UNC/SUPER Status

Rob Fowler
Oct 19, 2014

(With Diptorup Deb and Allan Porterfield)

SUPER



Overview

— Goal: Use compiler technology and auto-tuning to help close the “Ninja
programmer performance gap” between simple, high-level code and
hand-optimized LQCD routines, especially for new computer architectures.

— Problem statement: QDP++ is an embedded distributed-memory domain-specific
language for LQCD computation implemented using C++ template
meta-programming. QDP-JIT extends QDP++ to generate locally optimized Nvidia
PTX code.

— Issues
* Code for each assignment expression (statement) is generated independently

without global analysis.
* Memory management through run time software cache, no compiler analysis.
— Excessive data movement, though most of this is to/from fast memory.
— On Nvidia GPUs, memory bandwidth and data transfer are the rate limiters.
* Per expression data movement (MPI) without global
planning/coalescing/scheduling.
* Pressure in the memory hierarchy: registers, caches, effects on pipelining.

— N THE UNIVERSITY SciDAC_NP_QCD_Project_Slides [
II " of NORTH CAROLINA
4 i L at CHAPEL HILL SUPER




Direction:

—Tasks: With JLAB, add compiler analysis and code

transformations to QDP-JIT.

* Loop (expression) fusion to reduce memory traffic
and generate tighter inner loops.

 Static analysis to improve memory management and
reduce CPU—~GPU traffic.

* Optimize cluster-wide messaging operations across
large units of code.

* Generate auto-tuning hooks to address hard
problems, e.g., performance portability.

* (LLVM chosen to leverage Intel and Nvidia
infrastructures for accelerator devices.)

TTTTTTTTTTTTT SciDAC_NP_QCD_Project_Slides [

LLLLLLLLLLLL SUPER



Recent Activities

* Graduate Student (Diptorup Deb) hired and being brought up to speed.

* Selected LLVM as the compilation framework.
— Adopted by Nvidia as its compilation base.
— Modern, clean, open source design.

— Growing support in academia and industry.
- We can leverage other projects..

* Selected a few simple examples to drive experimentation.
— QDP-JIT examples to expose CPU to device communication issues as well as

on-device memory and code generation issues.
— Traditional QDP++ and Chroma examples generating CPU code to experiment
with performance issues there and as a simpler target for compiler

experiments.

SciDAC_NP_QCD_Project_Slides [

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL SUPER

L0



Toy Problem : Performance effects of loop splitting/fusion.

One expression vs. One operator per expression
on a single node using one Tesla K20c

Cost per site for 100" repetition.

14

~2.5X cost difference due to loop and

communication overhead across all
12 :

10 \
8

Most of the performance difference can be attributed
to excess CPU <--> GPU data movement.

- N T SciDAC_NP_QCD_Project_Slides A
n II Il of NORTH CAROLINA i
UilL | ar cHAPEL HILL SUPER




Discussion

* Almost all of the differences can be explained in terms of Device --> Host
data movement.

- Specifically, host memory is updated after every kernel, even if the data
object is not needed on the host.

« Problem: run time code instantiation/generation using expression templates
is strictly on an (assignment expression) by expression basis.

- Static compiler analysis of whole program is not available.
- Instantiated code looks neither forward nor backwards.

- Runtime support libraries for data caching can record history, but can't

see forward.
—_N THE UNIVERSITY [
H_" of NORTH CAROLINA

Uil at CHAPEL HILL SUPER




A More Realistic example.

Timing variants on the Dslash test from the QDP++ examples
directory.

- Evaluate the tradeoffs between monolithic and fragmented versions.
- Tests over lattice size range from 2”4 to 28”4 for Nd= 4.

