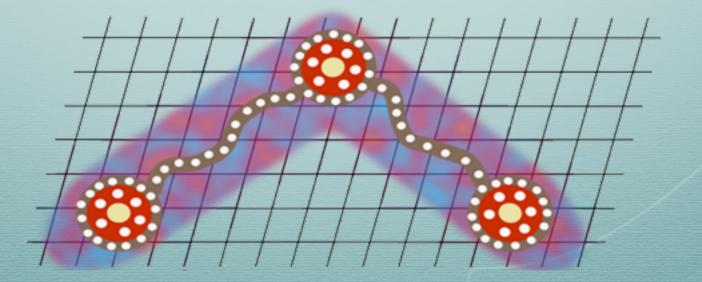


SORCERY

Kostas Orginos Will Detmold

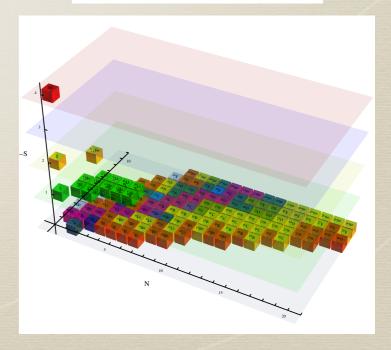
College of William & Mary -- JLab



Hadron Interactions

Goals:

- * Challenge: Compute properties of nuclei from QCD
 - * Spectrum and structure
- * Confirm well known experimental observations for two nucleon systems
- * Explore the largely unknown territory of hypernuclear physics
- * Provide input for the equation of state for nuclear matter in neutron stars
- * Provide input for understanding the properties of multi-baryon systems



More than two body

- * Construct interpolating fields
- * Find efficient ways to perform the Wick contractions
- * Address the signal to noise problem
- * Extract the energy spectrum
- * Interpret the energy spectrum

More than two body

- * Construct interpolating fields
- * Find efficient ways to perform the Wick contractions
- * Address the signal to noise problem
- * Extract the energy spectrum
- * Interpret the energy spectrum

Interpolating fields

Most general multi-baryon interpolating field

$$\bar{\mathcal{N}}^h = \sum_{\mathbf{a}} w_h^{a_1, a_2 \cdots a_{n_q}} \bar{q}(a_1) \bar{q}(a_2) \cdots \bar{q}(a_{n_q})$$

The indices a are composite including space, spin, color and flavor

- * The goal is to calculate the tensors W
- * The tensors w are completely antisymmetric

* Number of terms in the sum are

$$\frac{N!}{(N-n_q)!}$$

Imposing the anti-symmetry:

$$\bar{\mathcal{N}}^h = \sum_{k=1}^{N_w} \tilde{w}_h^{(a_1, a_2 \cdots a_{n_q}), k} \sum_{\mathbf{i}} \epsilon^{i_1, i_2, \cdots, i_{n_q}} \bar{q}(a_{i_1}) \bar{q}(a_{i_2}) \cdots \bar{q}(a_{i_{n_q}})$$
Reduced weights

Totally anti-symmetric tensor

$$\epsilon^{1,2,3,4,\cdots,n_q} = 1$$

* Total number of reduced weights:

$$\frac{N!}{n_q!(N-n_q)!}$$

Hadronic Interpolating field

$$\bar{\mathcal{N}}^h = \sum_{k=1}^{M_w} \underline{\tilde{W}}_h^{(b_1,b_2\cdots b_A)} \sum_{\mathbf{i}} \epsilon^{i_1,i_2,\cdots,i_A} \bar{B}(b_{i_1}) \bar{B}(b_{i_2}) \cdots \bar{B}(b_{i_A})$$
hadronic reduced weights

baryon composite interpolating field

$$\bar{B}(b) = \sum_{k=1}^{N_{B(b)}} \tilde{w}_b^{(a_1, a_2, a_3), k} \sum_{\mathbf{i}} \epsilon^{i_1, i_2, i_3} \bar{q}(a_{i_1}) \bar{q}(a_{i_2}) \bar{q}(a_{i_3})$$

