From 12 GeV to EIC: EMC-SRC

Axel Schmidt

MIT

June 20, 2018
\approx 20\% \text{ of nucleons are part of correlated pairs.}

- Relative momentum: > 300 \text{ MeV}/c
- CoM momentum: \mathcal{O}(150 \text{ MeV}/c)
Knocked-out high-momentum nucleons come with a recoiling partner.

\[\text{Recoil neutron momentum [GeV]} \]

\[\cos \gamma \]

\[\text{Recoil neutron momentum [GeV]} \]

\[\text{Leading} \]

\[\gamma \]

\[\text{Recoil} \]

\(p \) scattering from Carbon:

- Always a correlated partner
- Anti-parallel momenta

E. Piasetzky et al., PRL 97 162504 (2006)
In carbon, *np*-pairs are strongly preferred.

![Graph showing SRC Pair Fraction (%)](image)

E. Piasetzky et al., PRL 97 162504 (2006)
R. Shneor et al., PRL. 99, 072501 (2007)
Indirect evidence for \(np \)-dominance in heavier asymmetric nuclei.

SRCS may play an outsized role in big open questions.

- Nuclear Matrix Elements

Kortelainen et al. PLB 647 (2007)
SRCs may play an outsized role in big open questions.

- Nuclear Matrix Elements
- Neutrino-Nucleus Interactions
SRCs may play an outsized role in big open questions.

- Nuclear Matrix Elements
- Neutrino-Nucleus Interactions
- Neutron Stars

The Short-Range Correlations Collaboration

Massachusetts Institute of Technology

Old Dominion University

Tel Aviv University

Universidad Técnica Federico Santa María
We study SRCs through several approaches.

- CLAS-6 Data-mining
- Dedicated SRC-pair break-up experiments
- Recoil-tagging measurements
In my talk today:

1. Pair formation and the repulsive NN core
 - We’re asking sophisticated quantitative questions of our data.

2. np-dominance in asymmetric nuclei
 - Neutrons show saturation behavior, protons do not.

3. The EMC-SRC connection
 - New data strengthen the case for the SRC hypothesis.
In my talk today:

1. **Pair formation and the repulsive NN core**
 - We’re asking sophisticated quantitative questions of our data.

2. **np-dominance in asymmetric nuclei**
 - Neutrons show saturation behavior, protons do not.

3. **The EMC-SRC connection**
 - New data strengthen the case for the SRC hypothesis.
CLAS is well-suited for data mining.

- Large acceptance
- Open trigger
The CM momentum distribution of SRC pairs can tell us about pair formation.
Choose kinematics in which FSIs are confined to the pair.

- $x > 1.2$
- $Q^2 > 1.2 \text{ GeV}^2$
- $\theta_{pq} < 25^\circ$
- $M_{\text{miss}} < 1.1 \text{ GeV}$
We see saturation in the CM width.

Erez Cohen et al., under peer review
We see saturation in the CM width.
The ratio of pp pairs to single protons can tell us about the NN-interaction.
The ratio of pp pairs to single protons can tell us about the NN-interaction.
How often did we miss a proton we should have seen?

Simulated acceptance during EG2

Acceptance
Data-driven likelihood estimate

Data:

Longitudinal

Model:

Transverse
We use a Markov Chain MC to estimate the acceptance for recoil protons.
We use a Markov Chain MC to estimate the acceptance for recoil protons.
Prelim. results show the expected rise in pp/p.

![Graph showing transparency-corrected pp/p vs. p_{miss} with different materials: Carbon, Aluminum, Iron, and Lead. The graph includes error bars for each data point. The contact prediction is represented by a shaded area.](image)
Much has been learned from very few events.
A new CLAS-12 proposal aims to add order of magnitude more data.
In my talk today:

1. Pair formation and the repulsive NN core
 - We’re asking sophisticated quantitative questions of our data.

2. np-dominance in asymmetric nuclei
 - Neutrons show saturation behavior, protons do not.

3. The EMC-SRC connection
 - New data strengthen the case for the SRC hypothesis.
CLAS data mining confirmed the absence of high-momentum \(pp \) pairs.

Meytal Duer has identified high-momentum neutrons for the first time.

M. Duer, CLAS collaboration, to appear in Nature
Neutrons efficiencies and resolutions were calibrated using the $d(e, e' p\pi^+\pi^-)n$ reaction.
The poor neutron resolution was studied by “smearing” protons.
The n/p ratio is constant with asymmetry!
SRC fraction for neutrons saturates.

\[
\text{SRC Fraction} \equiv \frac{\sigma^A_{\text{SRC}}(e,e'N)}{\sigma^A_{\text{MF}}(e,e'N)} / \frac{\sigma^C_{\text{SRC}}(e,e'N)}{\sigma^C_{\text{MF}}(e,e'N)}
\]
SRC fraction for neutrons saturates.

\[
\text{SRC Fraction} \equiv \frac{\sigma_{A}^{\text{SRC}}(e,e'N)}{\sigma_{A}^{\text{MF}}(e,e'N)} \times \frac{\sigma_{C}^{\text{SRC}}(e,e'N)}{\sigma_{C}^{\text{MF}}(e,e'N)}
\]
np/pp ratio is constant over all species.
We need experiments to disentangle nuclear size and asymmetry.

- New CLAS-12 proposal
 - Add ^{40}Ca, ^{48}Ca

- Recent Hall A Tritium Experiment
 - Compare $^{3}\text{H} \leftrightarrow ^{3}\text{He}$

- CaFe (E12-17-005)
In my talk today:

1. Pair formation and the repulsive NN core
 - We’re asking sophisticated quantitative questions of our data.

2. np-dominance in asymmetric nuclei
 - Neutrons show saturation behavior, protons do not.

