
SUPER

Rob Fowler
Oct 19, 2014

(With Diptorup Deb and Allan Porterfield)

UNC/SUPER Status

SUPER

Overview

– Goal: Use compiler technology and auto-tuning to help close the “Ninja
programmer performance gap” between simple, high-level code and
hand-optimized LQCD routines, especially for new computer architectures.

– Problem statement: QDP++ is an embedded distributed-memory domain-specific
language for LQCD computation implemented using C++ template
meta-programming. QDP-JIT extends QDP++ to generate locally optimized Nvidia
PTX code.

– Issues
• Code for each assignment expression (statement) is generated independently

without global analysis.
• Memory management through run time software cache, no compiler analysis.

– Excessive data movement, though most of this is to/from fast memory.
– On Nvidia GPUs, memory bandwidth and data transfer are the rate limiters.

• Per expression data movement (MPI) without global
planning/coalescing/scheduling.

• Pressure in the memory hierarchy: registers, caches, effects on pipelining.

SciDAC_NP_QCD_Project_Slides 2

SUPER

Direction:

– Tasks: With JLAB, add compiler analysis and code
transformations to QDP-JIT.
• Loop (expression) fusion to reduce memory traffic

and generate tighter inner loops.
• Static analysis to improve memory management and

reduce CPU↔GPU traffic.
• Optimize cluster-wide messaging operations across

large units of code.
• Generate auto-tuning hooks to address hard

problems, e.g., performance portability.
• (LLVM chosen to leverage Intel and Nvidia

infrastructures for accelerator devices.)

SciDAC_NP_QCD_Project_Slides 3

SUPER

Recent Activities

• Graduate Student (Diptorup Deb) hired and being brought up to speed.

• Selected LLVM as the compilation framework.
– Adopted by Nvidia as its compilation base.
– Modern, clean, open source design.
– Growing support in academia and industry.

 We can leverage other projects..

• Selected a few simple examples to drive experimentation.
– QDP-JIT examples to expose CPU to device communication issues as well as

on-device memory and code generation issues.
– Traditional QDP++ and Chroma examples generating CPU code to experiment

with performance issues there and as a simpler target for compiler
experiments.

SciDAC_NP_QCD_Project_Slides 4

SUPER

Toy Problem : Performance effects of loop splitting/fusion.
One expression vs. One operator per expression
on a single node using one Tesla K20c

5 10 15 20 25 30
0

2

4

6

8

10

12

14

N LatticeReal a,b,c

V =N^4

a =
-(log(b)/c);

a = log(b);
a = (a/c);
A = -a;

2 1.600E+001 15751 45996

4 2.560E+002 15801 45525

6 1.296E+003 16911 46709

8 4.096E+003 16737 47239

10 1.000E+004 18834 48435

12 2.074E+004 19497 49130

14 3.842E+004 21895 54790

16 6.554E+004 29458 66973

18 1.050E+005 37683 82597

20 1.600E+005 47163 106913

22 2.343E+005 62389 137678

24 3.318E+005 77733 199135

26 4.570E+005 98372 245277

28 6.147E+005 128187 279876

~2.5X cost difference due to loop and
communication overhead across all
problem sizes.

Cost per site for 100th repetition.

SciDAC_NP_QCD_Project_Slides 5

Most of the performance difference can be attributed
to excess CPU <--> GPU data movement.

SUPER

Discussion

● Almost all of the differences can be explained in terms of Device --> Host
data movement.

– Specifically, host memory is updated after every kernel, even if the data
object is not needed on the host.

● Problem: run time code instantiation/generation using expression templates
is strictly on an (assignment expression) by expression basis.

– Static compiler analysis of whole program is not available.

– Instantiated code looks neither forward nor backwards.

– Runtime support libraries for data caching can record history, but can't
see forward.

–

SUPER

A More Realistic example.

Timing variants on the Dslash test from the QDP++ examples
directory.

– Evaluate the tradeoffs between monolithic and fragmented versions.

– Tests over lattice size range from 2^4 to 28^4 for Nd= 4.

– Compilers used :

– QDP++ : GCC 4.8.1, ICC14.0.1,and Clang 3.4

– QDP-JIT : GCC 4.8.1

Dslash operator base case

if(isign> 0)
{
chi[rb[cb]] = spinReconstructDir0Minus(u[0] * shift(spinProjectDir0Minus(psi),
FORWARD, 0))
+ spinReconstructDir0Plus(shift(adj(u[0]) * spinProjectDir0Plus(psi), BACKWARD, 0))
+ spinReconstructDir1Minus(u[1] * shift(spinProjectDir1Minus(psi), FORWARD, 1))
+ spinReconstructDir1Plus(shift(adj(u[1]) * spinProjectDir1Plus(psi), BACKWARD, 1))
+ spinReconstructDir2Minus(u[2] * shift(spinProjectDir2Minus(psi), FORWARD, 2))
+ spinReconstructDir2Plus(shift(adj(u[2]) * spinProjectDir2Plus(psi), BACKWARD, 2))
+ spinReconstructDir3Minus(u[3] * shift(spinProjectDir3Minus(psi), FORWARD, 3))
+ spinRecnstructDir3Plus(shift(adj(u[3]) * spinProjectDir3Plus(psi), BACKWARD, 3))
;
}

