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Multigrid Solvers Scale 

§  Require weak scaling – constant solution time as problem size grows in 
proportion to the number of processors 

§  Multigrid solvers succeed because they are O(N) 

Number of Processors (Problem Size) 
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Multigrid-CG 
scalable 
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Multigrid for Lattice QCD  

§  Geometric Multigrid not applicable to Lattice QCD 
 
gauge symmetry  à covariant derivative 

   à nearly random gauge links 
 
•  the system is complex and indefinite 
•  the system can be extremely ill-conditioned 
•  the near-null space is unknown and oscillatory 
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§  Algebraic Multigrid + Adaptive Smooth Aggregation 
•  defines restriction strictly in terms of the matrix 

 
 
 
 
 

•  discovers the near-null space dynamically & adapts 
- difficult modes ~ near-null modes 
- use error vectors to redefine restriction 
- repeat until all near-null modes are captured 
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Multigrid for Lattice QCD  The role of multigrid algorithms for LQCD Richard C. Brower

One may view this splitting as a generalization of red/black or Schwartz block decompositions
and the resultant preconditioning matrix as akin to using the Schur compliment. This splitting is
achieved by a non-square prolongation matrix P which maps the coarse space into the near null
space S,

P : V̂ ⇥ S , (2.3)

as illustrated in Fig 1. Then the multigrid cycle constructs a coarse matrix, D̂ = RDP, as the product

Figure 1: The non-square prolongation matrix P with ker(P) = 0 defines a one to one map P : V̂ = S from
the coarse vector space V̂ into the near null subspace S of the fine vector space: V = S+S⇧. The fundamental
theorem of linear algebra gives S = span(P), V̂ = span(P†) and rank(P) = rank(P†) = dim(S).

of the prolongator (P) to the near null space on the fine lattice, the fine operator (D) and a restriction
operator (R) back to the coarse lattice. We use the Galerkin form by setting R = P†.

To understand intuitively how one constructs this mapping, consider multigrid for the classic
example of a d-dimensional discretized Laplace operator. The near null eigenvectors are literally
smooth, dominated by low Fourier components. An obvious interpolation consists of piecewise
constant functions on regular blocks to define the coarse degrees of freedom. For example on each
4d block labeled by x̂ we many introduce the prolongator (or interpolating matrix),

Pxx̂ =
⇥x̂(x)

2d , ⇥x̂(x) =

(
1 x ⌅ x̂ block
0 x ⌅/ x̂ block

, (2.4)

where the blocking “theta function” , ⇥x̂(x), is 1 (true) for x inside and 0 (false) outside the block
x̂. The normalization is chosen so that [P†P]x̂ŷ = �x̂,ŷ. The span of this space consists of all linear
combinations of these basis vectors: ⇤x = Âx̂ cx̂Pxx̂. Solving the coarse problem exactly for the
error would reduce the residue to r⇤ = Pr = (1�DP 1

P†DP P†)r, where

P = 1�DP
1

P†DP
P† , P2 = P (2.5)

is the Petrov-Galerkin (oblique) projection operator with eigenvalues 0 and 1. This projector com-
pletely removes the near null space from the residue: PP = 0 but the transverse space S⇧ of rough
modes are left intact. To damp them out a smoother on the fine lattice must also be applied.

Fortunately this basic construction carriers over to the non-trivial example of lattice QCD.
However to construct a parameterization for the coarse lattice Dirac operator, a piecewise constant

3
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The Multigrid 
V-cycle 

Multigrid Basics 

smooth 

restrict 

prolong 

coarse solve 
deal with low freq modes on coarse grids 

à fewer nodes, lighter-weight structures 

à fewer iterations V-cycle is one of several options 

residual: ri = b - A xi 

If you have to move a mountain with a shovel, 

use a BIG shovel 

reduce high freq error 

switch to coarse grid 

return to fine grid 
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Joining Forces: hypre Multigrid and Lattice QCD 

§  hypre is an advanced and growing suite of parallel 
linear solvers and preconditioners scalable on 
massively parallel architectures, including Sequoia 

§  developed at CASC@LLNL by Rob Falgout et al. 

§  benefits from extensive work on Algebraic Multigrid 

§  a vital component of a broad array of application codes 
both here at LLNL and worldwide 
(downloaded 10,000 times in 70 countries) 
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Joining Forces: hypre Multigrid and Lattice QCD 

§  increase impact of hypre 

§  allow “lattice” direct access to its advanced multigrid 
algorithms, solve the setup cost problem 

§  create channel for co-development – new variants for 
Lattice QCD may well serve the community at large 
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Project Outline 

§  Year 1:  
•  expand hypre to handle complex numbers. 
•  expand hypre to handle arbitrary, user-defined 

dimension. 
§  Year 2: 

•  implement the Wilson Dirac operator in hypre 
•  solve Wilson with hypre’s multigrid methods 
•  compare to other USQCD codes 

§  Year 3: 
•  implement Domain Wall and Staggered fermion 

operators in hypre. 