Calculation of weights

- * Compute the hadronic weights
- * Replace baryons by quark interpolating fields
- * Perform Grassmann reductions
- * Read off the reduced weights for the quark interpolating fields
- * Computations done in: algebra (C++)

$$\bar{\mathcal{N}}^{h} = \sum_{k=1}^{M_{w}} \tilde{W}_{h}^{(b_{1},b_{2}\cdots b_{A})} \sum_{\mathbf{i}} \epsilon^{i_{1},i_{2},\cdots,i_{A}} \bar{B}(b_{i_{1}}) \bar{B}(b_{i_{2}}) \cdots \bar{B}(b_{i_{A}})$$

$$\bar{\mathcal{N}}^{h} = \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \sum_{\mathbf{i}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} \bar{q}(a_{i_{1}}) \bar{q}(a_{i_{2}}) \cdots \bar{q}(a_{i_{n_{q}}})$$

Interpolating fields

For a single point source

NPLQCD arXiv:1206.5219

Label	A	s	I	J^{π}	Local SU(3) irreps	int. field size
\overline{N}	1	0	1/2	$1/2^{+}$	8	9
Λ	1	-1	0	$1/2^{+}$	8	12
\sum	1	-1	1	$1/2^{+}$	8	9
Ξ	1	-2	1/2	$1/2^{+}$	8	9
\overline{d}	2	0	0	1+	$\overline{10}$	21
nn	2	0	1	0+	27	21
$n\Lambda$	2	-1	1/2	0+	27	96
$n\Lambda$	2	-1	1/2	1+	$8_{A},\overline{10}$	48, 75
$n\Sigma$	2	-1	3/2	0+	27	42
$n\Sigma$	2	-1	3/2	1+	10	27
$n\Xi$	2	-2	0	1+	8_{A}	96
$n\Xi$	2	-2	1	1+	$8_{A},10,\overline{10}$	52,66,75
H	2	-2	0	0+	1, 27	$90,\!132$
³ H, ³ He	3	0	1/2	$1/2^{+}$	$\overline{35}$	9
$^{3}_{\Lambda} \text{H}(1/2^{+})$	3	-1	0	$1/2^{+}$	$\overline{35}$	66
$^{3}_{\Lambda} \text{H}(3/2^{+})$	3	-1	0	$3/2^{+}$	$\overline{10}$	30
$^3_{\Lambda}\mathrm{He},^3_{\Lambda}\tilde{\mathrm{H}},nn\Lambda$	3	-1	1	$1/2^{+}$	$27, \overline{35}$	30,45
$\frac{^{3}_{\Sigma} \text{He}}{^{4} \text{He}}$	3	-1	1	$3/2^{+}$	27	21
$\overline{{}^{4}\mathrm{He}}$	4	0	0	0+	$\overline{28}$	1
$^4_{\Lambda}$ He, $^4_{\Lambda}$ H	4	-1	1/2	0+	$\overline{28}$	6
$\frac{{}^{4}_{\Lambda\Lambda} {\rm He}}{\Lambda \Xi^{0} pnn}$	4	-2	1	0+	$27, \overline{28}$	15, 18
$\Lambda \Xi^0 pnn$	5	-3	0	$3/2^{+}$	$\overline{10}+$	1

Hadronic interpolating field

$$\bar{\mathcal{N}}^h = \sum_{k=1}^{M_w} \tilde{W}_h^{(b_1, b_2 \cdots b_A)} \sum_{\mathbf{i}} \epsilon^{i_1, i_2, \cdots, i_A} \bar{B}(b_{i_1}) \bar{B}(b_{i_2}) \cdots \bar{B}(b_{i_A})$$

Quark interpolating field

$$\bar{\mathcal{N}}^h = \sum_{\mathbf{a}} w_h^{a_1, a_2 \cdots a_{n_q}} \bar{q}(a_1) \bar{q}(a_2) \cdots \bar{q}(a_{n_q})$$

