
STATE OF QUDA
USQCD SOFTWARE MEETING, JLAB 17TH APRIL

M Clark
NVIDIA

Contents
▪NVIDIA update
▪QUDA current Status
▪Strong scaling
▪Domain decomposition
▪Multigrid

CUDA Roadmap

S
G

E
M

M
 /

 W
 N

o
r
m

a
li
z
e
d

2012 2014 2008 2010 2016

Tesla
CUDA

Fermi
FP64

Kepler
Dynamic Parallelism

Maxwell
DX12

Pascal

Unified Memory

3D Memory

NVLink

20

16

12

8

6

2

0

4

10

14

18

Introducing NVLINK and Stacked Memory
▪ NVLINK
▪ GPU high speed interconnect
▪ 80-200 GB/s
▪ Planned support for POWER CPUs

!

!

!

▪ Stacked Memory
▪ 4x Higher Bandwidth (~1 TB/s)
▪ 3x Larger Capacity
▪ 4x More Energy Efficient per bit

NVLINK Enables Data Transfers at the
Speed of CPU Memory

TESLA
GPU

CPU

DDR Memory Stacked Memory

NVLink
80 GB/s

DDR4
50-75 GB/s

HBM
1 Terabyte/s

QUDA
• “QCD on CUDA” – http://lattice.github.com/quda
• Effort started at Boston University in 2008, now in wide use as

the GPU backend for BQCD, Chroma, CPS, MILC, TIFR, etc.
• Provides:

— Various solvers for all major fermonic discretizations, with multi-GPU support
— Additional performance-critical routines needed for gauge-field generation

• Maximize performance / Minimize time to science
– Exploit physical symmetries to minimize memory traffic
– Mixed-precision methods
– Autotuning for high performance on all CUDA-capable architectures
– Domain-decomposed (Schwarz) preconditioners for strong scaling
– Eigenvector solvers new!
– Multigrid solvers for optimal convergence new!

http://lattice.github.com/quda

QUDA Community
§ Ron Babich (NVIDIA)
§ Kip Barros (LANL)
§ Rich Brower (Boston University)
§ Michael Cheng (Boston University)
§ MAC (NVIDIA)
§ Justin Foley
§ Joel Giedt (Rensselaer Polytechnic Institute)
§ Steve Gottlieb (Indiana University)
§ Bálint Joó (Jlab)
§ Hyung-Jin Kim (BNL)
§ Jian Liang (IHEP)
§ Gregory Petropoulos (Boulder)
§ Claudio Rebbi (Boston University)
§ Guochun Shi (NCSA -> Google)
§ Alexei Strelchenko (FNAL)
§ Alejandro Vaquero (Cyprus Institute)
§ Frank Winter (Jlab)
§ Yibo Yang (IHEP)

QUDA Roadmap
▪ 0.6.x
▪ Long-link computation
▪ Reconstruct 9/13 support for HISQ fermions
▪ Google test API for stronger unit tests (QUDA now in CUDA regression suite)
▪ 0.7.0
▪ Twisted-clover and Mobius fermions
▪ EigCG solver
▪ Better strong scaling
▪ Stabilized mixed-precision CG
▪ Clover field computation, inversion and force terms
▪ 0.8.0
▪ Adaptive multigrid
▪ Optimized dslash (essentially untouched since 2009)
▪ s-step solvers
▪ Taking requests (and more importantly volunteers!)

Linear Solvers
▪ QUDA now has a wide choice of linear solvers
– CGNE / CGNR
– BiCGstab
– GCR
– Minimum Residual
– Steepest Descent
– PCG
▪ Entire solver algorithm must run on GPUs

