
SUPER

Rob Fowler
Oct 19, 2014

(With Diptorup Deb and Allan Porterfield)

UNC/SUPER Status

SUPER

Overview

– Goal: Use compiler technology and auto-tuning to help close the “Ninja
programmer performance gap” between simple, high-level code and
hand-optimized LQCD routines, especially for new computer architectures.

– Problem statement: QDP++ is an embedded distributed-memory domain-specific
language for LQCD computation implemented using C++ template
meta-programming. QDP-JIT extends QDP++ to generate locally optimized Nvidia
PTX code.

– Issues
• Code for each assignment expression (statement) is generated independently

without global analysis.
• Memory management through run time software cache, no compiler analysis.

– Excessive data movement, though most of this is to/from fast memory.
– On Nvidia GPUs, memory bandwidth and data transfer are the rate limiters.

• Per expression data movement (MPI) without global
planning/coalescing/scheduling.

• Pressure in the memory hierarchy: registers, caches, effects on pipelining.

SciDAC_NP_QCD_Project_Slides 2

SUPER

Direction:

– Tasks: With JLAB, add compiler analysis and code
transformations to QDP-JIT.
• Loop (expression) fusion to reduce memory traffic

and generate tighter inner loops.
• Static analysis to improve memory management and

reduce CPU↔GPU traffic.
• Optimize cluster-wide messaging operations across

large units of code.
• Generate auto-tuning hooks to address hard

problems, e.g., performance portability.
• (LLVM chosen to leverage Intel and Nvidia

infrastructures for accelerator devices.)

SciDAC_NP_QCD_Project_Slides 3

SUPER

Recent Activities

• Graduate Student (Diptorup Deb) hired and being brought up to speed.

• Selected LLVM as the compilation framework.
– Adopted by Nvidia as its compilation base.
– Modern, clean, open source design.
– Growing support in academia and industry.

 We can leverage other projects..

• Selected a few simple examples to drive experimentation.
– QDP-JIT examples to expose CPU to device communication issues as well as

on-device memory and code generation issues.
– Traditional QDP++ and Chroma examples generating CPU code to experiment

with performance issues there and as a simpler target for compiler
experiments.

SciDAC_NP_QCD_Project_Slides 4

SUPER

Toy Problem : Performance effects of loop splitting/fusion.
One expression vs. One operator per expression
on a single node using one Tesla K20c

5 10 15 20 25 30
0

2

4

6

8

10

12

14

N LatticeReal a,b,c

V =N^4

a =
-(log(b)/c);

a = log(b);
a = (a/c);
A = -a;

2 1.600E+001 15751 45996

4 2.560E+002 15801 45525

6 1.296E+003 16911 46709

8 4.096E+003 16737 47239

10 1.000E+004 18834 48435

12 2.074E+004 19497 49130

14 3.842E+004 21895 54790

16 6.554E+004 29458 66973

18 1.050E+005 37683 82597

20 1.600E+005 47163 106913

22 2.343E+005 62389 137678

24 3.318E+005 77733 199135

26 4.570E+005 98372 245277

28 6.147E+005 128187 279876

~2.5X cost difference due to loop and
communication overhead across all
problem sizes.

Cost per site for 100th repetition.

SciDAC_NP_QCD_Project_Slides 5

Most of the performance difference can be attributed
to excess CPU <--> GPU data movement.

SUPER

Discussion

● Almost all of the differences can be explained in terms of Device --> Host
data movement.

– Specifically, host memory is updated after every kernel, even if the data
object is not needed on the host.

● Problem: run time code instantiation/generation using expression templates
is strictly on an (assignment expression) by expression basis.

– Static compiler analysis of whole program is not available.

– Instantiated code looks neither forward nor backwards.

– Runtime support libraries for data caching can record history, but can't
see forward.

–

SUPER

A More Realistic example.

Timing variants on the Dslash test from the QDP++ examples
directory.

– Evaluate the tradeoffs between monolithic and fragmented versions.

– Tests over lattice size range from 2^4 to 28^4 for Nd= 4.

– Compilers used :

– QDP++ : GCC 4.8.1, ICC14.0.1,and Clang 3.4

– QDP-JIT : GCC 4.8.1

Dslash operator base case

if(isign> 0)
{
chi[rb[cb]] = spinReconstructDir0Minus(u[0] * shift(spinProjectDir0Minus(psi),
FORWARD, 0))
+ spinReconstructDir0Plus(shift(adj(u[0]) * spinProjectDir0Plus(psi), BACKWARD, 0))
+ spinReconstructDir1Minus(u[1] * shift(spinProjectDir1Minus(psi), FORWARD, 1))
+ spinReconstructDir1Plus(shift(adj(u[1]) * spinProjectDir1Plus(psi), BACKWARD, 1))
+ spinReconstructDir2Minus(u[2] * shift(spinProjectDir2Minus(psi), FORWARD, 2))
+ spinReconstructDir2Plus(shift(adj(u[2]) * spinProjectDir2Plus(psi), BACKWARD, 2))
+ spinReconstructDir3Minus(u[3] * shift(spinProjectDir3Minus(psi), FORWARD, 3))
+ spinRecnstructDir3Plus(shift(adj(u[3]) * spinProjectDir3Plus(psi), BACKWARD, 3))
;
}