- Compilers used :

- QDP++:GCC 4.8.1,1CC14.0.1,and Clang 3.4

- QDP-JIT : GCC 4.8.1

—_N THE UNIVERSITY [
II " of NORTH CAROLINA
Uil at CHAPEL HILL SUPER



Dslash operator base case

if(isign> 0)

{

chi[rb[cb]] = spinReconstructDirOMinus(u[0] * shift(spinProjectDirOMinus(psi),
FORWARD, 0))

+ spinReconstructDirOPlus(shift(adj(u[0]) * spinProjectDirOPlus(psi), BACKWARD, 0))
+ spinReconstructDirlMinus(u[1] * shift(spinProjectDir1Minus(psi), FORWARD, 1))

+ spinReconstructDirlPlus(shift(adj(u[1]) * spinProjectDirlPlus(psi), BACKWARD, 1))
+ spinReconstructDir2Minus(u[2] * shift(spinProjectDir2Minus(psi), FORWARD, 2))

+ spinReconstructDir2Plus(shift(adj(u[2]) * spinProjectDir2Plus(psi), BACKWARD, 2))
+ spinReconstructDir3Minus(u[3] * shift(spinProjectDir3Minus(psi), FORWARD, 3))

+ spinRecnstructDir3Plus(shift(adj(u[3]) * spinProjectDir3Plus(psi), BACKWARD, 3))

’

}

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

L0



Dslash operator two sub-expressions

if (isign> 0)

{

chi[rb[cb]] = spinReconstructDirOMinus(u[0] * shift(spinProjectDirOMinus(psi),
FORWARD, 0))

+ spinReconstructDirOPlus(shift(adj(u[0]) * spinProjectDirOPlus(psi), BACKWARD, 0))
+ spinReconstructDirlMinus(u[1] * shift(spinProjectDir1Minus(psi), FORWARD, 1))

+ spinReconstructDirlPlus(shift(adj(u[1]) * spinProjectDirlPlus(psi), BACKWARD, 1));

chi[rb[cb]] += spinReconstructDir2Minus(u[2] * shift(spinProjectDir2Minus(psi),
FORWARD, 2))

+ spinReconstructDir2Plus(shift(adj(u[2]) * spinProjectDir2Plus(psi), BACKWARD, 2))
+ spinReconstructDir3Minus(u[3] * shift(spinProjectDir3Minus(psi), FORWARD, 3))

+ spinReconstructDir3Plus(shift(adj(u[3]) * spinProjectDir3Plus(psi), BACKWARD, 3));

}

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

L0



Dslash operator four sub-expressions

chi[rb[cb]] =

spinReconstructDirOMinus(u[0]*shift(spinProjectDirOMinus(psi), FORWARD, 0))

+ spinReconstructDirOPlus(shift(adj(u[0]) * spinProjectDirOPlus(psi), BACKWARD,
0));

chi[rb[cb]] +=

spinReconstructDirlMinus(u[1l] * shift(spinProjectDir1Minus(psi), FORWARD, 1))
+ spinReconstructDirlPlus(shift(adj(u[1l]) * spinProjectDirlPlus(psi), BACKWARD,
1));

chi[rb[cb]] +=

spinReconstructDir2Minus(u[2] * shift(spinProjectDir2Minus(psi), FORWARD, 2))
+ spinReconstructDir2Plus(shift(adj(u[2]) * spinProjectDir2Plus(psi), BACKWARD,
2));

chi[rb[cb]] +=

spinReconstructDir3Minus(u[3] * shift(spinProjectDir3Minus(psi), FORWARD, 3))
+ spinReconstructDir3Plus(shift(adj(u[3]) * spinProjectDir3Plus(psi), BACKWARD,
3));

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

L0



Dslash operator eight sub-expressions

if (isign> 0){

chi[rb[cb]] = spinReconstructDirOMinus(u[0]
*shift(spinProjectDirOMinus(psi), FORWARD, 0));
chi[rb[cb]] += spinReconstructDirOPlus(shift(adj(u[0])
*spinProjectDirOPlus(psi), BACKWARD, 0));

chi[rb[cb]] += spinReconstructDirlMinus(u[1]
*shift(spinProjectDirlMinus(psi), FORWARD, 1));
chi[rb[cb]] += spinReconstructDirlPlus(shift(adj(u[1])
*spinProjectDirlPlus(psi), BACKWARD, 1));

