
2014

Progress Report for Year 2

College of William and Mary
Algorithms and software

Andreas Stathopoulos (PI)
Kostas Orginos (Co-PI)

Lingfei Wu (CS Ph.D. student)
Jesse Laeuchli (CS Ph.D. student)

Arjun Gambhir (Physics Ph.D. student)

1

The SOW points

Summary table of tasks to be performed at the College of William and Mary
Konstantinos Orginos, Andreas Stathopoulos (PI)

Year Task subtopic
1 Update the PRIMME eigenvalue package and provide a Level 3

interface callable from high level LQCD software packages algorithms
2 Implement deflated Monte Carlo trace estimators algorithms
3 Explore variance reducing vector samples algorithms
4 Provide methods and implementations that combine deflation

and variance reducing vectors algorithms
3-5 Integrate the variance reduction mechanisms with e�ective

preconditioners developed by the LQCD community algorithms

1

Main theme Variance Reduction (VR) for Tr(A�1))

• Extended hierarchical probing (SIAM SISC) to arbitrary lattice sizes

• Use of singular values for VR through eigCG

• Accurate solution of singular values with PRIMME

• Continued VR based on extrapolation techniques

[2]

2

Hierarchical Probing for lattices Jesse Laeuchli

k=2

2 3 2 30 1 0 1
0 1 4 52 3 7 8

k=2
k=1

k=4

k=1

1D:
Doubling k splits grid to 2 1D subgrids
Color R-B each with two new colors

2D:
Doubling k splits grid to 4 2D subgrids
(e.g., Reds split to 4 reds and 4 greens)
Color R-B each with two new colors

Algorithm in d-dimensions:
1. Recursively split a lattice ’d

i=1 2ci to 2d sublattices of size ’d
i=1 2ci�1

2. When no further splits possible, Red-Black each sublattice with unique colors
3. Choose unique colors appropriately to guarantee nesting
This only worked for powers of two sized lattices

[3]

3

Hierarchical Probing results from Stefan Meinel

1 10 100
NHadamard

�0.2

�0.1

0.0

0.1

G(u)
A (Q2 = 0) (disconnected, bare)

1 10 100
NHadamard

�0.10

�0.08

�0.06

�0.04

�0.02

0.00

0.02

G(2
3 u� 1

3 d)
M

(Q2 ⇡ 0.11 GeV2) (disconnected)

Error std ⇡ 4, thus speedups of about 16

Code available in Chroma

[4]

4

Extend Hierarchical Probing to arbitrary lattice sizes Jesse Laeuchli

l1 = 6 = 2 ·3
l2 = 6 = 2 ·3
l3 = 2

Consider a d-dimensional lattice with dimension lengths of l1,l2,...ld.
1. Find the common factors (eg. 2, 3 in Figure)
2. Split lattice into sub-lattices. Use common factors to determine which sub-
lattice a point lies in
3. Assign each sub-lattice a color
4. Apply recursively until no more common factors
5. Color final sub-lattice with three colors

[5]

5

How to determine which sub-lattice a node lies in

(5,4,0)
in mixed radix representation
< 1,2 >2,3< 0,2 >2,3< 0 >2

(5,2,0)
in mixed radix representation
< 1,2 >2,3< 0,1 >2,3< 0 >2

(5,0,0)
in mixed radix representation
< 1,2 >2,3< 0,0 >2,3< 0 >2

function subLattices = SplitLattice(latticeNodes, SplitLevel)
for n = 1 : numNodes

for j = 1 : dims
mixedrep(j) = dec2mixed(GetCoordOfLatticeNode(j,n))

subLattices(mixedrep(1)(1 : SplitLevel), ..,mixedrep(d)(1 : SplitLevel)) = latticeNode(n)
% Nodes that have the same 1:SplitLevel digits are in the same sublattice

for j = 1 : numSublattices
AssignColorToLattice(subLattices(j))
SplitLattice(subLattices(j),SplitLevel +1)

[6]

6

Creating Probing Vectors

Let ci be the number of colors needed to color the sublattices of a lattice after i
recursive calls

Then we can create the probing matrix as below

Z̃(1) = Fc(1),

Z̃(i) =
h
Z̃(i�1)⌦Fc(i)(:,1), . . . , Z̃(i�1)⌦Fc(i)(:,c(i))

i

To generate a probing vector (column of Z(i)) only two vectors are needed:

one from Z̃(i�1), i > 1

and one from a Fc(j).