Baryon Block

$$\mathcal{B}^{a_1,a_2,a_3}(b,\mathbf{p};x_0) = \sum_{\mathbf{x}} e^{i\mathbf{p}\cdot\mathbf{x}} \sum_{k=1}^{N_{B(b)}} \tilde{w}_b^{(c_1,c_2,c_3),k} \sum_{\mathbf{i}} \epsilon^{i_1,i_2,i_3} S(c_{i_1},\mathbf{x};a_1,x_0) S(c_{i_2},\mathbf{x};a_2,x_0) S(c_{i_3},\mathbf{x};a_3,x_0)$$
Ouark propagator

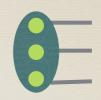
Block construction

$$\mathcal{B}^{a_1,a_2,a_3}(b,\mathbf{p};x_0) = \sum_{\mathbf{x}} e^{i\mathbf{p}\cdot\mathbf{x}} \sum_{k=1}^{N_{B(b)}} \tilde{w}_b^{(c_1,c_2,c_3),k} \sum_{\mathbf{i}} \epsilon^{i_1,i_2,i_3} S(c_{i_1},\mathbf{x};a_1,x_0) S(c_{i_2},\mathbf{x};a_2,x_0) S(c_{i_3},\mathbf{x};a_3,x_0)$$

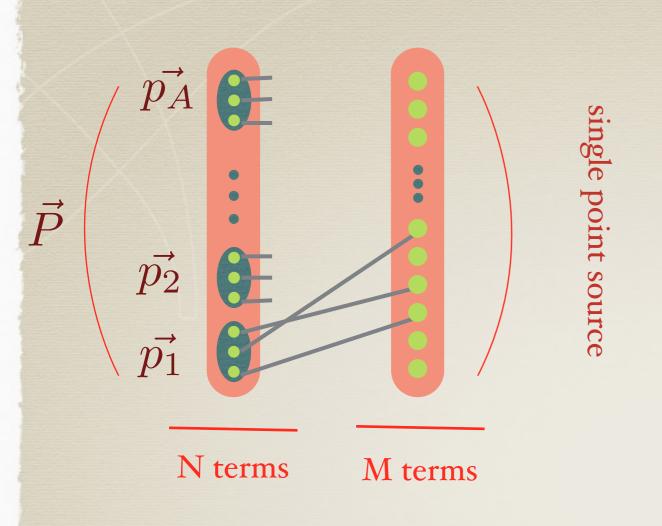
- * This is parallel task
 - * Requires global sums
 - * Requires careful ordering of loops to minimize flops and memory access
 - * Is vectorizable for both CPU and GPU
 - * We break out of QDP++ for performance
 - * QDP++ version exists

Block construction

$$\mathcal{B}^{a_1,a_2,a_3}(b,\mathbf{p};x_0) = \sum_{\mathbf{x}} e^{i\mathbf{p}\cdot\mathbf{x}} \sum_{k=1}^{N_{B(b)}} \tilde{w}_b^{(c_1,c_2,c_3),k} \sum_{\mathbf{i}} \epsilon^{i_1,i_2,i_3} S(c_{i_1},\mathbf{x};a_1,x_0) S(c_{i_2},\mathbf{x};a_2,x_0) S(c_{i_3},\mathbf{x};a_3,x_0)$$



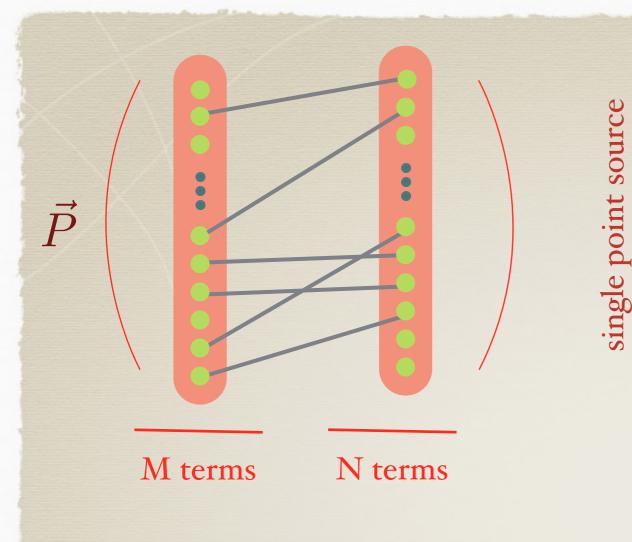
- * Produces large data sets
 - * Data need to be stored in disk
 - * Data need to be accessed fast from disk or memory
 - * Use the MapObject construct from QDP++
 - * The code that uses these data is serial...