chi[rb[cb]] += spinReconstructDir2Minus(u[2]
*shift(spinProjectDir2Minus(psi), FORWARD, 2));
chi[rb[cb]] += spinReconstructDir2Plus(shift(adj(u[2])
*spinProjectDir2Plus(psi), BACKWARD, 2));

chi[rb[cb]] += spinReconstructDir3Minus(u[3]
*shift(spinProjectDir3Minus(psi), FORWARD, 3));
chi[rb[cb]] += spinReconstructDir3Plus(shift(adj(u[3])
*spinProjectDir3Plus(psi), BACKWARD, 3));

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

L0



Evaluating effect of loop splitting/fusion (QDP-JIT)

100000

GCC 4.8.1

Single expression

——
i 8-way split
—_—

100D
4-way split
2-way split

1000

100

— e p— —

Run-time per lattice point (ns)

10 100 1000 10000 100000 1000000

lattice size

TTTTTTTTTTTTT
of NORTH CAROLINA
at CHAPEL HILL

I



Evaluating effect of loop splitting (QDP++)

L]
GCC 4.8.1

700

600 /‘\n--;gA
2 500
j=
o
o
Q
(2]
2 400 —&— ONE_EXPR
£ == TWO_EXPR
£ FOUR_EXPR
o
3 300 == EIGHT_EXPR
g
5
£
F 200
<
>
14

100

0
10 100 1000 10000 100000 1000000
Lattice Size

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

—_
enc [




Evaluating effect of loop splitting (QDP++)

Dslash Run-times (nano sec) ICC 14.0.1

500

' r

400
g‘ >— — *— —— y ="~
€ 350 ‘./I—".-\-.—l-h
[} —
o —i —
(7]
g 300 —&— ONE_EXPR
£ —o— TWO_EXPR
£ 250 FOUR_EXPR
iy == EIGHT_EXPR
£ 200
s
b
E 180
2
=
® 100

50

0

10 100 1000 10000 100000 1000000
Lattice Size

of NORTH CAROLINA
at CHAPEL HILL

‘ THE UNIVERSITY |attice Size



Evaluating effect of loop splitting (QDP++)

LLVM/Clang 3.4

350
300
§ 250 4/(‘—51*—!-1-‘
S N = —h—
a
o ——
s 200
c
pog = — —+— ONE_EXPR
.g TWO_EXPR
<3
8 150 == FOUR_EXPR
g
E
= 100
<
5
@
50
0
10 100 1000 10000 100000 1000000
Lattice Size
THE UNIVERSITY |attice Size

of NORTH CAROLINA
at CHAPEL HILL

—_
enc [




Observations regarding Dslash experiments.

The QDP-JIT results are dominated by CPU <--> GPU
communication.
The GCC results raise interesting questions:
The steep rise in all curves is the expected rise in cache misses.
The improvements at very large sizes not definitively explained.
Hypotheses: Hardware prefetching becomes effective as loop
sizes increase. Loop optimizations might become effective.
Measurements and analyses are in progress.
ICC is better than GCC but both are dominated by Clang.
- Where's the cache size cliff?
Code generated out of simple ETs looks very clean and should be
amenable to loop transformations. Examination of Dslash object
code is on the agenda.
Preliminary measurements of ICC-generated code indicates a high
prefetch buffer hit rate.
Experiments will be repeated with better instrumentation.

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

L0



Going forward

Inter-expression/statement analysis and transformation is the key to
improving performance for high level programming.
Better code in the inner loops through loop fusion.
Improving data management and transport in QDP-JIT
Eliminate GPU-->CPU copy back for temporaries never used on
CPU. (Manual experiments in progress.)
Consolidate and schedule device data transfers.
Asynchrony?
Apply consolidation and scheduling to inter-node communication.

Next step: Send Diptorup to JLab for an extended visit.
Extensive cross visits in SOW and funds are available.

Other problems and directions (driven by Jlab collaborators).
Whole program performance characterization.
Customized data allocators for QDP++,

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

L0



