Global analysis of parton densities and fragmentation functions

Carlota Andrés Jefferson Lab 2018 JLab Users Group Meeting Newport News, Virginia, June 18-20, 2018

Why JAM?

JAM: Jefferson Lab Angular Momentum Collaboration

• To study the <u>quark</u> and <u>gluon</u> structure <u>of the nucleon</u> by performing <u>global fits</u> of both spin-dependent (Δ PDFs) and unpolarized parton distribution functions (PDFs)

How?

- Analyzing the impact of JLab in a rigorous way
- JLab DIS data: large x_b , low-intermediate Q^2 and W^2
- Framework: (NLO) collinear factorization Higher twist (HT) and Target Mass Corrections (TMC) needed at large x_b

E	vo	utíc	ond	of J	IAN	N JAM15
Iterative MC fitting technique					níque	IMC analysis + all available JLab data
		JAM15	JAM16	JAM17	JAM18	= EMC * SMC
Process	DIS SIA SIDIS DY	⊠ ⊠ ⊠		Í Í Í ⊠	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} $
Function	$f\ \Delta f\ D_f^h$	⊠ ∑́ ⊠		⊠ ∑í √	⊠ ⊠ ⊠	1 JAM15 0.01 0.1 0.3 0.5 0.7 0.9 x
Uses CJ12 NLO unpolarized PDFs 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.6 0.5 0.6 0.6 0.6 0.00						
• Δu^{+} and Δd^{+} consistent with						
previous analysis						
• Δs^+ slightly harder						$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Sato, Melnítchouk, Kuhn, Ethíer,Accardí Phys. Rev. D 93, 074005 (2016)					dí	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- First IMC analysis of FFs
- Only SIA included

Sato,Ethier,Melnitchouk, Hirai, Kumano and Accardi Phys. Rev. D 94, 114004 (2016)

JAM17 FFs better agreement with other analysis

JAM17

- First (simultaneous) MC analysis of polarized PDFs and FFs
 - Polarízed SIDIS, polarízed DIS and
 SIA included

JAM18

Motivation

 \bullet Knowing the limits in x and $\mathcal{Q}^2 \mathrm{of}$ collinear factorization

• Testing the universality of PDFs ,FFs...

• All the data must be studied using the same theoretical

framework

• First step: (first) combined analysis of unpolarized PDFs and

FFS

Setup: theory

- All observables computed at NLO in pQCD
- DGLAP truncated evolution at order α_s in Mellin space
- DIS cross sections computed at leading twist
- Nuclear smearing for deuterium DIS
- Heavy quark treatment : ZM-VFN
- Fítting methodology:
 - IMC based on Bayesían statístics
 - Future: Nested sampling

Why IMC?

• Typical PDF parametrization:

$$\chi^{2} = \sum_{e}^{N_{exp}} \sum_{i}^{N_{data}} \frac{(D_{i}^{e} - T_{i})^{2}}{(\sigma_{i}^{e})^{2}}$$

 $x\Delta f(x) = Nx^a(1-x)^b(1+c\sqrt{x}+dx)$ Multiple local minima!

- Perform single χ^2 fit: Parameters difficult to constrain Hessian method for uncertainties \longrightarrow Introduces tolerance criteria Unsuitable for simultaneous analysis of collinear distributions
- Monte Carlo methods:
 - Allows efficient exploration of the parameter space
 - Uncertainties directly obtained from MC replicas

JAM18 currently uses an IMC based on a Bayesían approach

Data vs. theory: DIS

Difficult to fit low Q^2 data $\rightarrow \text{only } Q^2 > 5 \text{ GeV}^2$ data included

Unpolarízed PDFs (preliminary)

FFs (preliminary)

Summary

• MC statistical methods are important for a robust extraction of non-perturbative collinear distributions

Crucíal for future Global TMDs, GPDs analysís

- First (preliminary) MC fit of PDFs and FFs using DIS, SIDIS and SIA data
- Strange PDF constrained by SIDIS data
- Significant effect of SIDIS data on flavor decomposition of FFs
- Difficulties in incorporating low $Q^2 < 5 \, {\rm GeV^2\,SIDIS}\, {\rm data}$

Outlook

- Impact pf SIDIS data on s vs. \bar{s}
- Introduce the HQ treatment: ACOT (GM-VFNS)
- Use F_2^c and F_2^b HERA data GM-VFNS required!
- Líkelíhood samplíng methods: Nested samplíng
- Inclusion of polarized DIS and SIDIS and extract PDFs, FFs, and Δ PDFs

Símultaneous extraction of all non-perturbative input

Strict test of universality

Backup

Iterative Monte Carlo (IMC)

FIG. 1. Schematic illustration of the workflow for the iterative Monte Carlo fitting method. In the first stage, K pseudodata sets are generated, each of which is partitioned into training (T) and validation (V) subsets. For each pseudodata set, the training set is fitted and the parameters $\{\vec{p}^{(j)}\}\$ across all the minimization stages *j* are stored. The cross-validation procedure selects a single set of best-fit parameters $\vec{a}^{(l)}$ from $\{\vec{p}^{(j)}\}\$ for each pseudodata set *l*, and the collection of $\{\vec{a}^{(l)}; l = 1, ..., K\}\$ is then used as the priors for the next iteration.