– Time-critical kernel is the stencil application (SpMV)
– Also require BLAS level-1 type operations

while (|rk|> ε) {
•βk = (rk,rk)/(rk-1,rk-1)
•pk+1 = rk - βkpk

 qk+1 = A pk+1
•α = (rk,rk)/(pk+1, qk+1)
•rk+1 = rk - αqk+1
•xk+1 = xk + αpk+1

•k = k+1
}

conjugate
gradient

Mixed-precision solvers
▪ QUDA has had mixed-precision from the get go
▪ Almost a free lunch where it works well
– Mixed double-single and double-half BiCGstab (wilson / clover)
– 2 Tflops sustained in workstation (4 GPUs)
▪ Did not work well for CG (staggered / twisted mass / dwf)
– double-single has increased iteration count
– double-half non convergent
▪Why is this?
– CG recurrence relations much more intolerant
– BiCGstab noisy as hell anyway
▪ Need to make CG more robust
– Make double-half work
– Less polishing in mixed-precision multi-shift solver

(Stable) Mixed-precision CG
▪ CG convergence relies on gradient vector

being orthogonal to residual
– Re-project when injecting new residual
▪ α chosen to minimize |e|A
– True irrespective of precision of p, q, r
– Solution correction is truncated if we keep x in low

precision
– Always keep solution vector in high precision
▪ β computation relies on (ri,rj) = |ri|2 δij
– Not true in finite precision
– Polak-Ribière formula is equivalent and self-stabilizing

through local orthogonality
!

!

▪ Further improvement possible
– Mining the literature on fault-tolerant solvers…

while (|rk|> ε) {
•βk = (rk,rk)/(rk-1,rk-1)
•pk+1 = rk - βkpk

 qk+1 = A pk+1
•α = (rk,rk)/(pk+1, qk+1)
•rk+1 = rk - αqk+1
•xk+1 = xk + αpk+1

•k = k+1
}

βk = α(α(qk,qk) - (pk,qk))/(rk-1,rk-1)

0 1000 2000 3000 4000 5000
1e-08

1e-06

0.0001

0.01

1 double-half (naive)
double-half (new)
double

Comparison of staggered double-half solvers
V=164 m=0.01

0 20000 40000 60000 80000 1e+05
1e-08

0.0001

1

10000 double-half (naive)
double-half (new)
double

Comparison of staggered double-half solvers
V=164 m=0.001

Strong Scaling Chroma

Preliminary, NVIDIA Confidential – not for distribution

Chroma (Lattice QCD) –
High Energy & Nuclear Physics

Chroma
483x512 lattice
Relative Scaling (Application Time)

XK7 (K20X) (BiCGStab)

XK7 (K20X) (DD+GCR)

XE6 (2x Interlagos)

0

2

4

6

8

10

12

14

16

18

0 128 256 384 512 640 768 896 1024 1152 1280

R
el

at
iv

e
Sc

al
in

g

Nodes

3.58x vs. XE6
@1152 nodes

“XK7” node = XK7 (1x K20X + 1x Interlagos)
“XE6” node = XE6 (2x Interlagos)

What are the strong scaling limiters?
▪ Factors that will limit strong scaling
▪ Network bandwidth
▪ Network latency
▪ PCIe bandwidth
▪ PCIe latency
▪ GPU utilization
▪ GPU launch latency
▪ Never really looked at strong scaling for 2+ years…
▪ Can we do better without new algorithms?

Time to revisit…
▪ PCIe generation 3
▪ Almost doubling in PCIe bandwidth
▪ No improvement
▪ GPUDirect RDMA
▪ Reduces end-to-end latency by a factor of three
▪ No improvement
▪ Stream priorities for better kernel concurrency
▪ No improvement
▪What is the performance limiter?

1.6 2 2.4 2.8 3.2
CPU frequency

60

80

100

120

140

160

180

200

G
FL

O
PS

Double
Single
Half

QUDA performance variation as a function of CPU frequency
V=164, 4-way communication

Titan /  
BlueWaters

Delving deeper…
!

!

!

!

!

!

!

!

!

!

▪ Large white spaces means cycles are being wasted on the CPU
▪ But nothing’s running on the CPU is it?

Delving deeper…
!

!

!

!

!

!

!

!

!

!

