Progress Report for Year 2
 College of William and Mary
 Algorithms and software

Andreas Stathopoulos (PI)
Kostas Orginos (Co-PI)
Lingfei Wu (CS Ph.D. student)
Jesse Laeuchli (CS Ph.D. student)
Arjun Gambhir (Physics Ph.D. student)

The SOW points

Summary table of tasks to be performed at the College of William and Mary Konstantinos Orginos, Andreas Stathopoulos (PI)

Year	Task	subtopic
1	Update the PRIMME eigenvalue package and provide a Level 3 interface callable from high level LQCD software packages	algorithms
2	Implement deflated Monte Carlo trace estimators	algorithms
3	Explore variance reducing vector samples	algorithms
4	Provide methods and implementations that combine deflation and variance reducing vectors	algorithms
$3-5$	Integrate the variance reduction mechanisms with effective preconditioners developed by the LQCD community	algorithms

Main theme Variance Reduction (VR) for $\mathbf{T r}\left(A^{-1}\right)$)

- Extended hierarchical probing (SIAM SISC) to arbitrary lattice sizes
- Use of singular values for VR through eigCG
- Accurate solution of singular values with PRIMME
- Continued VR based on extrapolation techniques

2D:
Doubling k splits grid to 4 2D subgrids (e.g., Reds split to 4 reds and 4 greens)

Color R-B each with two new colors

Algorithm in d-dimensions:

1. Recursively split a lattice $\prod_{i=1}^{d} 2^{c_{i}}$ to 2^{d} sublattices of size $\prod_{i=1}^{d} 2^{c_{i}-1}$
2. When no further splits possible, Red-Black each sublattice with unique colors
3. Choose unique colors appropriately to guarantee nesting

This only worked for powers of two sized lattices

Hierarchical Probing results from Stefan Meinel

Error std ≈ 4, thus speedups of about 16
Code available in Chroma

$$
\begin{aligned}
& l_{1}=6=2 \cdot 3 \\
& l_{2}=6=2 \cdot 3 \\
& l_{3}=2
\end{aligned}
$$

Consider a d-dimensional lattice with dimension lengths of $l_{1}, l_{2}, \ldots l_{d}$.

1. Find the common factors (eg. 2, 3 in Figure)
2. Split lattice into sub-lattices. Use common factors to determine which sublattice a point lies in
3. Assign each sub-lattice a color
4. Apply recursively until no more common factors
5. Color final sub-lattice with three colors

How to determine which sub-lattice a node lies in

$$
(5,4,0)
$$

in mixed radix representation

$$
\begin{equation*}
<1,2>_{2,3}<0,2>_{2,3}<0>_{2} \tag{5,2,0}
\end{equation*}
$$

in mixed radix representation

$$
\begin{equation*}
<1,2>_{2,3}<0,1>_{2,3}<0>_{2} \tag{5,0,0}
\end{equation*}
$$

in mixed radix representation

$$
<1,2>_{2,3}<0,0>_{2,3}<0>_{2}
$$

```
function subLattices = SplitLattice( latticeNodes, SplitLevel)
for }n=1:\mathrm{ : numNodes
    for }j=1:\operatorname{dims
        mixedrep (j) = dec2mixed(GetCoordOfLatticeNode(j,n))
    subLattices(mixedrep(1)(1:SplitLevel),..,mixedrep (d)(1:SplitLevel)) = latticeNode(n)
    % Nodes that have the same 1:SplitLevel digits are in the same sublattice
for j=1 : numSublattices
    AssignColorToLattice(subLattices(j))
    SplitLattice(subLattices(j),SplitLevel + 1)
```


Creating Probing Vectors

Let c_{i} be the number of colors needed to color the sublattices of a lattice after i recursive calls

Then we can create the probing matrix as below

$$
\begin{aligned}
\tilde{Z}^{(1)} & =F_{c(1)}, \\
\tilde{Z}^{(i)} & =\left[\tilde{Z}^{(i-1)} \otimes F_{c(i)}(:, 1), \ldots, \tilde{Z}^{(i-1)} \otimes F_{c(i)}(:, c(i))\right]
\end{aligned}
$$

To generate a probing vector (column of $Z^{(i)}$) only two vectors are needed:
one from $\tilde{Z}^{(i-1)}, i>1$
and one from a $F_{c(j)}$.
Vectors of $\tilde{Z}^{(i-1)}$ are obtained recursively

