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Effective field theory for the small-x evolution
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The small-x behavior of structure functions in the satu-
ration region is determined by the non-linear generalization
of the BFKL equation. I suggest the effective field theory
for the small-x evolution which solves formally this equation.
The result is the 2 + 1 functional integral for the structure
functions at small x.

PACS numbers: 12.38.Bx, 11.10.Jj, 11.55.Jy

The great success of pQCD in describing the Q2 be-
havior of structure functions of deep inelastic scattering
(DIS) can be traced back to the fact that the Q2 depen-
dence is governed by DGLAP evolution equations which
have two remarkable properties: they are linear equa-
tions, and the evolution at high Q2 is purely perturbative
(the non-perturbative physics enters the game only when
we lower the normalization point µ2 down to the typical
hadronic scale ∼ 1GeV). The higher-order terms of per-
turbative expansion for both the coefficient functions and
the anomalous dimensions of the light-cone operators lie
in the same framework of linear evolution and lead to the
corrections ∼ αs, α2

s etc.
The situation for the small-x DIS is more complicated.

In the leading logarithmic approximation (LLA) the
small-x asymptotics is described by the BFKL pomeron
[1]. It is possible to reformulate the BFKL equation as
an evolution equation where the relevant operators are
Wilson lines - infinite gauge links [2]. 1 The evolution
of the two-Wilson-line operator (“color dipole”) with re-
spect to the slope of Wilson lines reproduces the BFKL
equation.

Unfortunately, the theoretical status of the BFKL evo-
lution is not as clear as the DGLAP one (for the review,
see Refs. [3]). The biggest problem is the lack of uni-
tarity: the power behavior of the BFKL cross section
violates the Froissart bound and therefore, in order get
the true asymptotics at small x, we must go beyond the
LLA. At this step, we face a new problem. In the DGLAP
case, the sub-leading logaritms follow the same general
pattern of linear DGLAP equation and the problem is

1 At high energies the particles move so fast that their trajec-
tories can be approximated by straight lines collinear to their
velocities. The proper degrees of freedom for the fast particles
moving along the straight lines are the (infinite) gauge factors
ordered along the straight line [4].

purely technical: calculating the loop corrections to the
kernels. In the case of small-x evolution there are also
αs corrections to the BFKL kernel [5], but, on the top of
that, there are the unitarity corrections which lie outside
the framework of the BFKL equation. At small αs and x,
these corrections seem to dominate over the NLO BFKL
ones [6].

Another problem with the BFKL evolution is infrared
instability. We can safely apply pQCD to the small-xDIS
if the characteristic transverse momenta of the gluons
k⊥ in the gluon ladder are large. For the the first few
diagrams, one can check by explicit calculation that the
characteristic k2

⊥ are ∼ Q2. However, as x decreases, it
turns out that the characteristic transverse momenta in
the middle of the gluon ladder drift to ΛQCD making the
application of pQCD questionable.

Recently, an idea has emerged that these two difficul-
ties may cancel each other out. Consider the DIS from
the heavy nuclei where the large density sets the satura-
tion scale Qs [7–10] which effectively cuts the integration
over k⊥ even at relatively low energy. As we shall see be-
low, the small-x evolution in this case is non-linear which
leads to the growth of the saturation scale with energy,
see the discussion in Refs. [7–12]. It is natural to assume
that even for the DIS from the nucleon where there is no
saturation at low energies, the saturation scale at suffi-
ciently small x may be generated by the non-linear evo-
lution itself. Indeed, the parton recombination described
by the non-linear evolution must balance at some point
the effects of parton splitting so the partons will reach
the state of the saturation. In this high-density regime
the coupling constant is small but the characteristic fields
are large, making a perfect case for the application of the
semiclassical QCD methods [9,13,14]. The high-density
regime of QCD can serve as a bridge between the domain
of pQCD and the “real” non-perturbative QCD regime
governed by the physics of confinement.