Quarks to Hadrons

Cost: $M \cdot N \frac{n_u! n_d! n_s!}{2^{(A-n_{\Sigma^0}-n_{\Lambda})}}$

- * Loop over all source and sink terms
- * Connect each baryon in all possible ways to the source quarks (selecting the indices from the block)
- * 4He cost: 0.8 s per time slice on a single core of a Dual Core AMD Opteron 285 processor



Quarks to Quarks

Naive Cost: $n_u!n_d!n_s! \times NM$

Actual Cost: $n_u^3 n_d^3 n_s^3 \times MN$

- * Loop over all source and sink terms
- * Compute the determinant for each flavor
- * Cost is polynomial in quark number

Quarks to Quarks

$$[\mathcal{N}_{1}^{h}(t)\bar{\mathcal{N}}_{2}^{h}(0)] = \int \mathcal{D}q\mathcal{D}\bar{q} \ e^{-S_{QCD}} \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ \times \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} q(a'_{j_{n_{q}}}) \cdots q(a'_{j_{2}}) q(a'_{j_{1}}) \times \bar{q}(a_{i_{1}}) \bar{q}(a_{i_{2}}) \cdots \bar{q}(a_{i_{n_{q}}}) \\ = e^{-S_{eff}} \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ \times \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} S(a'_{j_{1}};a_{i_{1}}) S(a'_{j_{2}};a_{i_{2}}) \cdots S(a'_{j_{n_{q}}};a_{i_{n_{q}}})$$

Define the matrix:

$$G(j,i)^{(a'_1,a'_2\cdots a'_{n_q});(a_1,a_2\cdots a_{n_q})} = S(a'_j;a_i)$$

Quarks to Quarks

The matrix:

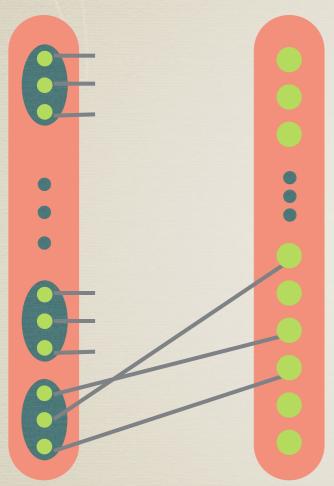
$$G(j,i)^{(a'_1,a'_2\cdots a'_{n_q});(a_1,a_2\cdots a_{n_q})} = S(a'_j;a_i)$$

The Correlation function:

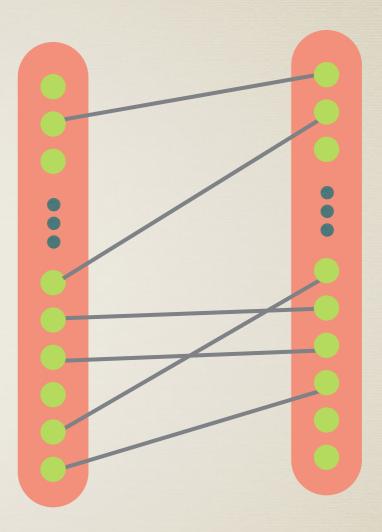
$$\left[\mathcal{N}_{1}^{h}(t)\bar{\mathcal{N}}_{2}^{h}(0)\right] = \sum_{k'=1}^{N_{w}'} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a_{1}',a_{2}'\cdots a_{n_{q}}'),k'} \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \left|G^{(a_{1}',a_{2}'\cdots a_{n_{q}}');(a_{1},a_{2}\cdots a_{n_{q}})}\right|$$

Total momentum projection is implicit in the above

Contraction methods



- * quark to hadronic interpolating fields
 - * Better interpolating fields
 - * Better correlation functions



- * quark to quark interpolating fields
 - * Allow very large number of baryons
 - * Correlators do not overlap with ground state well