Vectors of Z̃(i�1) are obtained recursively

[7]

7

Creating Probing Vectors

Take the list c(i) containing the number of colors needed per lattice after i splits

Interpert c(i) as a mixed-radix base

For the k-th probing vector, the required vectors of Fc1,Fc2, . . ., are the n digits for
the mixed radix representation of k using this mixed-radix base

F2 =
✓

1 1
1 �1

◆
, F3 =

0

@
1 0 0
1 (�1)4/3 (�1)2/3

1 (�1)2/3 (�1)4/3

1

A (1)

If c = {2,3}, then for k=2 the mixed radix representation of k is < 0,1 >2,3, and
F2(:,1)⌦F3(:,2) produces the required vector

[8]

8

Use of singular values through eigCG for deflation and VR A. Gambhir

0 2 4 6 8 10 12 14
x 105

0

5

10

15

20

25

30

35

40

45
Combined speedup over no deflation no VR with more eigCG vectors

Matvecs

Sp
ee

du
p

s=2
s=3
s=4
s=5
s=6
s=7
s=8
s=9
s=10
s=11
s=12
s=13
s=14
s=15
s=16
s=17
s=18
s=19
s=20

Good speedups with only 7-8 rhs of eigCG

[9]

9

Compute SVD accurately to avoid bias Lingfei Wu

Find k smallest singular triplets of a large, sparse matrix A 2¬m⇥n

Avi = siui, s1 . . . sk

• A Hermitian eigenvalue problem on

– Normal equations matrix C = AT A or C = AAT

– Augmented matrix B =
✓

0 AT

A 0

◆

• Lanczos bidiagonalization method (LBD)

A = PBdQT

Bd = XSY T

Where U = PX and V = QY

[10]

10

Motivation I: difference between methods

• Eigen methods on C

– fast for largest SVs
– slow for smallest SVs
– can only achieve accuracy of O(k(A)kAkemach)

• Eigen methods on B

– slower for largest SVs
– extremely slow for smallest SVs
– can achieve accuracy of O(kAkemach)

• LBD on A

– fast for largest SVs
– similar to C but exhibits irregular convergence
– can achieve accuracy of O(kAkemach)

[11]

11

Motivation II: our goal for an SVD solver

Extremely challenging task for small SVs:

• large sparse matrix) No shift-and-invert

• very slow convergence) restarting and preconditioning

• very few SVD solvers:

– SVDPACK: Lanczos/trace-min methods on B or C for only largest SVs
– PROPACK: LBD for largest SVs. Shift-invert for smallest SVs

) calls for full functionality, highly-optimized SVD solver

PRIMME: PReconditioned Iterative MultiMethod Eigensolver

[12]

12

Motivation III: the impact of restarting

0 1000 2000 3000 4000 5000 6000 7000
10−10

10−8

10−6

10−4

10−2

100

102

Matvecs

||A
T u

 −
 σ

 v
||

pde2961: smallest singular values with restarting

GD+1 on C
GD+1 on B
JDSVD+1−Refined
IRRHLB
||A||*1e−10

[13]

13

primme svds: a two stage strategy

Our solution: a hybrid, two-stage SVD method

• Stage I: works on C to max residual tolerance max
�
siduserkAk,kAk2emach

�

– Must dynamically adjust tolerance in PRIMME to meet user tolerance
• Stage II: works on B to improve the approximations from C until user required

tolerance duserkAk is satisfied
– Inputs from C: accurate shifts and good initial guesses
) Calls for near-optimal method JDQMR in PRIMME

– Irregular convergence of Rayleigh Ritz (RR) on B
) Enhance PRIMME with refined projection method

Refined projection minimizes the residual kBV y� s̃V yk where V search space
for a given user shift s̃

- QR factorization on BV � s̃V only after restart
- one column updating for Q and R during iteration
- computational cost similar with the RR method

[14]

14

primme svds: an example

0 500 1000 1500 2000 2500 3000
10−10

10−5

100

105

Matvecs

||A
T u

 −
 σ

 v
||

A=diag([1:10 1000:100:1e6]), Prec=A+rand(1,10000)*1e4

OAAO
ATA to limit
ATA to eps||A||2
switch to OAAO

[15]

15

Evaluation: Without preconditioning

0

1

2

3

4

5

6 x 104

wang3
lshp3025

jagmesh8
fidap4

dw2048
pde2961

well1850

N
um

be
r o

f M
at

rix
−V

ec
to

rs
3 smallest w/o preconditioning, tol = 1e−8

primme_svds
JDSVD
IRRHLB

primme svds (only first stage) is the fastest method

[16]

16

Evaluation: Without preconditioning

0

2

4

6

8

10

12 x 104

wang3
lshp3025

jagmesh8
fidap4

dw2048
pde2961

well1850

N
um

be
r o

f M
at

rix
−V

ec
to

rs
10 smallest w/o preconditioning, tol = 1e−8

primme_svds
JDSVD
IRRHLB

primme svds (only first stage) is much faster in hard cases

[17]

17

Evaluation: Without preconditioning

0

2

4

6

8 x 104

wang3
lshp3025

jagmesh8
fidap4

dw2048
pde2961

well1850

N
um

be
r o

f M
at

rix
−V

ec
to

rs
3 smallest w/o preconditioning, tol = 1e−14

primme_svds(gd+k)
primme_svds(jdqmr)
JDSVD
IRRHLB

primme svds (two stage) is superior for a few singular triplets

[18]

18

Evaluation: Without preconditioning

0

2

4

6

8

10

12 x 104

wang3
lshp3025

jagmesh8
fidap4

dw2048
pde2961

well1850

N
um

be
r o

f M
at

rix
−V

ec
to

rs
10 smallest w/o preconditioning, tol = 1e−14

primme_svds(gd+k)
primme_svds(jdqmr)
JDSVD
IRRHLB

primme svds (two stage) is much faster in hard cases

[19]

19

