interactions



Nucleon interactions: Nuclear parton densities 5

... "interactions"

N

N
= +Σ

A

x

PDF

DIS on nucleus: QCD factorization, nuclear PDF 〈A| ÔQCD(µ
2) |A〉

Compare nuclear PDF with sum of nucleons × Fermi motion → interactions

Physical questions

• What are the modifications of quarks/gluon densities at different x?

• What are the relevant distances in the nucleon interactions?

• What are the relevant non-nucleonic configurations/states?

Different interactions & configurations are at work at different x!



Nucleon interactions: Physical regimes 6
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EMC effect

u−valence gluons

shadowing

antishadowing

0.3 < x < 0.8 EMC effect

0.05 . x < 0.2 antishadowing

x < 0.01 shadowing

Global analysis Eskola et al. 16

EMC effect

Suppression of valence quark density in nucleus

Likely caused by short-range NN interactions r < 1 fm

Configurations? Dynamical models and critique
Review: Malace, Gaskell, Higinbotham, Cloet 14

Basic properties unknown: Isospin, spin dependence?
Gluons? Distances?



EMC effect: JLab12 7
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I. Sick and D. Day, Phys. Lett. B 274, 16 (1992).

EMC effect

Polarized EMC effect

• Leading vs. higher twist

Q2 scaling of F2A at large x

Nuclear dependence of R = σL/σT

• Isospin dependence

3H ↔ 3He comparison, 40Ca/48Ca ratio

• Polarized valence quarks

Model predictions Cloet, Bentz, Thomas 05+

[• Tagging, EMC-SRC connection → later

JLab12: Comprehensive study of EMC effect in valence quarks



EMC effect: EIC 8
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• Gluonic EMC effect?

Relevant quark/gluon configurations?

• EIC: Q2-dependence of F2A, FLA

Wide kinematic coverage

• EIC: Heavy quark production

Good sensitivity to large-x gluons

Medium-energy collider well suited
(e/N ∼ 10/100 GeV)

New methods of charm reconstruction

Feasibility and impact studied
JLab LDRD Project 2016/17 CW et al. [webpage]

[arXiv:1610.08536], [arXiv:1608.08686]

See also: Aschenauer et al. PRD 96 114005 (2017)

https://wiki.jlab.org/nuclear_gluons/
http://arxiv.org/abs/arXiv:1610.08536
http://arxiv.org/abs/arXiv:1608.08686


EMC effect: Tagging 9

small−size

d

average−size

e

e’

pol.d

e

p, n

e’

process
High−energy

Forward
detection

• What NN distances cause modification?

Nuclear breakup detection can control
nucleon configuration during DIS process

Deuteron: Spectator nucleon tagging

• JLab12: Tagged DIS experiments
CLAS12 BONuS, Hall A → Talk Horn

• EIC: Spectator tagging program

Forward detection of p, n

Good coverage and momentum resolution

Polarized deuteron tagging possible
JLab 2014/15 LDRD project CW et al. [webpage]

• Theoretical questions

Initial-state effects vs. final-state interactions
in spectator momentum distribution
Ciofi degli Atti, Kopeliovich, Kaptari 03+; Strikman CW 2018

https://www.jlab.org/theory/tag/


Antishadowing: Physics 10
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shadowing

gluonsu−sea

antishadowing

EMC effect

Enhancement of nuclear quark density q + q̄ at x ∼ 0.1

Likely caused by NN interactions at average distances

Quarks vs. antiquarks, flavor separation?
Nucleon interactions through quark or meson exchange?