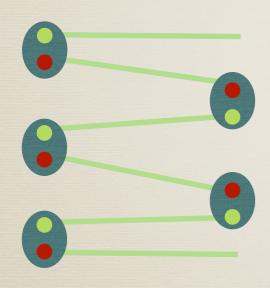
Why are baryons hard

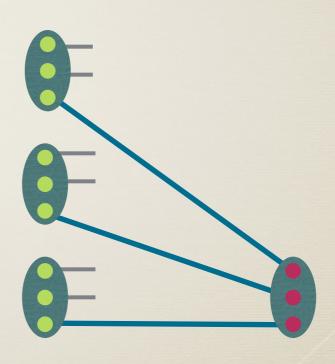
- * We know that multi-meson contractions can be done fast:
 - * Recursion relations for single point source [Detmold-Savage 2007]
 - * Simpler and more efficient methods based on determinant evaluations exits [Shi,Detmold,KO 2012]
- * Do recursion relations exist for baryons?
- * Can we do as well as in the case of mesons?

Recursion relations

Mesons

block:





For baryons a proliferation of indices occur as baryons are added at the source

The tensor contraction engine

- * Contractions no different than contactions of general tensors
 - * For baryon we have 3-index tensors contracted (blocks) with the 3-index tensors (source interpolating fields)

The problem has been solved in a general way in chemistry

Lattice Setup

- * Isotropic Clover Wilson with LW gauge action
 - * Stout smeared (1-level)
 - * Tadpole improved
- * SU(3) symmetric point
 - * Defined using m_{π}/m_{Ω}
- * Lattice spacing 0.145fm
 - * Set using Y spectroscopy
- * Large volumes

```
*24^3 \times 48 \quad 32^3 \times 48 \quad 48^3 \times 64
```