▪ Kernel launch is way bigger than expected
▪ Expect 4 us, observing 8-17 us

Revisiting QUDA’s run-time tuning
§ Motivation:

— Kernel performance (but not output) strongly dependent on launch parameters:
§ gridDim (trading off with work per thread), blockDim
§ blocks/SM (controlled by over-allocating shared memory)

§ Implementation:
§ Parameters stored in a global cache:
 static	 std::map<TuneKey,	 TuneParam>	 tunecache;
§ TuneKey is a struct of strings specifying the kernel name, lattice volume, etc.
§ TuneParam is a struct specifying the tune blockDim, gridDim, etc.
§ Kernels get wrapped in a child class of Tunable
§ tuneLaunch() searches the cache and tunes if not found:
 TuneParam	 tuneLaunch(Tunable	 &tunable,	 QudaTune	 enabled,  
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 QudaVerbosity	 verbosity);

§ As the cache increases, the tune cache lookup becomes costly…

Tuning the tuning
▪ Before

!

!

!

!

▪ Optimizations
▪ std::string -> char*
▪ Cache string parameters
▪ Replace count and operator[] with find

Actual time spent (us)
TuneKey create 4.50
Check if entry exists 0.60
TuneParam lookup 0.55
Check launch parameters 0.03

Actual time spent (us)
TuneKey create 0.20
TuneParam lookup 0.25
Check launch parameters 0.03

Very quick payback
▪ Preliminary result from a few hours of work
▪ 164 wilson dslash, 4-way comms 

0

35

70

105

140

1.6 2.0 2.4 2.8 3.1

0.6.1 0.7.0

CPU Frequency (GHz)

G
FL

O
PS

More work to do
▪ Expect to be able to further half the tune cache look up
▪ Completely negligible compared to other overheads
▪ Kernel launch overheads still double what should be expected
▪ Dslash kernel launch takes 9 us
▪ <1 us spent in tune cache lookup
▪ 8 us spent in cudaLaunch (expect < 4us)
▪ Initial investigation suggests that std::map is blowing out the

cache hampering subsequent kernel launch
▪ Investigating more cache friendly alternatives (e.g., Loki)
▪ Hope to get effective kernel launch close to SOL
▪ Better scaling on Titan / Blue Waters without new algorithms
▪ Expect PCIe gen 3, GPUDirect, etc. will have significant benefit

Reworking the Dslash Communications
▪Work being done by Justin Foley
▪ Double buffering QMP/MPI receive buffers for pre posting
▪ Threading the QUDA dslash to further reduce CPU load, E.g.,
▪ thread 0: pack kernel, initiate communications
▪ thread 1: interior kernel, boundary kernels
▪ One-sided MPI for reduced inter-node latency
▪ Broad GPU Direct RDMA support
▪ More kernel fusion
!

▪ Native communications layer
▪ PEACH2 support (Tsukuba)
▪ IB VERBS support (Jiri Kraus - Julich)
▪ Cray uGNI ? (Cray interested in supporting this)

Communication-reducing Algorithms
• Reduce inter-node communication and synchronization

– Inter-node communication comes from face exchange
– Synchronization comes from global sums

• Utilize domain-decomposition techniques, e.g., Additive Schwarz
!

!

!

!

!

!

!

!

• Utilize s-step solvers to suppress global sums
• Allows for the introduction of tower-kernels to decrease local comms

Domain Decomposition method on GPU cluster Yusuke Osaki

Figure 1: Lattice domain-decomposition and relation to the RAS iteration.

ditioner and study the bottleneck by investigating the timing chart of the algorithm. The results are
shown in section 5 and we give a brief summary for the results in the last section.

2. The Restricted Additive Schwarz domain-decomposition iteration

The restricted additive Schwarz iteration [6] is a kind of the fixed iteration solver for elliptic
differential equations. This solver makes use of the geometrical structure of a latticized partial
difference equation. In lattice QCD the discretized space-time can be split into several domains and
we show the schematic picture of the decomposition in Fig.1. Ωi represents the lattice sites in the
i-th domain without overlapping. Ω′

i denotes the domain extended from Ωi. The extended domains
are overlapped in general and the data in overlapped region are replicated on the neighbouring
domains.