In this paper I suggest the effective field theory which
describes the small-x evolution in the saturation region.
First, let me remind the OPE for high-energy amplitudes
derived in [2]. Consider the amplitude of forward γ∗γ∗-

scattering at small xB = Q2

s
. In the target frame, the

virtual photon splits into qq̄ pair which approaches the
nucleon at high speed. Due to the high speed the classi-
cal trajectories of the quarks are straight lines collinear
to the momentum of the incoming photon q. The corre-
sponding operator expansion switched between nucleon
states has the form [2]:
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∫
d4xeiq·x〈p|T{jµ(x)jν(0)}|p〉

=

∫
d2x⊥Iµν(x⊥)〈p|Tr{Û (x⊥)Û †(0)}|p〉, (1)

where Iµν(x⊥) is a certain numerical function of the
transverse separation of quarks x⊥ and virtuality of
the photon Q2 = −q2. The relevant operators U (U †)
are gauge factors ordered along the classical trajectories
which are almost light-like lines stretching from minus to
plus infinity:

U (z⊥) = P exp

(
i

∫ ∞

−∞
dueµAµ(ue+ z⊥)

)
(2)

where e is collinear to q and z⊥ is the transverse position
of the Wilson line.

It turns out that the small-x behavior of structure
functions is governed by the evolution of these opera-
tors with respect to the deviation of the Wilson lines
from the light cone; this deviation serves as a kind of
“renormalization point” for these operators. At infinite
energy, the vector e is light-like and the corresponding
matrix elements of the operators (2) have a logarithmic
divergence in longitudinal momenta. To regularize it ,
we consider operators corresponding to large but finite

velocity and take eζ = e1 + ζe2 where e1 = (q − q2

2pqp)

and e2 = p are the lightlike vectors close to the directions
of the colliding particles. Now, instead of studying the
energy-dependence of the physical amplitude we must in-
vestigate the dependence of the operators (2) on the slope
ζ. Large energies mean small ζ and we can sum up log-
arithms of ζ instead of logarithms of s (At present, we
can do it only in the leading logarithmic approximation
(LLA) αs � 1, αs ln s

m2 ∼ 1). The equation governing

the dependense of U on ζ has the form [2] 2

ζ
d

dζ
U(x⊥, y⊥) (3)

=
αsNc
2π2

∫
dz⊥

(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2

{
U(x⊥, z⊥)

+ U(z⊥, y⊥) − U(x⊥, y⊥) + U(x⊥, z⊥)U(z⊥, y⊥)
}

where U(x⊥, y⊥) ≡ 1
Nc

Tr{U (x⊥)U †(y⊥)} − 1. The first

three linear terms in braces in the r.h.s. of eq. (3))
reproduces the BFKL pomeron [1] while the quadratic

2The first non-linear equation for parton densities is known
since 1983 as the GLR equation (it was conjectured in Ref. [7]
and proved in the double-log limit in Ref. [8]). The full LLA
x result was first derived in Ref. [2] by the above method.
After that, it was reobtained in Ref. [11] in the framework
of the dipole model [15,16], in Ref. [17] by direct summation
of relevant Feynman diagrams, and in Refs. [19,20] by the
semiclassical methods.
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FIG. 1. BFKL evolution in terms of Wilson-line operators
(denoted by dotted lines).

term will give us the three-pomeron vertex [18]. The
solution of the linearized evolution equation is especially
simple in the case of zero momentum transfer (e.g. for
the total cross section of small-x DIS):

〈p|Uζ=xB (x⊥, 0)|p〉 =

∫
dν

2π2
(x2
⊥)−

1
2 +iν (4)

( s

m2

)ω(ν)
∫
dz⊥(z2

⊥)−
1
2−iν〈p|Uζ0(z⊥, 0)|p〉

where ω(ν) = 2Nc
αs
π [−Reψ( 1

2 + iν) − C] and m2 is ei-

ther Q2 or m2
N (in LLA, we cannot distinquish between

αs ln s
Q2 and αs ln s

m2
N

). The sketch of linear evolution is

presented in Fig. 1. The starting point of the evolution
is the slope collinear to the momentum of the incoming
photon q (ζ = xB) and it is convenient to stop the evo-

