
Emmanuel CHANG, University of Washington

SciDAC3 Postdoc

d nn 3He 4He nS
L
3 H L

3 He S
3He L

4 He H-dib nX
LL

4 He

1+
0+

1
2

+

0+

1+

1
2

+

3
2

+

1
2

+

3
2

+

0+

0+

0+

1+

0+

0+

s=0 s=-1 s=-2

2-Body 3-Body 4-Body

-160

-140

-120

-100

-80

-60

-40

-20

0

D
E

HM
eV

L



1. Disk space: too much or too little?

2. XML, SDB output files from Chroma.

3. Multigrid.

4. Alternative build procedure for USQCD modules.



Production: Running out of disk space?

Look for a simple solution to a scalability issue

What does a typical job look like in our case?

Sink contraxion

Source contraxion

Propagators

Regime A

(parallel)

Regime B

(serial)

"d" sources

Each job has groups of nodes working independently (rectangles) and

cooperatively (arrows) at different stages and in different regimes.

Sink contractions produce qqq blocks as intermediate result, stored on disk,

which are consumed by source contractions.



It is a little more complicated in practice. The arrows for the N-body

contractions are of unequal length depending on the number of hadrons,

number of momentum projections, number of distinct correlators of interest

and complexity in the contractions.

One body

Two body

Three body

Four body

Five body

Independent streams of calculation running on cpu

cores of a single node after balancing workload
Seperate dependent jobs

In the simplest case, one implements the second stage (Regime B) by

submitting dependent jobs from within stage one (Regime A).

For example, letting all cores on a node doing just 3-body contractions with

each working on a different source.



Alternatively, each cpu core can work on the 1, 2, 3, 4 and 5-body contractions,

in turn, for a given source. Suppose 16384 cpu cores are allocated for your job,

you would expect to need at least 68 TB of scratch disk space.

Performing 1, 2, 3, 4 and 5 body contractions in sequence on a single cpu core.

Using dependent jobs to maximize node usage doesn’t solve the problem either.

If temporary disk space limited, simple solutions are to reduce wall clock time

and/or reduce job size.

That is sort of like not managing to get on a metro in Paris during rush hours.

You’ll have to wait for the next train and hope that it is not full again.

A job does not get to run every time the scheduler checks what to run next.

For a well managed job queue, on average it’ll be fine but . . . .



Dependent jobs

With dependent jobs, there is an extra complication.

Typical job sizes:

Wall clock limit Site Cores per simultaneous
(hours) parallel task tasks per job

72 MareNostrum III 64 200
36 NERSC 384 50
24 J-Lab 128 16

At J-Lab, even with smaller job sizes, we permanently require over 100 TB of

scratch space. Indeed, on a number of occasions those data get purged as

pressure on that space increases, before the dependent jobs can start in a

timely fashion to consume it.

This complicates the management of the production. Requesting for extra

scratch space also requires returning computing time in exchange.



Key to the solution

One body

Two body

Three body

Four body

Five body

Independent streams of calculation running on cpu

cores of a single node after balancing workload
Seperate dependent jobs

By shuffling and rescheduling all the N-body contractions with N = 1 · · · 5. We

produce a regular pattern which we can fit into the workflow, presented on the

first slide, consisting of one single job without dependents.

We no longer need to wait for multiple sources to complete the first stage of

the calculation (qqq blocks) before we start the second stage.



With more coordination between the part A & B, you can further reduce

the temporary disk space requirement by running streams of source

contractions along side the original workflow.

Sink contraxion

Source contraxion

Propagators

Regime A

(parallel)

Regime B

(serial)

"d" sources
Source contraxion

Source contraxion

As a interim solution, this is simple and effective. A more direct coupling

of the two regimes without going through the disks is the obvious next

step. The splitting at the boundary between sink/source contractions is

also a choice and other possibilities exist.



Handling output:
Too big data or not too big data or simply too many files?

Once results from your simulations arrive on your laptop, the first thing is to

check if any data is missing, list what is completed, plan the next run, . . . .

. . . which you can do by creating some tables

Check completed trajectories for a given correlator, e.g. HyMag5:

Check completed ensembles:



For each table, you can formulate a question. You can ask the oracle questions
about your data set and it will return the results in a table.

By giving constraints and conditions the answers should satisfy, the oracle will

find them if they exist.

I Whatever form the data is in, you have to give a prescription to retrieve a
specific piece of information.

I Usually the piece of information we seek, is stored as a consequetive bytes
of data (1-2K bytes).

