SPECTRE, Phi-s and JITs

Bálint Joó¹

¹Jefferson Lab, Newport News, VA, USA

NP SciDAC Meeting, April 2014

Who thought up this title?

- SPECTRE? Really? We are not that evil...
- Dr Joó!= Dr No
- Although cats are OK I guess...

Ladies and Gentlemen... to business...

Steps of a Custom Calculation

- Identify Graphs needed
- Gauge Generation (with Chroma)
 - strong scaling, little I/O
- Compute Propagators (with Chroma)
 - throughput oriented
 - I/O intensive: solution vectors are large
- Generate Perambulators (with Három)
 - I/O intensive: read solution vectors/sources
- Contract Propagators (with Redstar)
 - Dense Matrix Multiplication Heavy
 - Scope for sub-expression reuse

Gauge Generation

Current Status

- Anisotropic production done 58M INCITE c/h used
- Current focus is on isotropic, 64³x128, 72³x256 lattices, thermalizing and dialing down light quark mass.
- Code Optimization (detail from Frank, next talk)
 - GPU: Chroma over QDP-JIT + QUDA solvers
 - In production currently.
 - BlueGene/Q: Chroma over QDP-JIT + BAGEL solvers
- Algorithms
 - GPU: RHMC for strange quark is expensive
 - Multi-shift solver scales poorly
 - Light Quarks at Physical Mass
 - Would like to reduce the cost of solves (Multigrid?)

F. Winter, M. A. Clark, R. G. Edwards, B. Joo to be published at IPDPS'14

Gauge Generation: Time spent in force

- Iso running in infancy, still tuning Monomial structure
- Data here: Aniso Running (400 nodes) m_π~230 MeV
- Terms with Two Flavor Solves
 - 2 Hasenbusch Terms + Cancellation: ~64% of time
- Single Heavy Strange Quark
 - Multi-shift CG, 34% of the time
- Remaining Terms: about 2% of the time.
- Strange quark is expensive
 - and strong scales poorly on GPUs since no DD
 - in iso running DD-Solver ~ 110TF, Multi-shift: ~17TF on 512 XK7 nodes of BlueWaters

40x40x40x256 lattice

DD vs. non-DD Solvers on Titan

Propagator Computation

- Multi-Grid based solver from QOPQDP (J. Osborn)
- integration by S.D. Cohen with a little help from B.
 Joo
 - = 10-11x speed up on 32^3x256 anisotropic lattices on the CPU at $m_{\pi} \sim 230 MeV$
 - Saul reported 30x speed up at Physical quark mass
 - MILC lattices
 - Currently faster than BiCGStab on GPU
 - Multi-Grid based solvers on GPU/XeonPhi highly desirable

Xeon Phi Developments

- Library now supports
 - single and double precision
 - half precision: up/downcast to/from SP on load/store
 - BiCGStab as well as CG for Clover
 - Simple iterative refinement multi-precision solver
 - 4D communications
 - Xeon Phi & AVX available with AVX2 in the works
- Process to open source
 - Intel is enthusiastic about open sourcing code
 - library, code-generator & CML proxy
 - in process, currently waiting on DOE approvals

DP=double precision SP=single precision HP=half precision

 Xeon Phi: single precision, with 16bit up/ down conversion

QCD with Xeon Phi on Stampede

- Performance on Stampede of older SP code, using both Xeon Phi and Xeon
- Using both the Xeons and Xeon Phi results in throughput gain although not full factor of 2

Other Xeon Phi Work

- DD + Flexible GMRES solver developed at University of Regensburg
 - Simon Heybrock & Tilo Wettig
- Collaboration
 - Misha Smelyanskiy, Pradeep Dubey, Intel Parallel Labs Santa Clara
 - Dhiraj Kalamkar, Karthikeyan Vaidyanathan, Bharat Kaul, Intel Parallel Labs, Bangalore
 - B. Joo, Jefferson Lab
- SC'14 paper submission is imminent (submission deadline is Friday)
- Willingness to share the code
 - source code sharing is linked to open sourcing the code generator

Analysis

- Redstar Chroma Három combination is in production
 - JLab Clusters, BlueWaters, Stampede
- Contractions challenging
 - all dense matrix multiplies
 - 32³x256 lattice: 384x384 dense matrices
 - 40³x256 lattice: 768x768 dense matrices
 - could benefit from acceleration through libraries (CUBLAS, MKL?)
 - Robert is looking at the TCE and considering on how to optimize the contractions
 - algorithmic considerations (stochastic etc?)

Task Summary

BlueGene/Q:

- QDP-JIT + BAGEL Solver integration (Frank)
- Whole application performance analysis (with SUPER)
- Gauge generation algorithm
 - MG / deflation / condition number awareness in HMC, would like faster strange quarks. They are heavy. The should be cheap.
- Xeon Phi
 - Library cleanup & Open sourcing (Balint)
 - Chroma (re)-integration (Balint)
 - MG (Balint?)
- Propagators
 - MG for GPUs (Mike?)
 - Chroma integration (Balint/Frank with help from Mike?)
- Analysis
 - Acceleration of contractions via libraries (Robert + Jie? + ??)
 - Subexpression elimination and contraction optimization (Robert)
 - Stochastic method exploration, baryons etc (Robert)