Dslash operator two sub-expressions

if (isign> 0)
{
chi[rb[cb]] = spinReconstructDir0Minus(u[0] * shift(spinProjectDir0Minus(psi),
FORWARD, 0))
+ spinReconstructDir0Plus(shift(adj(u[0]) * spinProjectDir0Plus(psi), BACKWARD, 0))
+ spinReconstructDir1Minus(u[1] * shift(spinProjectDir1Minus(psi), FORWARD, 1))
+ spinReconstructDir1Plus(shift(adj(u[1]) * spinProjectDir1Plus(psi), BACKWARD, 1));

chi[rb[cb]] += spinReconstructDir2Minus(u[2] * shift(spinProjectDir2Minus(psi),
FORWARD, 2))
+ spinReconstructDir2Plus(shift(adj(u[2]) * spinProjectDir2Plus(psi), BACKWARD, 2))
+ spinReconstructDir3Minus(u[3] * shift(spinProjectDir3Minus(psi), FORWARD, 3))
+ spinReconstructDir3Plus(shift(adj(u[3]) * spinProjectDir3Plus(psi), BACKWARD, 3));
}

Dslash operator four sub-expressions

chi[rb[cb]] =
spinReconstructDir0Minus(u[0]*shift(spinProjectDir0Minus(psi), FORWARD, 0))
+ spinReconstructDir0Plus(shift(adj(u[0]) * spinProjectDir0Plus(psi), BACKWARD,
0));

chi[rb[cb]] +=
spinReconstructDir1Minus(u[1] * shift(spinProjectDir1Minus(psi), FORWARD, 1))
+ spinReconstructDir1Plus(shift(adj(u[1]) * spinProjectDir1Plus(psi), BACKWARD,
1));

chi[rb[cb]] +=
spinReconstructDir2Minus(u[2] * shift(spinProjectDir2Minus(psi), FORWARD, 2))
+ spinReconstructDir2Plus(shift(adj(u[2]) * spinProjectDir2Plus(psi), BACKWARD,
2));

chi[rb[cb]] +=
spinReconstructDir3Minus(u[3] * shift(spinProjectDir3Minus(psi), FORWARD, 3))
+ spinReconstructDir3Plus(shift(adj(u[3]) * spinProjectDir3Plus(psi), BACKWARD,
3));

if (isign> 0){
chi[rb[cb]] = spinReconstructDir0Minus(u[0]
*shift(spinProjectDir0Minus(psi), FORWARD, 0));
chi[rb[cb]] += spinReconstructDir0Plus(shift(adj(u[0])
*spinProjectDir0Plus(psi), BACKWARD, 0));
chi[rb[cb]] += spinReconstructDir1Minus(u[1]
*shift(spinProjectDir1Minus(psi), FORWARD, 1));
chi[rb[cb]] += spinReconstructDir1Plus(shift(adj(u[1])
*spinProjectDir1Plus(psi), BACKWARD, 1));
chi[rb[cb]] += spinReconstructDir2Minus(u[2]
*shift(spinProjectDir2Minus(psi), FORWARD, 2));
chi[rb[cb]] += spinReconstructDir2Plus(shift(adj(u[2])
*spinProjectDir2Plus(psi), BACKWARD, 2));
chi[rb[cb]] += spinReconstructDir3Minus(u[3]
*shift(spinProjectDir3Minus(psi), FORWARD, 3));
chi[rb[cb]] += spinReconstructDir3Plus(shift(adj(u[3])
*spinProjectDir3Plus(psi), BACKWARD, 3));
}

Dslash operator eight sub-expressions

Evaluating effect of loop splitting/fusion (QDP-JIT)

GCC 4.8.1

Evaluating effect of loop splitting (QDP++)

Evaluating effect of loop splitting (QDP++)

10 100 1000 10000 100000 1000000
0

50

100

150

200

250

300

350

400

450

500

Dslash Run-times (nano sec) ICC 14.0.1

ONE_EXPR

TWO_EXPR

FOUR_EXPR

EIGHT_EXPR

Lattice Size

R
u

n
-t

im
e

/ l
a

tt
ic

e
 p

o
in

t
(n

o
n

o
 s

e
c

o
n

d
s

)

Evaluating effect of loop splitting (QDP++)

Clang 3.4

10 100 1000 10000 100000 1000000
0

50

100

150

200

250

300

350

LLVM/Clang 3.4

ONE_EXPR

TWO_EXPR

FOUR_EXPR

Lattice Size

R
u

n
-t

im
e

/la
tt

ic
e

 p
o

in
t

(n
a

n
o

 s
e

c
o

n
d

s
)

Observations regarding Dslash experiments.

 The QDP-JIT results are dominated by CPU <--> GPU
communication.

 The GCC results raise interesting questions:
 The steep rise in all curves is the expected rise in cache misses.
 The improvements at very large sizes not definitively explained.

 Hypotheses: Hardware prefetching becomes effective as loop
sizes increase. Loop optimizations might become effective.

 Measurements and analyses are in progress.
 ICC is better than GCC but both are dominated by Clang.

 Where's the cache size cliff?
 Code generated out of simple ETs looks very clean and should be

amenable to loop transformations. Examination of Dslash object
code is on the agenda.

 Preliminary measurements of ICC-generated code indicates a high
prefetch buffer hit rate.

 Experiments will be repeated with better instrumentation.

Going forward
 Inter-expression/statement analysis and transformation is the key to

improving performance for high level programming.
 Better code in the inner loops through loop fusion.
 Improving data management and transport in QDP-JIT

 Eliminate GPU-->CPU copy back for temporaries never used on
CPU. (Manual experiments in progress.)

 Consolidate and schedule device data transfers.
 Asynchrony?

 Apply consolidation and scheduling to inter-node communication.

 Next step: Send Diptorup to JLab for an extended visit.
 Extensive cross visits in SOW and funds are available.



 Other problems and directions (driven by Jlab collaborators).
 Whole program performance characterization.
 Customized data allocators for QDP++.