To solve Eq. (1.1) without domain overlapping, we expect that the solution φ can be approxi-
mated by combining the partial solution of ξΩi derived fromDΩiξΩi =ηΩi from each domain, where
DΩi is the restriction of D to Ωi with the Dirichlet boundary condition. The additive Schwarz (AS)
iteration simply approximates it as φ ∼ ∑i ξΩi , and the approximation is refined by the Richardson
iteration. A problem arises when we overlap the decomposition since the approximate solution
derived from the extended equation DΩ′

i
ξΩ′

i
= ηΩ′

i
becomes inconsistent in the overlapped region.

The restricted additive Schwarz (RAS) iteration gives a simple solution to this inconsistency. In
Fig.1 we denote the restriction operation as RΩi arrow which simply extracts the data on the bulk
sites (Ωi ∈ Ω′

i) to avoid the inconsistency. Thus the approximation to φ can be constructed as
φ ∼ ∑i RΩiξΩ′

i
. We show the RAS iteration in Alg. 1. The fourth line pickups the data on Ω′

i from
the whole field vector, the fifth line solves the target problem restricted in the overlapped domainΩ′

i
with the Dirichlet boundary condition, and the next line represents the restriction process described
above.

The RAS iteration itself is not sufficient for the complete solver, and is usually used as the
preconditioner for the Krylov subspace iterative solvers. We employ BiCGStab solver for the
Krylov subspace solver. The RAS preconditioner KRAS corresponds to the following operator;

KRAS = S
NRAS−1

∑
j=0

(1−DS) j, with S=
N

∑
i=1

RΩi(D
−1
Ω′
i
)PΩ′

i
. (2.1)

This is applied to the following preconditioned equation;

DKRASχ = η , φ = KRASχ , (2.2)

3

figure taken from Osaki and Ishikawa

Communication-reducing Algorithms
• Non-overlapping blocks - simply switch off inter-node comms
• Preconditioner is a gross approximation

– Use an iterative solver to solve each domain  
system

– Only block-local sums required
– Require only ~10 iterations of domain solver  
⟹ 16-bit precision

– Need to use a flexible solver ⟹ GCR
• Block-diagonal preconditioner  

impose λ cutoff
– Limits scalability of algorithm
– In practice, non-preconditioned part  

becomes source of Amdahl

Communication-reducing Algorithms
▪ QUDA now support for overlapping blocks (Justin)
▪ Motivated for staggered solvers
▪ Checked into 0.7 branch
▪ Staggered DD solvers
▪ Communication reduced by 4x
▪ Not much actual speedup
▪ Need to revisit this with  

reworked tuning engine

Strong scaling in MILC calculations

● Multi-GPU calculations decompose the lattice into regular
subdomains

● Each CG iteration involves
the exchange of a halo of
quark-field data, and two
inner-product calculations

● CUDA streams enable
concurrent kernel execution
and data transfer, but...

● Standard MILC solver algorithm is communication bound at
O(100) GPUs

Adaptive Geometric Multigrid

-0.43 -0.42 -0.41 -0.4
mass

100

1000

10000

1e+05

D
ir

ac
 o

p
er

at
o
r

ap
p
li

ca
ti

o
n
s

32
3
96 CG

24
3
64 CG

16
3
64 CG

24
3
64 Eig-CG

16
3
64 Eig-CG

32
3
96 MG-GCR

24
3
64 MG-GCR

16
3
64 MG-GCR

20 vectors

240 vectors

Babich et al 2010

Adaptive Geometric Multigrid
• Adaptively find candidate null-space vectors

– Dynamically learn the null space and use this to  
define the prolongator

– Algorithm is self learning
• Setup

1. Set solver to be simple smoother
2. Apply current solver to random vector vi = P(D) ηi
3. If convergence good enough, solver setup complete
4. Construct prolongator using fixed coarsening (1 - P R) vk = 0
➡ Typically use 44 geometric blocks
➡ Preserve chirality when coarsening R = γ5 P† γ5 = P†