Gluon antishadowing?
Gluon shadowing at x ≪ 0.1 requires compensating antishadowing
for momentum sum rule. Dynamical model: Frankfurt, Guzey, Strikman 17

meson exchangequark exchange



Antishadowing: EIC 11
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• Charge-flavor separation of nuclear PDFs
at x ∼ 0.1 with semi-inclusive π±, K±

Same techniques as ep SIDIS

Separate charges/flavors using cross section ratios

Distinguish initial-state effects from nuclear
final-state interactions using A–dependence

Simulations in progress
Zhihong Ye, Hauenstein, Higinbotham, CW

• Nuclear gluons at x ∼ 0.1 with open charm

Large antishadowing effect expected

• Enlarged data set for global analysis



Shadowing: Physics 12

...N’N

X’

= (same N) + 

A A

PDF

x

A

x

• Nucleon: Removal of gluon with x≪ 0.1 can leave nucleon intact
N → g +X ′ +N ′. “Diffraction.” Observed at HERA

• Nuclear gluon density: Interference of gluon attachments to different nucleons
Interaction effect. QCD analogue of Gribov’s theory of shadowing 70s

Suppresses nuclear gluon density at x≪ 0.1. “Shadowing.”
Leading-twist effect!

Calculable in terms of diffractive nucleon PDF and nuclear wave function
Frankfurt, Guzey, Strikman 12+

Coherent phenomenon, result of action of multiple nucleons



Shadowing: Ultraperipheral collisions LHC 13
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• UPCs at LHC enable high-energy photoproduction W ∼ 500-1500 GeV

• Coherent J/ψ production data support leading-twist gluon shadowing

γ + A → J/ψ + A∗, involves theoretical analysis

• Open questions

Test interference mechanism? Leading vs. higher-twist shadowing?

Quark vs. gluon shadowing, singlet/nonsinglet?



Shadowing: EIC 14
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• Shadowing in tagged DIS on deuteron Guzey, Strikman, CW, in progress

Large shadowing effect in recoil momentum dependence

Detailed test of interference mechanism in N = 2 system

• N = 3 shadowing from other light ions: 3He, 4He, ...

• Shadowing in coherent scattering: Impact parameter dependence
Guzey et al., Kowalski, Caldwell 10

• Gluon shadowing from global PDF analysis

Leading vs. higher twist



Nonlinear effects and saturation 15

sourcesgluons
small− large−x x

• New dynamical scale in nuclei at small x

Qs(x) ∼ gluons / transverse area

Non-linear evolution equations with recombination
Balitsky, Kovchegov; JIMWLK

Classical fields: Color Glass Condensate
McLerran, Venugopalan

Extreme form of “nucleon interactions”

• Phenomena

pT ∼ Qs in forward hadron/jet production in pA/γA/γ∗A

Correlations and multiple hard processes in pA/AA

Breakdown of Bjorken scaling in F2A, FLA

• LHC pA/γA forward hadron/jet production will see whether it is there:
Highest energy/smallest x, final-state signatures

• EIC eA/γA can explain how it happens: Shadowing, initial condition
of small–x evolution, Q2-dependence, transverse geometry



QCD phenomena in final states 16
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• Color transparency

Fundamental prediction of QCD σ ∝ r2 (r → 0)

EIC: lcoh ≫ RA, Q
2 ∼ few 10 GeV2

Necessary for saturation: Disappearance

• Color propagation in matter → Talk Mineeva

Mechanisms: Energy loss, attenuation?

Time scales: Color neutralization, hadron formation

JLab12: Hadronization inside nucleus

EIC: ν ∼ 10–100 GeV. Move hadronization in/out

Q2 dependence, heavy-quark probes

Jets and substructure in eA
New area for EIC. Great interest. Synergies with heavy-ion physics.
Topical workshops 2018
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• Nucleon interactions in QCD as unifying perspective

“Next step” after nucleon structure

• JLab12 and EIC complementary

JLab12: Short-range correlations, EMC effect in valence quarks

EIC: EMC effect of gluons, antishadowing, shadowing, approach to saturation

• Tagging extends physics reach of nuclear DIS measurements

Control nuclear configuration during high-energy process

• EIC physics program in context of LHC

Ultraperipheral collisions explore energy frontier in EM processes

Nonlinear effects should be seen in pA/γA

Much to do for EIC: Control partonic kinematics, Q2-dependence,
initial condition for small-x evolution, . . .