lution at a certain intermediate point ζ0 = Q2

s0
where

s0 � m2
N ,

αs
π ln s0

m2
N

� 1 . The first of these conditions

means that s0 is still high from the viewpoint of low-
energy nucleon physics while the second condition means
that s0 is sufficiently small from the viewpoint of high-
energy physics (so one can neglect the BFKL logs). The
matrix element of the double-Wilson-line operator at this
slope is a phenomenological input for the BFKL evolu-
tion (just as the structure function at lowQ2 serves as the
input for ordinary DGLAP evolution). At large s the in-
tegral over ν is dominated by the vicinity of ν = 0 which

gives the familiar BFKL asymptotics σtot ' x−12αsπ ln 2

B .
Unlike the linear evolution, the general picture is very

complicated since the number of operators U and U † in-
creases after each evolution. At the time being, it is not
known how to solve the non-linear evolution equation in
an explicit form. It is possible, however, to write down
the solution of the non-linear equation (3) in the form of
a functional integral over the double set of the variables,
ςi=1,2(z⊥, η) = taςai=1,2(z⊥, η) belonging to the Lie alge-
bra of the SU(3) color group and Ωi=1,2(z⊥, η) belonging
to the group itself:

UηA(x⊥) ⊗ U †ηA(y⊥) = (5)
∫ π1,2(ηA)=0

Ω1,2(η0)=1

Dς1(z, η)Dς2(z, η)DΩ1(z, η)DΩ2(z, η)

Ω†1(x⊥, ηA)Uη0
x Ω2(x⊥, ηA) ⊗ Ω†2(y⊥, ηA)U †η0

y Ω1(y⊥, ηA)

exp

{∫ ηA

η0

dη

∫
d2z
[1

g

∑

i=1,2

ςai (z, η)~∂2
(

Ω†i (z, η)Ω̇i(z, η)
)a

2



− 1

4π
ςa1 (z, η)ςb2(z, η)~∂2

(
Ω†1(z, η)U η0

z Ω2(z, η)
)ab]

}

where Ω̇ ≡ ∂
∂η

Ω and
(
Ω†Ω̇

)a ≡ 2Tr{taΩ†Ω̇}. Going to

the the variables π = ~∂2
⊥ς we see that Eq. (5) is a phase-

space functional integral for the non-local Hamiltonian

Ĥ(π1, π2,Ω1,Ω2) = (6)∫
dx⊥dy⊥π

a
1(x⊥)

((
x⊥
∣∣ 1

~p2
⊥

[
~∂2
⊥
(
Ω†1Ω2

)ab] 1

~p2
⊥

∣∣y⊥
))
πb2(y⊥)

where
∣∣x
))

is an eigenstate of the coordinate operator nor-

malized according to
((
x
∣∣y
))

= δ(2)(x − y), see e.g Ref.
[21]. The rapidity η serves as a Euclidean “time” for this
evolution.

We shall demonstrate that the perturbative expansion
of the functional integral (5) reproduces the evolution of
the color dipole U (x⊥)⊗ U †(y⊥) in the LLA. To get the
perturbative series, we substitute Ω(x⊥, η) = e−igφ(x⊥ ,η):

UηAx ⊗ U †ηAy =

∫ π1,2(ηA)=0

φ1,2(η0)=0

Πi=1,2Dςi(z, η)Dφi(z, η)

× eigφ1(x⊥,ηA)Uη0
x e−igφ2(x⊥ ,ηA) ⊗ eigφ2(y⊥ ,ηA)U †η0

y

× e−igφ1(y⊥,ηA) exp

{∫ ηA

η0

dη

∫
d2z
[1

g

∑

i=1,2

ςai (z, η)

× ~∂2
(
eigφi(z,η) ∂

∂η
e−igφi(z,η)

)a

− 1

4π
ςa1 (z, η)ςb2(z, η)~∂2

(
eigφ1(z,η)Uη0

z e−igφ2(z,η)
)ab]

}
(7)

Next, we can represent the r.h.s. of Eq. (7) in the form

(φ̇ ≡ ∂φ
∂η

)

∫ π1,2(ηA)=0

φ1,2(η0)=0

Πi=1,2Dςi(z, η)Dφi(z, η) (8)