DONE 

DONE 

DONE 
? 



10 
Lawrence Livermore National Laboratory 

Wilson Dslash solves with hypre 

§  hypre’s pre-existing AMG methods (BoomerAMG, 
PFMG, …) are ineffective when applied to LQFT 

§  USQCD method, Adaptive Smoothed Aggregation, is 
basically incompatible with structure of hypre 

§  Need to develop and implement a new algorithm – 
compatible with hypre and effective for LQFT 

§  Strategy: Extend PFMG, which is already in hypre, in 
direction of Bootstrap AMG, which is (probably) 
effective for LQFT 
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Bootstrap AMG 

BOOTSTRAP ALGEBRAIC MULTIGRID FOR THE 2D WILSON
DIRAC SYSTEM

J. BRANNICK
‡

AND K. KAHL
§

Key words. QCD, Wilson discretization, bootstrap AMG, Kaczmarz relaxation, odd-even

reduction, multigrid eigensolver.

AMS subject classification. 65F10, 65N55, 65F30

Abstract. We develop an algebraic multigrid method for solving the non-Hermitian Wilson

discretization of the 2-dimensional Dirac equation. The proposed approach uses a bootstrap setup

algorithm based on a multigrid eigensolver. It computes test vectors which define the least squares

interpolation operators by working mainly on coarse grids, leading to an e⇥cient and integrated self

learning process for defining algebraic multigrid interpolation. The algorithm is motivated by the

⇤5-symmetry of the Dirac equation, which carries over to the Wilson discretization. This discrete

⇤5-symmetry is used to reduce a general Petrov Galerkin bootstrap setup algorithm to a Galerkin

method for the Hermitian and indefinite formulation of the Wilson matrix. Kaczmarz relaxation is

used as the multigrid smoothing scheme in both the setup and solve phases of the resulting Galerkin

algorithm. The overall method is applied to the odd-even reduced Wilson matrix, which also fulfills

the discrete ⇤5-symmetry. Extensive numerical results are presented to motivate the design and

demonstrate the e�ectiveness of the proposed approach.

1. Introduction. Lattice quantum chromodynamics (QCD) is a numerical ap-
proach for computing observables of quarks, elementary particles, in cases where per-
turbative methods diverge, see [19] for an overview. Simulations of quarks require
approximating the QCD path integral using Monte Carlo methods, which involves
generating discrete realizations of the gauge fields and, then, computing observables
by averaging over these ensembles of configurations. In both of these stages of a lattice
QCD calculation, the discretized Dirac equation

D� = b (1.1)

needs to be solved for numerous realizations of the gauge fields and, then, multiple
right hand sides for each configuration. In this paper, we consider Wilson’s dis-
cretization [37] of the Dirac equation so that D = D0 + mI, where D0 denotes the
non-Hermitian mass-less Wilson matrix and the shift m is related to the mass of the
quarks. We refer to D as simply the Wilson matrix implying that a particular shift
m is associated with it.

All existing lattice QCD algorithms su⇧er from what is referred to as critical slow-
ing down, which is a direct result of the structure of the Wilson matrix. Specifically,
as the shift, m, approaches physically relevant values the minimal eigenvalues of D
approach zero linearly, which leads to a highly ill-conditioned system of equations and
the stalling convergence of standard Krylov subspace methods when applied to this
system. As a result, the overall simulation becomes too costly at light masses and
up until now this has led to the use of non-physical heavy quark masses in lattice

‡
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(brannick@psu.edu). Brannick’s work was supported by the National Science Foundation under
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§
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Forschungsgemeinschaft through the Collaborative Research Centre SFB-TR 55 “Hadron Physics

from Lattice QCD”
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“Bootstrap PFMG” 

§  Geometric coarsening: 
•  Brannick-Kahl: Red/Black Precon + Full Coarsening 
•  Red/Black incompatible 
•  Full Coarsening difficult 
•  Use Semi coarsening as in PFMG 

§  Kaczmarz smoothing 
•  sequential, doesn’t scale; replace with smoother in hypre, e.g., Chebyshev 

polynomial; requires development 

§  Tune interpolation coefficients to optimize reproduction of 
[initial] test vectors 

§  Use [initial] hierarchy to compute eigenvectors (or singular 
vectors); augment set of test vectors; repeat 
 

DONE 
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Project Outline 

§  Year 1:  
•  expand hypre to handle complex numbers. 
•  expand hypre to handle arbitrary, user-defined dimension. 

§  Year 2: 
•  implement the Wilson Dirac operator in hypre 
•  solve Wilson with hypre’s multigrid methods 

•  compare to other USQCD codes 

§  Year 3: 
•  Domain Wall and Staggered 

DONE 
DONE 

DONE 

need new algorithm,  
underway, 

potentially on schedule 

To do ASAP 

input is done, sufficiently general 
B-PFMG may be effective 

[with some tuning] 