* 3.5fm 4.5fm 7.0fm

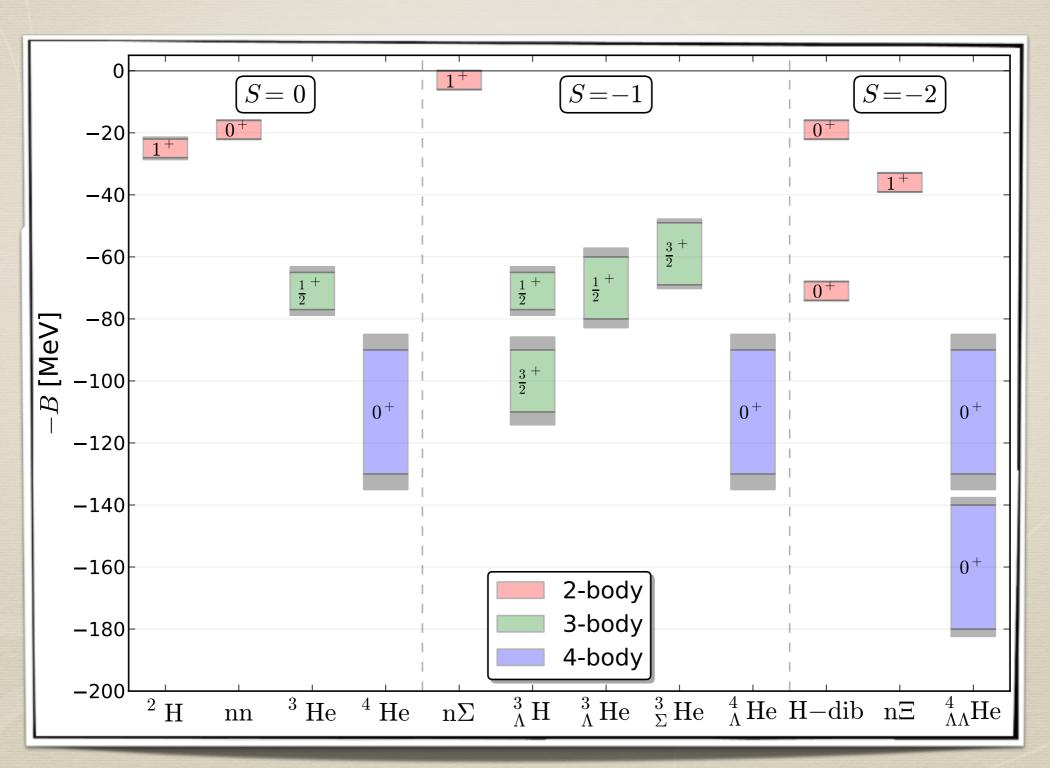
NPLQCD arXiv:1206.5219

Using Quark to Hadron contractions

- * Calculate the spectrum of nuclei and hyper-hypernuclei
 - * Work with A<6
- * Use single point source for quark propagators
- * In certain cases introduce nontrivial spatial wave function using a plane wave basis (p²<5)
- * Use boosted states interpolating fields to check for finite volume effects
- * Hight statistics: 4K, 3K, 1.2K lattices with multiple correlators per lattice
- * Cost of contractions negligible

