
HDF5 for USQCD

Thorsten Kurth (LBL)	

Andrew Pochinsky (MIT)	


Abhinav Sarje (LBL)	

André Walker-Loud (WM)



STORAGE NEEDS



STORAGE NEEDS

Large machines without full control of the environment



STORAGE NEEDS

Large machines without full control of the environment	


Peta scale storage system with complex performance characteristics



STORAGE NEEDS

Large machines without full control of the environment	


Peta scale storage system with complex performance characteristics	


Storing logically connected data on multiple lattices



STORAGE NEEDS

Large machines without full control of the environment	


Peta scale storage system with complex performance characteristics	


Storing logically connected data on multiple lattices	


Random data elements addressing



STORAGE NEEDS

Large machines without full control of the environment	


Peta scale storage system with complex performance characteristics	


Storing logically connected data on multiple lattices	


Random data elements addressing	


Large amount of data (10s TiB) need to be stored per job



QIO LIMITATIONS



QIO LIMITATIONS

Lack of scalability



QIO LIMITATIONS

Lack of scalability	


Linear addressing only



QIO LIMITATIONS

Lack of scalability	


Linear addressing only	


Single lattice per file



QIO LIMITATIONS

Lack of scalability	


Linear addressing only	


Single lattice per file	


Maintenance costs



HDF5



HDF5

Portable format



HDF5

Portable format	

Hierarchical namespace



HDF5

Portable format	

Hierarchical namespace	

Typed storage



HDF5

Portable format	

Hierarchical namespace	

Typed storage	

Widely used in other fields



HDF5

Portable format	

Hierarchical namespace	

Typed storage	

Widely used in other fields	

Professionally deployed at all computer centers



HDF5

Portable format	

Hierarchical namespace	

Typed storage	

Widely used in other fields	

Professionally deployed at all computer centers	

Maintained by LBL at zero cost to USQCD



HDF5 for USQCD



HDF5 for USQCD

posix	  	  	  	  	  single-node write, serial data only 

phdf5	  	  	  	  	  multi-node write, serial and parallel data 

mpiposix	  	  multi-node write, serial and parallel data

File drivers

High-level control of file organization is provided for optimizing storage 
throughput (chunking, alignment, GPFS hints, transfer modes)



HDF5 for USQCD

kind	  	  	  standard string describing object’s kind 

time	  	  	  64 bit signed int time (μs since UNIX epoch) 

sha256	  SHA-256 checksum of the dataset 

other attributes ignored by readers

Object attributes



HDF5 for USQCD
Serial data types

Storage is compatible with SciPy conventions.	

Serial data are written in HDF5 scalar dataspaces. Floating point data can 
be written in either single or double precision. The following types are 
currently provided:

String,	  Real,	  Complex,	  VectorInt(M),	  VectorReal(M),	  
VectorComplex(M),	  MatrixReal(N,M),	  MatrixComplex(N,M),	  
ColorVector(N),	  ColorMatrix(N),	  DiracFermion(N),	  
DiracPropagator(N)



HDF5 for USQCD
Lattice data types

Lattice data are written in HDF5 simple dataspaces. Each object has its own 
lattice geometry. Floating point data can be written in either single or 
double precision. The following types are currently provided:

LatticeInt,	  LatticeReal,	  LatticeComplex,	  
LatticeColorVector(N),	  LatticeColorMatrix(N),	  
LatticeDiracFermion(N),	  LatticeDiracPropagator(N)



HDF5 for USQCD
Example

hf	  =	  qcd.hdf5.Reader(“prop-‐sample.h5”);	  
p_forward	  =	  hf:read(“/u1750/forward/G24.2/x4y16z7t0/prop.61”)	  
p_backward	  =	  hf:read(“/u1750/backward-‐61/P/t19/px0py0pz-‐1/prop”)	  
hf:close()



STATUS



STATUS

Qlua interface fully implemented in version 0.37.03



STATUS

Qlua interface fully implemented in version 0.37.03	

Chroma interface in development



POINTERS

https://usqcd.lns.mit.edu/redmine/projects/qlua	

https://usqcd.lns.mit.edu/w/index.php/QLUA_Tutorial:HDF5	

http://www.hdfgroup.org/HDF5/

http://www.hdfgroup.org/HDF5/