However the way in which these simple pieces of informations are held together

can be quite arbitray; some facilitate access to these pieces of data, some

obscure their presence by drowning them in noise.



Our data come in two forms:

format category classification
XML Hadron spectrum TEXT Mostly unstructured, closely mirror

the way the code is structured

SDB Multi baryon cor-
relators

BINARY J-Lab in house database

SDB stores key-value pairs, for example, key could be the concatenation of
quantum numbers, momentum projection, . . . of a particular correlator.

Multiple SDBs can be merged together directly. However individual correlators

(1-2K) can also be extracted into seperate files.

Hadron spectrum data in XML have always been extracted into individual files

(∼ 400 correlators). These files basically work like key-value pairs. To get a

particular correlator, one has to write out all of them to disk.



1. Each correlator ∼ 1 - 2K bytes.

2. A typical set of measurements has 200,000 - 500,000 sources.

3. Multiply and you get 80 - 200 millions of files easily for 4 - 10 TB of data.

To give an idea, what 100 million files are like:

site inode (millions) disk space
Hyak (UW) 210 130 TB bkrs
MN3 (BCN) 268 1.6 PB projects, scratch

J-Lab 878 1.16 PB lustre
NERSC 500 3.54 PB global scratch

My Ubuntu 56 770 GB

Having to deal with large number of small files is a problem. For precisely this
reason, the correlator data are put inside a big file. Kraken and NERSC lesson.

Organizing all these correlators inside a single file but without the tools to
adequately describe them limits the usefulness of these files.

Key-value pairs are simply not enough. Besides, people do not necessarily

follow the same convention for how the key should be constructed from say a

given set of quantum numbers, . . . .



1. C/C++ program was written to convert SDB to SQLite3 databases using
CppDB (http://cppcms.com/sql/cppdb/)

2. PERL was used to convert XML hadron spectrum files to SQLite3
databases.

3. A new stripper, in PERL, following exactly the convention used by the
ADAT hadron spectrum stripper, was also written.

4. For current runs, the new recommended procedure is to immediately
convert XML to YAML and compressed with XZ. The new stripper can
read the compressed file directly and the saving in disk space is ∼ 90%.

XML PERL YAML

6s

1s

1s

23s or 8s

if using XML::Parser

XZ Compressed XML, YAML ~ 2.1 − 2.3 MB (17s)

(20MB)(22MB)



Multigrid (MG)
1. New and cleaner Chroma interface to James Osborn’s QDP/C and MG

code (dated July 2012).
2. Cleaned up/refactored Saul D. Cohen’s MG driver code (dated July 2012).
3. Added ability to create multiple multigrid from Chroma.

4. This is used in our 323 × 96 isotropic production on Mare Nostrum III in
Barcelona.

I also compared MG with mixed precision BiCG-Stab for PACS-CS lattices at
several light quark masses and one of NPLQCD’s isotropic lattices at a pion
mass of ∼ 430 MeV.



As very limited user support was provided for multigrid, and the
configure/Makefile for a complete Chroma integration was not yet available, it
was necessary to

1. identify modules required to compile multigrid,

2. identify the dependecies between the required modules,

3. identify the correct preprocessor defines,

4. fixing some header files

In the process,

1. I understood why both -geom and -qmp-geom were necessary in order to
set correctly the geometries for both Chroma and QDP/C+MG. This was
necessary due to the different ways in which QDP/C and Chroma/QMP
initialize and split the comunicators. This was fixed so that only
-qmp-geom is needed. This makes more sense to me. The problem with
inconsistent geometries in Chroma/QMP and QDP/C+MG initially
caused some confusion and delays.

2. I optimized the compilation of QLA and QOP/C. Both generated
functions with different combinations of precision and colours using PERL
scripts. As the number of files generated is significant, with just a few
functions per file, the large number of small files become a problem for
Make to handle.



The way to proceed is very much like what I described in the parallelization of
the source contractions. However here there’s one difference. The preprocessor
defines for different combinations of precision and colours are different. So you
cannot mix them directly.

To get around this, you break each group into small enough chunks. You
employ a single make file so that Make can schedule the compilation more
efficiently. This is implemented using Makepp.

Finally, the use of a single make file is extended to all the modules required for
building MG with Chroma. Again, implemented using Makepp.

I removed most of the configures as much of that describes dependencies
between modules inside the USQCD ecosystem and can be calculated. It is
really just a matter of convention where you install a module.



Life isn’t just about inverters.

PS:
Mathematica reads HDF5 that it writes. That’s all.
Petition Wolfram to improve its HDF5 support.