Creating Probing Vectors

Take the list $c(i)$ containing the number of colors needed per lattice after i splits Interpert $c(i)$ as a mixed-radix base

For the k-th probing vector, the required vectors of $F_{c_{1}}, F_{c_{2}}, \ldots$, are the n digits for the mixed radix representation of k using this mixed-radix base

$$
\mathbf{F}_{2}=\left(\begin{array}{rr}
1 & 1 \tag{1}\\
1 & -1
\end{array}\right), \mathbf{F}_{3}=\left(\begin{array}{ccr}
1 & 0 & 0 \\
1(-1)^{4 / 3}(-1)^{2 / 3} \\
1(-1)^{2 / 3}(-1)^{4 / 3}
\end{array}\right)
$$

If $\boldsymbol{c}=\{2,3\}$, then for $k=2$ the mixed radix representation of k is $<0,1>_{2,3}$, and $F_{2}(:, 1) \otimes F_{3}(:, 2)$ produces the required vector

Good speedups with only 7-8 rhs of eigCG

Find k smallest singular triplets of a large, sparse matrix $A \in \mathfrak{R}^{m \times n}$

$$
A v_{i}=\sigma_{i} u_{i}, \quad \sigma_{1} \leq \ldots \leq \sigma_{k}
$$

- A Hermitian eigenvalue problem on
- Normal equations matrix $C=A^{T} A$ or $C=A A^{T}$
- Augmented matrix $B=\left(\begin{array}{cc}0 & A^{T} \\ A & 0\end{array}\right)$
- Lanczos bidiagonalization method (LBD)

$$
\begin{gathered}
A=P B_{d} Q^{T} \\
B_{d}=X \Sigma Y^{T}
\end{gathered}
$$

Where $U=P X$ and $V=Q Y$

Motivation I: difference between methods

- Eigen methods on C
- fast for largest SVs
- slow for smallest SVs
- can only achieve accuracy of $O\left(\kappa(A)\|A\| \varepsilon_{\text {mach }}\right)$
- Eigen methods on B
- slower for largest SVs
- extremely slow for smallest SVs
- can achieve accuracy of $O\left(\|A\| \varepsilon_{\text {mach }}\right)$
- LBD on A
- fast for largest SVs
- similar to C but exhibits irregular convergence
- can achieve accuracy of $O\left(\|A\| \varepsilon_{\text {mach }}\right)$

Motivation II: our goal for an SVD solver

Extremely challenging task for small SVs:

- large sparse matrix \Rightarrow No shift-and-invert
- very slow convergence \Rightarrow restarting and preconditioning
- very few SVD solvers:
- SVDPACK: Lanczos/trace-min methods on B or C for only largest SVs
- PROPACK: LBD for largest SVs. Shift-invert for smallest SVs
\Rightarrow calls for full functionality, highly-optimized SVD solver

PRIMME: PReconditioned Iterative MultiMethod Eigensolver

Motivation III: the impact of restarting

primme_svds: a two stage strategy

Our solution: a hybrid, two-stage SVD method

- Stage I: works on C to max residual tolerance max $\left(\sigma_{i} \delta_{\text {user }}\|A\|,\|A\|^{2} \varepsilon_{\text {mach }}\right)$
- Must dynamically adjust tolerance in PRIMME to meet user tolerance
- Stage II: works on B to improve the approximations from C until user required tolerance $\delta_{\text {user }}\|A\|$ is satisfied
- Inputs from C : accurate shifts and good initial guesses \Rightarrow Calls for near-optimal method JDQMR in PRIMME
- Irregular convergence of Rayleigh Ritz (RR) on B \Rightarrow Enhance PRIMME with refined projection method

Refined projection minimizes the residual $\|B V y-\tilde{\sigma} V y\|$ where V search space for a given user shift $\tilde{\sigma}$

- QR factorization on $B V-\tilde{\sigma} V$ only after restart
- one column updating for Q and R during iteration
- computational cost similar with the RR method

Evaluation: Without preconditioning

primme_svds (only first stage) is the fastest method

Evaluation: Without preconditioning

primme_svds (only first stage) is much faster in hard cases

Evaluation: Without preconditioning

primme_svds (two stage) is superior for a few singular triplets

Evaluation: Without preconditioning

primme_svds (two stage) is much faster in hard cases