5. Construct coarse operator (Dc = R D P)
6. Recurse on coarse problem
7. Set solver to be augmented V-cycle, goto 2

Adaptive Geometric Multigrid

0 20 40 60 80 100
Niter

1e-20

1e-15

1e-10

1e-05

1

1e+05

||r
||2

Nv=0

Nv=1

Nv=2

Nv=3
Nv=4

Motivation
▪ A CPU running the optimal

algorithm surpasses a highly
tuned GPU sub-optimal
algorithm

▪ For competitiveness, MG on
GPU is a must

▪ Seek multiplicative gain of
architecture and algorithm

0"

10"

20"

30"

40"

50"

60"

70"

QUDA"(32"XK"nodes)" Mul:Grid"(16"XE"nodes)""

Av
er
ag
e'
Ru

n'
Ti
m
e'
fo
r'1

'so
ur
ce
''

(s
ec
on

ds
)'

Wallclock'9me'for'Light'Quark'solves'in'Single'
Precision''

0"

5"

10"

15"

20"

25"

30"

35"

QUDA"(16"XK"Nodes)" Mul:"Grid(16"XE"Nodes)"

Av
er
ag
e'
Ti
m
e'
fo
r'1

'so
ur
ce
'

(s
ec
on

ds
)'

Wallclock'9me'for'Strange'Quark'solves'in'Single'
Precision'

Chroma propagator benchmark  
Figure by Balint Joo 
MG Chroma integration by Saul Cohen 
QOPQDP MG by James Osborn

The Challenge of Multigrid on GPU

• GPU requirements very different from CPU
– Each thread is slow, but O(10,000) threads per GPU

• Fine grids run very efficiently
– High parallel throughput problem

• Coarse grids are worst possible scenario
– More cores than degrees of freedom
– Increasingly serial and latency bound
– Little’s law (bytes = bandwidth * latency)
– Amdahl’s law limiter

• Multigrid decomposes problem into
throughput and latency parts

Hierarchical algorithms on
heterogeneous architectures

Thousands of cores
for parallel processing

Few Cores optimized
for serial work

CPU

GPU

Ingredients for Parallel Adaptive Multigrid
▪ Prolongation construction (setup)
– Block orthogonalization of null space vectors
– Sort null-space vectors into block order (locality)
– Batched QR decomposition

▪ Smoothing (relaxation on a given grid)
– Repurpose the domain-decomposition preconditioner

▪ Prolongation
– interpolation from coarse grid to fine grid
– one-to-many mapping

▪ Restriction
– restriction from fine grid to coarse grid
– many-to-one mapping

▪ Coarse Operator construction (setup)
– Evaluate R A P locally
– Batched (small) dense matrix multiplication

▪ Coarse grid solver
– direct solve on coarse grid
– (near) serial algorithm x

x

x

x−

x−

U x

U
x

μ

μ

ν

x x

x

x−

x−

U x

U
x

μ

μ

ν

Design Goals
• Performance

– LQCD typically reaches high % peak peak performance
– Brute force can beat the best algorithm

• Flexibility
– Deploy level i on either CPU or GPU
– All algorithmic flow decisions made at runtime
– Autotune for a given heterogeneous architecture

• (Short term) Provide optimal solvers to legacy apps
– e.g., Chroma, CPS, MILC, etc.

• (Long term) Hierarchical algorithm toolbox
– Little to no barrier to trying new algorithms

