Jefferson Lab
Information Resources
Jefferson Lab Home Search Contact JLab

    Electron Scattering from Nuclei

    The description of nuclei at distances on the order of a fermi or less poses a difficult challenge for theoretical physicists. At larger distances the traditional description of the nucleus as a collection of interacting nucleons has been quite successful and substantial progress has been made in recent years in describing few-nucleon systems using this approach. However, it has been known for several decades that the nucleons themselves are composite objects which are believed to be described by Quantum Chromodynamics (QCD). QCD is a complicated nonlinear strongly interacting field theory which can only be used for calculation in special circumstances. Due to the property of asymptotic freedom exhibited by QCD, perturbative calculations of QCD can be made at large momentum transfers and have achieved substantial success for a variety of processes. Understanding the transition from traditional pictures of nuclei to QCD is a substantial challenge. As an example of this problem, this paper describes recent calculations of elastic electron-deuteron scattering based on a relativistic extension of the traditional nuclear physics approach. The results of this work are compared to new data obtained at the Thomas Jefferson National Laboratory and to the predictions of perturbative QCD.

    Authors: J. Wallace Van Orden



    maintained by the Publications Manager