Dslash operator two sub-expressions

if (isign> 0)
{
chi[rb[cb]] = spinReconstructDir0Minus(u[0] * shift(spinProjectDir0Minus(psi),
FORWARD, 0))
+ spinReconstructDir0Plus(shift(adj(u[0]) * spinProjectDir0Plus(psi), BACKWARD, 0))
+ spinReconstructDir1Minus(u[1] * shift(spinProjectDir1Minus(psi), FORWARD, 1))
+ spinReconstructDir1Plus(shift(adj(u[1]) * spinProjectDir1Plus(psi), BACKWARD, 1));

chi[rb[cb]] += spinReconstructDir2Minus(u[2] * shift(spinProjectDir2Minus(psi),
FORWARD, 2))
+ spinReconstructDir2Plus(shift(adj(u[2]) * spinProjectDir2Plus(psi), BACKWARD, 2))
+ spinReconstructDir3Minus(u[3] * shift(spinProjectDir3Minus(psi), FORWARD, 3))
+ spinReconstructDir3Plus(shift(adj(u[3]) * spinProjectDir3Plus(psi), BACKWARD, 3));
}

Dslash operator four sub-expressions

chi[rb[cb]] =
spinReconstructDir0Minus(u[0]*shift(spinProjectDir0Minus(psi), FORWARD, 0))
+ spinReconstructDir0Plus(shift(adj(u[0]) * spinProjectDir0Plus(psi), BACKWARD,
0));

chi[rb[cb]] +=
spinReconstructDir1Minus(u[1] * shift(spinProjectDir1Minus(psi), FORWARD, 1))
+ spinReconstructDir1Plus(shift(adj(u[1]) * spinProjectDir1Plus(psi), BACKWARD,
1));

chi[rb[cb]] +=
spinReconstructDir2Minus(u[2] * shift(spinProjectDir2Minus(psi), FORWARD, 2))
+ spinReconstructDir2Plus(shift(adj(u[2]) * spinProjectDir2Plus(psi), BACKWARD,
2));

chi[rb[cb]] +=
spinReconstructDir3Minus(u[3] * shift(spinProjectDir3Minus(psi), FORWARD, 3))
+ spinReconstructDir3Plus(shift(adj(u[3]) * spinProjectDir3Plus(psi), BACKWARD,
3));

if (isign> 0){
chi[rb[cb]] = spinReconstructDir0Minus(u[0]
*shift(spinProjectDir0Minus(psi), FORWARD, 0));
chi[rb[cb]] += spinReconstructDir0Plus(shift(adj(u[0])
*spinProjectDir0Plus(psi), BACKWARD, 0));
chi[rb[cb]] += spinReconstructDir1Minus(u[1]
*shift(spinProjectDir1Minus(psi), FORWARD, 1));
chi[rb[cb]] += spinReconstructDir1Plus(shift(adj(u[1])
*spinProjectDir1Plus(psi), BACKWARD, 1));
chi[rb[cb]] += spinReconstructDir2Minus(u[2]
*shift(spinProjectDir2Minus(psi), FORWARD, 2));
chi[rb[cb]] += spinReconstructDir2Plus(shift(adj(u[2])
*spinProjectDir2Plus(psi), BACKWARD, 2));
chi[rb[cb]] += spinReconstructDir3Minus(u[3]
*shift(spinProjectDir3Minus(psi), FORWARD, 3));
chi[rb[cb]] += spinReconstructDir3Plus(shift(adj(u[3])
*spinProjectDir3Plus(psi), BACKWARD, 3));
}

Dslash operator eight sub-expressions

Evaluating effect of loop splitting/fusion (QDP-JIT)

GCC 4.8.1

Evaluating effect of loop splitting (QDP++)

Evaluating effect of loop splitting (QDP++)

10 100 1000 10000 100000 1000000
0

50

100

150

200

250

300

350

400

450

500

Dslash Run-times (nano sec) ICC 14.0.1

ONE_EXPR

TWO_EXPR

FOUR_EXPR

EIGHT_EXPR

Lattice Size

R
u

n
-t

im
e

/ l
a

tt
ic

e
 p

o
in

t
(n

o
n

o
 s

e
c

o
n

d
s

)

Evaluating effect of loop splitting (QDP++)

Clang 3.4

10 100 1000 10000 100000 1000000
0

50

100

150

200

250

300

350

LLVM/Clang 3.4

ONE_EXPR

TWO_EXPR

FOUR_EXPR

Lattice Size

R
u

n
-t

im
e

/la
tt

ic
e

 p
o

in
t

(n
a

n
o

 s
e

c
o

n
d

s
)

Observations regarding Dslash experiments.

 The QDP-JIT results are dominated by CPU <--> GPU
communication.

 The GCC results raise interesting questions:
 The steep rise in all curves is the expected rise in cache misses.
 The improvements at very large sizes not definitively explained.

 Hypotheses: Hardware prefetching becomes effective as loop
sizes increase. Loop optimizations might become effective.

 Measurements and analyses are in progress.
 ICC is better than GCC but both are dominated by Clang.

 Where's the cache size cliff?
 Code generated out of simple ETs looks very clean and should be

amenable to loop transformations. Examination of Dslash object
code is on the agenda.

 Preliminary measurements of ICC-generated code indicates a high
prefetch buffer hit rate.

 Experiments will be repeated with better instrumentation.

Going forward
 Inter-expression/statement analysis and transformation is the key to

improving performance for high level programming.
 Better code in the inner loops through loop fusion.
 Improving data management and transport in QDP-JIT

 Eliminate GPU-->CPU copy back for temporaries never used on
CPU. (Manual experiments in progress.)

 Consolidate and schedule device data transfers.
 Asynchrony?

 Apply consolidation and scheduling to inter-node communication.

 Next step: Send Diptorup to JLab for an extended visit.
 Extensive cross visits in SOW and funds are available.

 Other problems and directions (driven by Jlab collaborators).
 Whole program performance characterization.
 Customized data allocators for QDP++.