Multigrid and QUDA
• QUDA designed to abstract algorithm from the heterogeneity

LatticeField

ColorSpinorField GaugeField

cudaColorSpinorField cpuColorSpinorField cpuGaugeFieldcudaGaugeField

Multigrid and QUDA
• QUDA designed to abstract algorithm from the heterogeneity

LatticeField

ColorSpinorField GaugeField

cudaColorSpinorField cpuColorSpinorField cpuGaugeFieldcudaGaugeField

Algorithms

Multigrid and QUDA
• QUDA designed to abstract algorithm from the heterogeneity

LatticeField

ColorSpinorField GaugeField

cudaColorSpinorField cpuColorSpinorField cpuGaugeFieldcudaGaugeField

Architecture

Multigrid and QUDA
▪ Algorithms are straightforward to write down
▪ QUDA Multigrid V-cycle source:

 void MG::operator()(ColorSpinorField &x, ColorSpinorField &b) {!
!
 if (param.level < param.Nlevel) {!
 (*presmoother)(x, b); // do the pre smoothing!
!
 transfer->R(*r_coarse, *r); // restrict to the coarse grid!
!
 (*coarse)(*x_coarse, *r_coarse); // recurse to the next lower level!
!
 transfer->P(*r, *x_coarse); // prolongate back to this grid!
!
 (*postsmoother)(x,b); // do the post smoothing!
!
 } else { !
 (*coarsesolver)(x, b); // do the coarse grid solve!
 }!
!
 }

▪ Coarse operator looks like a Dirac operator
– Link matrices have dimension Nv x Nv (e.g., 20 x 20)

!

!

!

▪ Fine vs. Coarse grid parallelization
– Coarse grid points have limited thread-level parallelism
– Highly desirable to parallelize over fine grid points where possible
▪ Parallelization of internal degrees of freedom?
– Color / Spin degrees of freedom are tightly coupled (dense matrix)
– Each thread loops over color / spin dimensions
– Rely on instruction-level parallelism for latency hiding
▪ Parallel multigrid uses common parallel primitives
– Reduce, sort, etc.
– Use CUB parallel primitives for high performance

Parallel Implementation

dofs (geometry). We start by defining the fields

W±µ
ksĉ,ls�ĉ� = V †

ksc,ksĉP
±µ
s,s�U(k+µ)c,lc��k+µ,lVls�c�,lŝ�ĉ�

note that here we are defining di�erent links for forward and backwards,
they are not simply the conjugate of each other (because of the di�erent spin
projection between the two). Also note that these e�ective link matrices have
also a spin index, this is because the vectors used to define the V rotation
matrices have spin dependence now. In this form we can now write down the
coarse Dirac operator as

D̂iŝĉ,jŝ�ĉ� = �
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

ksĉ,ls�ĉ��k+µ,l + W+µ†
ksĉ,ls�ĉ��k�µ,l

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥

+M �iŝĉ,jŝ�ĉ� .

We now finish up by blocking the geometry and spin onto the coarse lattice,
defining the e�ective link matrices Y ±µ that connect sites on the coarse
lattice:

Y ±µ
iŝĉ,jŝ�ĉ� =

�
�i,k/B�ŝ,s/Bs

⇥
W±µ

ksĉ,ls�ĉ�

�
�l/B,j�s�/Bs,ŝ�

⇥
�i⇤µ,j (2)

Xiŝĉ,jŝ�ĉ� =
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

iŝĉ,kŝ�ĉ� + W+µ†
iŝĉ,kŝ�ĉ�

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥
�i,j,

where we note now that the matrix X is not Hermitian. Thus the coarse
operator is written

D̂iŝĉ,jŝ�ĉ� = �
⇤

µ

⌅
Y �µ

iŝĉ,jŝ�ĉ��i+µ,j + Y +µ†
isĉ,js�ĉ��i�µ,j

⇧
+ (M �Xiŝĉ,jŝ�ĉ�) �iŝĉ,jŝ�ĉ� . (3)

For the explicit form of these matrices we refer the reader to Appendix A.
After the first blocking, subsequent blockings require that Bs = 1, i.e., we

cannot block the spin dimension again since we cannot remove the chirality.
Apart from this observation, the next coarse operator will have a similar form
to the current one: it will be a nearest neighbour non-Hermitian operator
connecting sites with ds = 2 spin dimension (in 2d and 4d anyway).