3. The EMC-SRC connection
 - New data strengthen the case for the SRC hypothesis.
Could the EMC effect be stemming from heavily modified SRC pairs?
We attempted to extract F_2 for a single np-SRC pair.
We attempted to extract F_2 for a single np-SRC pair.
We attempted to extract F_2 for a single np-SRC pair.
We will test the SRC-EMC hypothesis with recoil-tagging experiments.

Advantages of a deuterium target:

- Minimal final-state interactions
- Spectator has *exactly* opposite momentum
- 5% of the wave-function is short-range configuration
DEEPS showed little FSI at back angles.

Klimenko et al., PRC 73 035212 (2006)
What we want to measure:

\[
\frac{F_2(x', Q^2, \alpha_s)_{\text{bound}}}{F_2(x, Q^2)_{\text{free}}} \approx \frac{\sigma_{\text{DIS}}(x', Q^2, \alpha_s)_{\text{bound}}}{\sigma_{\text{DIS}}(\text{low } x', Q^2_0, \alpha_s)_{\text{bound}}} \times \frac{\sigma_{\text{DIS}}(\text{low } x, Q^2_0)_{\text{free}}}{\sigma_{\text{DIS}}(x, Q^2)_{\text{free}}} \times R_{\text{FSI}}
\]
What we want to measure:

\[
\frac{F_2(x', Q^2, \alpha_s)_{\text{bound}}}{F_2(x, Q^2)_{\text{free}}} \approx \frac{\sigma_{\text{DIS}}(x', Q^2, \alpha_s)_{\text{bound}}}{\sigma_{\text{DIS}}(\text{low } x', Q_0^2, \alpha_s)_{\text{bound}}} \times \frac{\sigma_{\text{DIS}}(\text{low } x, Q_0^2)_{\text{free}}}{\sigma_{\text{DIS}}(x, Q^2)_{\text{free}}} \times R_{\text{FSI}}
\]

Tagged DIS measurement Input \approx 1
What we want to measure:

\[
\frac{F_2(x', Q^2, \alpha_s)_{\text{bound}}}{F_2(x, Q^2)_{\text{free}}} \approx \frac{\sigma_{\text{DIS}}(x', Q^2, \alpha_s)_{\text{bound}}}{\sigma_{\text{DIS}}(\text{low } x', Q_0^2, \alpha_s)_{\text{bound}}} \times \frac{\sigma_{\text{DIS}}(\text{low } x, Q_0^2)_{\text{free}}}{\sigma_{\text{DIS}}(x, Q^2)_{\text{free}}} \times R_{\text{FSI}}.
\]

Tagged DIS measurement Input \approx 1

At low x, the EMC effect should be small:

\[
\sigma_{\text{DIS}}(\text{low } x', Q_0^2, \alpha_s)_{\text{bound}} \approx \sigma_{\text{DIS}}(\text{low } x, Q_0^2)_{\text{free}}
\]
Different models predict different F_2 ratios.

BAND will detect recoiling spectator neutrons.

- **11 GeV e⁻**
- **Deuterium**
- **Spectator neutron**
- **scattered electron**
- **jet from struck quark**
BAND will surround the upstream beamline.
Experiment Details

Experiment
- Experiment E12-11-003A
- Approved for Run Group B
 - Installation in a few weeks!
- Extended LD$_2$ target
- 11 GeV e^- beam
- 10^{35} cm$^{-2}$s$^{-1}$

Backward Angle Neutron Detector
- Finishing module assembly at MIT/ODU
- 5 rows of 21 bars
- 160°–170°
- $\approx 60\%$ azimuthal coverage
- $\approx 40\%$ neutron efficiency
We want reach in both x_B and α_s.
LAD will detect recoiling spectator protons.
LAD is three panels of scintillator bars, originally from the CLAS-6 ToFs.
LAD Experiment Details

Experiment
- Experiment E12-11-107
- Approved for 820 hours
- Extended LD$_2$ target
- 11 GeV e^- beam
- 10^{36} cm$^{-2}$s$^{-1}$
- Low x and high x settings

Large Acceptance Detector
- 5 panels of 11 bars
- 1.5 sr at back angles
- 90°–160°
- ±18° out-of-plane
Energy deposition in LAD must match velocity.
We plan to add GEMs to assist in vertexing.
We plan to add GEMs to assist in vertexing.
Expected Impact

![Graph showing expected impact with PLC suppression, rescaling, and binding curves.](image-url)
Expected Impact

![Graph showing expected impact with axes labeled Bound $F_2 / \text{Free } F_2$ and α_s. The graph includes data points for LAD and BAND, with lines representing Binding, Rescaling, and PLC suppression.](image-url)
Possibilities at the EIC

1. Tagging
 - DIS or QE
 - very forward spectator
 - “zero momentum” spectators are now detectable

2. Detection of the $A-2$ system
 - very forward residual nucleus
Small differences in initial momentum become large in the collider frame.
Spectators will be within 2° of beamline.

\[p_\perp = 1.0 \text{ GeV} \]
\[p_\perp = 0.6 \text{ GeV} \]
\[p_\perp = 0.2 \text{ GeV} \]
Recap

- Pair formation and the NN core
Recap

- Pair formation and the NN core
- np-dominance in asymmetric nuclei

![Graph showing the ratio of $(e,e'n)/A(e,e'p)$](chart.png)
Recap

- Pair formation and the NN core
- np-dominance in asymmetric nuclei
- SRC-EMC hypothesis
Recap

- Pair formation and the NN core
- np-dominance in asymmetric nuclei
- SRC-EMC hypothesis
Conclusions

- New experiments will bring an order of magnitude increase in data.

- We are entering a new *quantitative* era of SRC measurements.