JAM15

Impact of JLab data

$$\int AM5 d_2(Q^2) = \int_0^1 dx x^2 \left(2g_1(x, Q^2) + 3g_2(x, Q^2) \right)$$

Iterative Monte Carlo (IMC)

- → Samples wide region of parameter space
- → Data is partitioned for cross-validation – training set is fitted via chi-square minimization
- → Posteriors used to construct sampler (multi-dimensional Guassian, kernel density estimation, etc) – where parameters are chosen for the next iteration
- \rightarrow Procedure iterated until converged

$$E[\mathcal{O}] = \frac{1}{n} \sum_{k=1}^{n} \mathcal{O}(\boldsymbol{a}_k)$$
$$V[\mathcal{O}] = \frac{1}{n} \sum_{k=1}^{n} (\mathcal{O}(\boldsymbol{a}_k) - E[\mathcal{O}])^2$$

JAM16: iterative convergence

JAM16: FFs evolution

JAM16: comparíson

JAM16: comparison II

 $\Delta \Sigma (Q_{\rm EMC}^2) \sim 0.1$

• First moment of polarized structure function g₁:

$$\int_0^1 dx g_1^p(x, Q^2) = \frac{1}{36} \left[8\Delta \Sigma + 3g_A + a_8 \right] \left(1 - \frac{\alpha_s}{\pi} + \mathcal{O}(\alpha_s^2) \right) + \mathcal{O}(\frac{1}{Q^2})$$

 \rightarrow DIS requires assumptions about triplet and octet axial charges to extract $\Delta\Sigma$

• Assuming exact SU(2)_f and SU(3)_f values from weak baryon decays $\int dx \left(\Delta u^{+} - \Delta d^{+}\right) = g_A \sim 1.269 \qquad \int dx \left(\Delta u^{+} + \Delta d^{+} - 2\Delta s^{+}\right) = a_8 \sim 0.586$ $\Delta \Sigma_{[10^{-3}, 0.8]} \sim 0.3 \qquad \text{Released in JAM17}$

Polarized SIDIS

Proton Spin Structure from SIDIS

Measured via longitudinal double spin asymmetries

$$A_1^h(x, z, Q^2) = \frac{g_1^h(x, z, Q^2)}{F_1^h(x, z, Q^2)}$$

Polarized structure function at NLO defined in terms of 2-D convolution

$$\begin{split} g_1^h(x,z,Q^2) &= \frac{1}{2} \sum_q e_q^2 \bigg\{ \Delta q(x,Q^2) D_q^h(z,Q^2) + \frac{\alpha_s(Q^2)}{2\pi} \\ & \times \bigg(\Delta q \otimes \Delta C_{qq} \otimes D_q^h + \Delta q \otimes \Delta C_{gq} \otimes D_g^h + \Delta g \otimes \Delta C_{qg} \otimes D_q^h \bigg) \bigg\} \end{split}$$

 To include SIDIS observables in the JAM global analyses, fragmentation functions (FFs) must be known

→ Choice of FF parameterizations available (HKNS & DSS) differed significantly in kaon sector – strongly impacts Δs^+ extraction

JAM decided to use Monte Carlo procedure to extract FFs from SIA

JAM17: Data vs. Theory

JAM17: Polarízed PDFs

- Isoscalar sea distribution consistent with zero
- Isovector sea slightly prefers positive shape at low x
 - → Non-zero asymmetry given by small contributions from SIDIS asymmetries

- Δu^+ consistent with previous analysis
- \Delta d⁺ slightly larger in magnitude
 - → Anti-correlation with Λs^+ , which is less negative than JAM15 at $x \sim 0.2$

JAM17: Lowest moments

• Need better determination of Δs^+ moment to reduce a_8 uncertainty!

$$\Delta s^{+} = -0.03 \pm 0.09$$

 $\Delta \Sigma = 0.36 \pm 0.09$

JAM18: Parametrization

 $\mathsf{Parametrization} \to \mathsf{generic} \ \mathsf{template} \ \mathsf{functions}$

$$T(\xi; \mathbf{a}) = N \frac{\xi^a (1-\xi)^b (1+c\sqrt{\xi}+d\xi)}{B(2+a,b+1)+cB(5/2+a,b+1)+dB(3+a,b+1)}$$

For PDFs 13 parameters

+ g,
$$u_v$$
, d_v , \bar{u} , \bar{d} , $s=\bar{s}$

+ momentum sum rules and quark number sum rule

For FFs π^+ 16 parameters

+ g, u(fav.), d (ufav.), c, b
+
$$u = \overline{d}$$
, $d = \overline{u} = s = \overline{s}$

For FFs K^+ 15 parameters

+ g, u (fav.), d (unf.),
$$\bar{s}$$
 (fav.), c, b
+ $d = \bar{d} = \bar{u} = s$

Unpolarízed PDFs (JAM18)

Decrease of strange uncertainties due to $K\,$ SIDIS data

Unpolarized PDFs (JAM18)

Sea distributions

Next steps

• Using F_2^c and F_2^b data? GM-VFNS required!

HERA data: arXiv:1804.01019 [hep-ex]

52 points $\sigma_{red}^{c\bar{c}}$: $3 \cdot 10^{-5} < x < 0.05$ and $2.5 \,\text{GeV}^2 < Q^2 < 2000 \,\text{GeV}^2$

27 points $\sigma_{red}^{b\bar{b}}$: $1.3 \cdot 10^{-4} < x < 0.05$ and $2.5 \,\text{GeV}^2 < Q^2 < 2000 \,\text{GeV}^2$

Methodology Shift: Nested Sampling

Statistical mapping of multidimensional integral to 1-D

$$Z = \int d^n a \mathcal{L}(data | \vec{a}) \pi(\vec{a}) = \int_0^1 dX \mathcal{L}(X)$$

where the *prior volume* $dX = \pi(\vec{a})d^n a$

• Algorithm:

→ Initialize $X_0 = 1, L = 0$ and choose N active points $X_1, X_2, ..., X_N$ from prior

 \rightarrow For each iteration, sample new point and remove lowest L_i , replacing with point such that L is monotonically increasing

 \rightarrow Repeat until entire parameter space has been explored