We note here in passing that because of the definition of the matrix field V
include explicit spin dependence, this destroys the tensor product structure
of the spin and colour on the coarse operator, i.e., we have to define an
e�ective link matrix that rotates in spin and colour space. If this were not
the case, i.e., if V were to be spin independent, then this structure would be

8

x
x

x

x−

x−

U x

U
x

μ

μ

ν

Writing the same code for two architectures
• Use C++ templates to abstract arch specifics

– Load/store order, caching modifiers, precision, intrinsics
• CPU and GPU almost identical

– CPU and GPU kernels call the same functions
– Index computation (for loop -> thread id)
– Block reductions (shared memory reduction and / or atomic operations)

Writing the same code for two architectures

template<…> void fooCPU(Arg &arg) {!
 arg.sum = 0.0;!
#pragma omp for!
 for (int x=0; x<size; x++) !
 arg.sum += bar<…>(arg, x);!
}

template<…> __global__ void fooGPU(Arg arg) {!
 int tid = threadIdx.x + blockIdx.x*blockDim.x;!
 real sum = bar<…>(arg, tid);!
 __shared__ typename BlockReduce::TempStorage tmp;!
 arg.sum = cub::BlockReduce<…>(tmp).Sum(sum);!
}

CPU GPU

template<…> __host__ __device__ Real bar(Arg &arg, int x) {!
 // do platform independent stuff here !
 complex<Real> a[arg.length];!
 arg.A.load(a);!
!
 … // do computation!
 !
 arg.A.save(a);!
 return norm(a);!
}

platform specific parallelization  
GPU: shared memory!
CPU: OpenMP, vectorization

platform specific load/store here:!
field order, cache modifiers, textures

platform independent stuff goes here  
99% of computation goes here

The compilation problem…
• Tightly-coupled variables should be at the register level
• Dynamic indexing cannot be resolved in register variables

– Array values with indices not known at compile time spill out into
global memory (L1 / L2 / DRAM)

 template <typename ProlongateArg>!
 __global__ void prolongate(ProlongateArg arg, int Ncolor, int Nspin) {!
 int x = blockIdx.x*blockDim.x + threadIdx.x;!
 for (int s=0; s<Nspin; s++) {!
 for (int c=0; c<Ncolor; c++) {!
! …!
 }!
 }!
 }

The compilation problem…
• All internal parameters must be known at compile time

– Template over every possible combination O(10,000) combinations
– Tensor product between different parameters
– O(10,000 combinations) per kernel

– Only compile necessary kernel at runtime

!

!

!

!

!

!

• JIT support would help here…

 template <typename Arg, int Ncolor, int Nspin>!
 __global__ void prolongate(Arg arg) {!
 int x = blockIdx.x*blockDim.x + threadIdx.x;!
 for (int s=0; s<Nspin; s++) {!
 for (int c=0; c<Ncolor; c++) {!
! …!
 }!
 }!
 }

Current Status
▪ Framework is working

Fine grid on GPU
Coarse grid on CPU
!

Runtime decision as to  
where each component  
is running

Hierarchical Algorithm Toolbox
• Real goal is to produce scalable and optimal solvers
• Exploit closer coupling of precision and algorithm

– QUDA designed for complete run-time specification of
precision at any point in the algorithm

– Currently supports 64-bit, 32-bit, 16-bit
– Is 128-bit or 8-bit useful at all for hierarchical algorithms?

• Domain-decomposition (DD) and multigrid
– DD solvers are effective for high-frequency dampening
– Overlapping domains likely more important at coarser scales

Heterogeneous Updating Scheme
• Multiplicative MG is necessarily

serial process
– Cannot utilize both GPU and CPU

simultanesouly
• Additive MG is parallel

– Can utilize both GPU and CPU
simultanesouly

• Additive MG requires accurate
coarse-grid solution
– Not amenable to multi-level
– Only need additive correction at

CPU<->GPU level interface
• Accurate coarse grid solution

maybe cheaper than serialization
/ synchronization

Heterogeneous Updating Scheme
• Multiplicative MG is necessarily

serial process
– Cannot utilize both GPU and CPU

simultanesouly
• Additive MG is parallel

– Can utilize both GPU and CPU
simultanesouly

• Additive MG requires accurate
coarse-grid solution
– Not amenable to multi-level
– Only need additive correction at