Nuclear spectrum

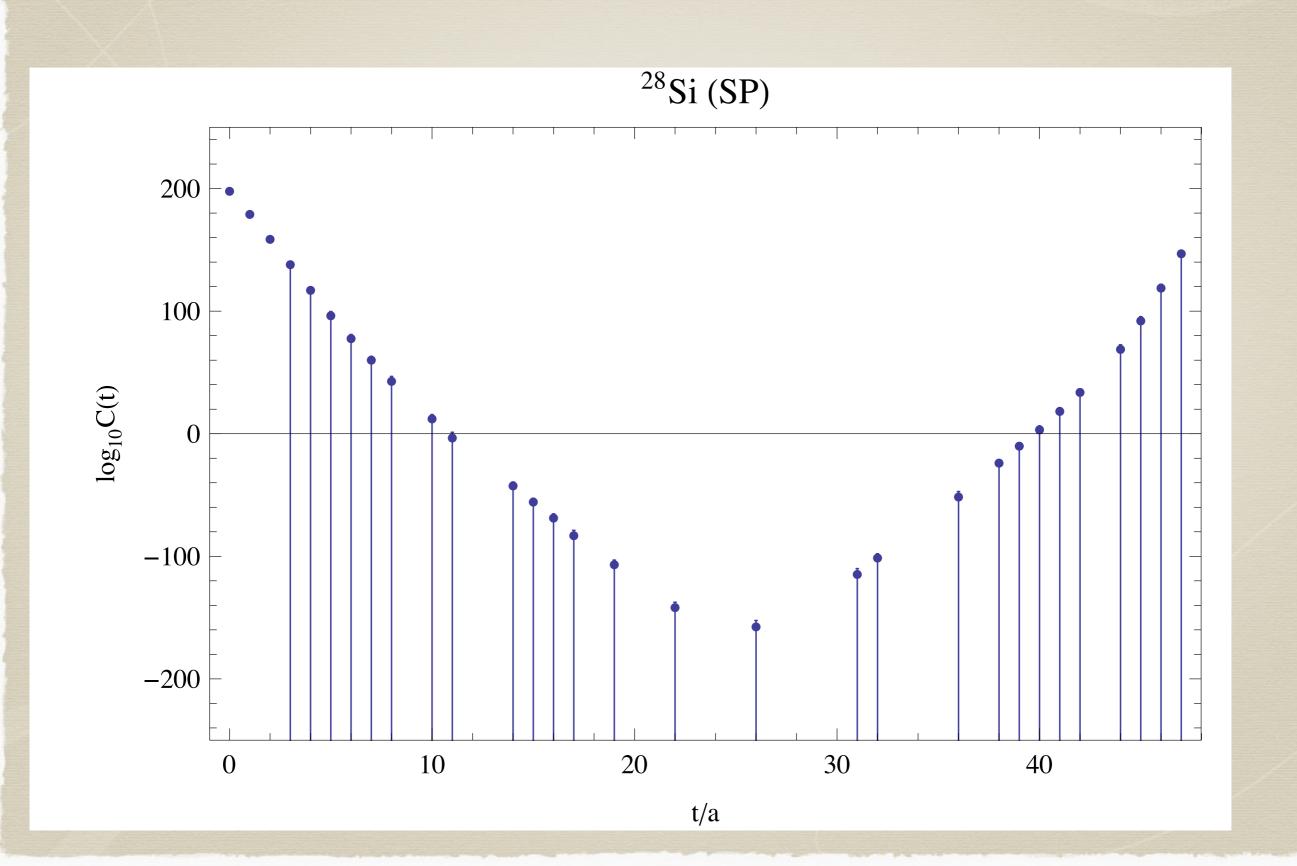
NPLQCD



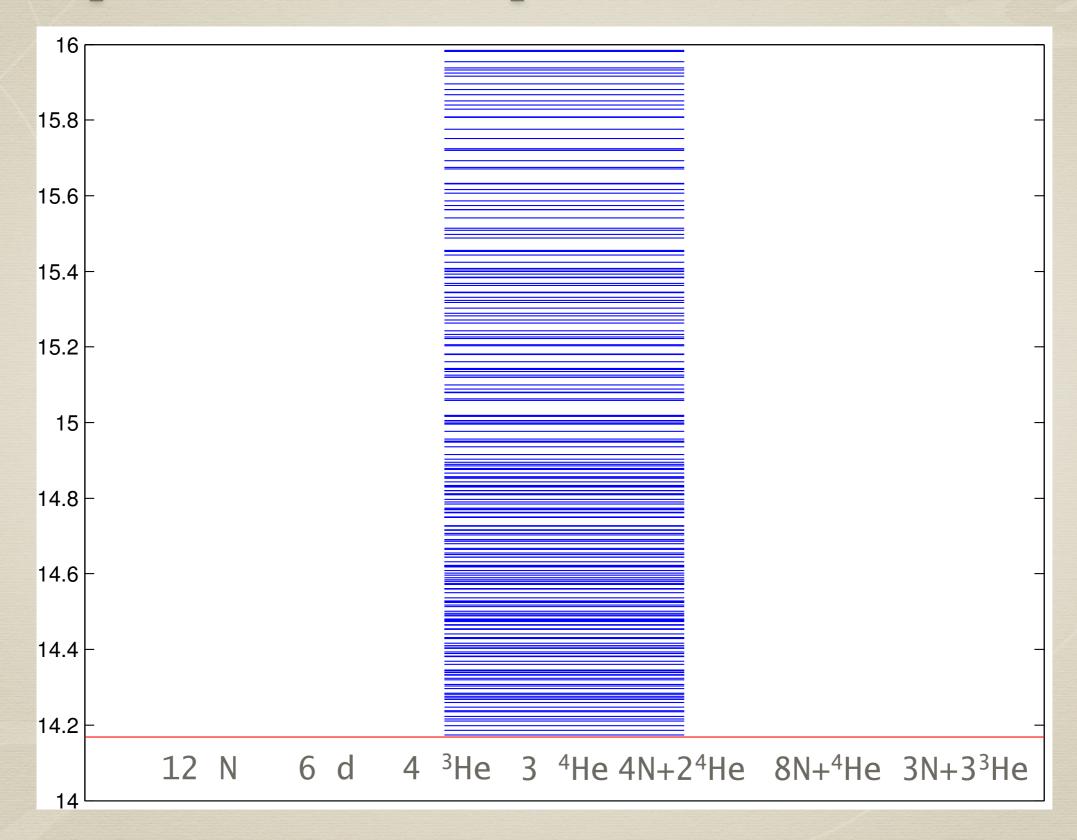
Using Quark to Quark contractions

- * Push to large quark numbers
- * Need to use more than one point for spacial wave function
 - * Pauli exclusion principle ...
- * Low statistics this was just a feasibility demonstration
- * Only one volume: 32³
- * No attempt to extract physics

Correlators



Expected Carbon spectrum in the 32³ box



Multi-meson contractions

Conclusions

- * We have a systematic way of constructing all possible interpolating fields
- * NPLQCD: Presented results for nuclei with A<5 and S>-3
 NPLQCD arXiv:1206.5219
- * Special care needs to be given to the selection of interpolating fields
 - * Minimize number of terms in the interpolating field and optimize the signal
- * We have an algorithm for quark contractions in polynomial time