CPU<->GPU level interface
• Accurate coarse-grid solution

maybe cheaper than serialization
/ synchronization

Summary
• QUDA is reaching critical mass

– Coverage for most LQCD algorithms
• Production library for GPU-accelerated LQCD

– Scalable linear solvers
• Last couple of years have focussed on broad coverage
• Refocusing on linear solvers

– Strong scaling
– Optimal solvers

• Hierarchical and heterogeneous algorithm research toolbox
– Aim for scalability and optimality

• Lessons today are relevant for Exascale preparation

BACK UP SLIDES

Introduction to Multigrid
▪ Low frequency error modes are smooth
▪ Can accurately represent on coarse grid

!

!

!

!

!

!

!

▪ Low frequency on fine => high frequency on coarse
▪ Relaxation effective agin on coarse grid
▪ Interpolate back to fine grid

Multigrid V-cycle
• Solve

1. Smooth
2. Compute residual
3. Restrict residual
4. Recurse on coarse problem
5. Prolongate correction
6. Smooth
7. If not converged, goto 1

▪ Multigrid has optimal scaling
– O(N) Linear scaling with problem size
– Convergence rate independent of condition number

• For LQCD, we do not know the null space components that need
to be preserved on the coarse grid

Run-time autotuning: Implementation
§ Parameters stored in a global cache:
static	 std::map<TuneKey,	 TuneParam>	 tunecache;

§ TuneKey is a struct of strings specifying the kernel name,
lattice volume, etc.

§ TuneParam is a struct specifying the tune blockDim,
gridDim, etc.

§ Kernels get wrapped in a child class of Tunable (next slide)
§ tuneLaunch() searches the cache and tunes if not found:
TuneParam	 tuneLaunch(Tunable	 &tunable,	 QudaTune	 enabled,	
QudaVerbosity	 verbosity);

Run-time autotuning: Usage
§ Before:
myKernelWrapper(a,	 b,	 c);

§ After:
MyKernelWrapper	 *k	 =	 new	 MyKernelWrapper(a,	 b,	 c);
k-‐>apply();	 	 //	 <-‐-‐	 automatically	 tunes	 if	 necessary

§ Here MyKernelWrapper inherits from Tunable and optionally
overloads various virtual member functions (next slide).

§ Wrapping related kernels in a class hierarchy is often useful
anyway, independent of tuning.

Virtual member functions of Tunable
§ Invoke the kernel (tuning if necessary):

—apply()
§ Save and restore state before/after tuning:

—preTune(), postTune()
§ Advance to next set of trial parameters in the tuning:

—advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
—advanceTuneParam() // simply calls the above by default

§ Performance reporting
—flops(), bytes(), perfString()

§ etc.

Auto-tuned “warp-throttling”
§ Motivation: Increase reuse in limited L2 cache.

0

50

100

150

200

250

300

350

400

450

500

GTX 580 GTX 680 GTX 580 GTX 680 GTX 580 GTX 680

Double Single Half

BlockDim only

BlockDim & Blocks/SM

Kepler Wilson-Solver Performance

8 16 32 64 128
Temporal Extent

200

300

400

500

600

G
FL

O
PS

Single-12 / Half-8-GF
Single-12 / Half-8
Single-12 / Half-12
Single-12 / Single-8
Single-12

Wilson CG
K20X performance
V = 243xT

Extreme Scaling

0 512 1024 1536 2048 2560 3072 3584 4096 4608
Titan Nodes (GPUs)

0

50

100

150

200

250

300

350

400

450

TF
LO

PS

BiCGStab: 723x256
DD+GCR: 723x256
BiCGStab: 963x256
DD+GCR: 963x256

Clover Propagator Benchmark on Titan: Strong Scaling, QUDA+Chroma+QDP-JIT(PTX)

B. Joo, F. Winter (JLab), M. Clark (NVIDIA)