[ηA, η0]xU
η0
x {η0, ηA}x ⊗ {ηA, η0}yU †η0

y [η0, ηA]y

× exp

{∫ ηA

η0

dη

∫
d2z
[
− i

∑

i=1,2

ςai (z, η)~∂2φ̇i(z, η)

− 1

4π
ςa1 (z, η)~∂2

(
[ηA, η0]zU

η0
z {η0, ηA}z

)ab
ςb2(z, η)

]}

where we introduced the notations

[η1, η2]x ≡ Te
ig
∫ η1
η2

φ̇1(x⊥,η)
, {η1, η2}x ≡ Te

ig
∫ η1
η2

φ̇2(x⊥ ,η)

(9)

Let us now expand the r.h.s. of Eq. (8) in powers of g.
The first nontrivial term in this expansion is

UηAx ⊗ U †ηAy (10)

= αs

∫ π1,2(ηA)=0

φ1,2(η0)=0

Πi=1,2Dςi(z, η)Dφi(z, η)

×
[(
φ1(x⊥, ηA)Uη0

x − Uη0
x φ2(x⊥, ηA)

)

⊗
(
φ2(y⊥, ηA)U †η0

y − U †η0
y φ1(y⊥, ηA)

)

−
(
φ1(x⊥, η0)Uη0

x φ2(x⊥, ηA)
)
⊗ U †η0

y

+Uη0
x ⊗

(
φ2(y⊥, ηA)U †η0

y φ1(y⊥, ηA)
)]

×
∫ ηA

η0

dη

∫
d2zςa1 (z, η)ςb2(z, η)~∂2

(
Uη0(z⊥)

)ab

× exp

{
− i
∫ ηA

η0

dη

∫
d2z

∑

i=1,2

ςai (z, η)~∂2φ̇ai (z, η)

}
.

The propagators for this phase-space functional integral
are

〈φai (x, η)ςbj (y, η
′)〉 = iδijδ

ab
((
x
∣∣∣ 1

~p2

∣∣∣y
))
θ(η − η′),

〈φai (x, η)φbj(y, η
′)〉 = 0, 〈ςai (x, η)ςbj (y, η′)〉 = 0 (11)

With these propagators, the r.h.s of Eq. (10) reduces
to

−αs(ηA − η0)

[(
taUη0

x ⊗ tbU †η0
y + Uη0

x tb ⊗ U †η0
y ta

)

×
((
x
∣∣ 1

~p2
~∂2Uη0

1

~p2

∣∣y
))ab − taUη0

x tb ⊗ U †η0
y

((
x
∣∣ 1

~p2

(
~∂2Uη0

)

× 1

~p2

∣∣x
))ab − Uη0

x ⊗ tbU †η0
y ta

((
y
∣∣ 1

~p2

(
~∂2Uη0

) 1

~p2

∣∣y
))ab
]

(12)

which coincides with the Eq. (B17) from Ref. [2]. Taking
trace over the color dipole indices one reproduces the Eq.
(3). Similarly, it can be demonstrated that further terms
of the expansion of eq. (8) in powers of g repoduce the
subsequent iterations of the non-linear equation (3).

The intergral over π variables can be easily performed
resulting in:

UηA(x⊥) ⊗ U †ηA(y⊥) (13)

=

∫ Ω̇1,2(ηA)=0

Ω1,2(η0)=1

DΩ1(z, η)DΩ2(z, η) Ω†1(x⊥, ηA)

× Uη0(x⊥)Ω2(x⊥, ηA)⊗ Ω†2(y⊥, ηA)U †η0 (y⊥)Ω1(y⊥, ηA)

× exp
{
− 1

αs

∫ ηA

η0

dη

∫
d2z
[
~∂2
(

Ω†2(z, η)U †η0
z Ω1(z, η)

)]−1

ab

× ~∂2
(
iΩ†1(z, η)Ω̇1(z, η)

)a
~∂2
(
iΩ†2(z, η)Ω̇2(z, η)

)b}

Note that the action of this effective field theory is local.
This functional integral for the small-x evolution of the
Wilson-line operators is the main result of the paper.
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FIG. 2. Propagation of the color dipole through the nu-
cleus.

In the case of large nuclei it is possible to write initial
conditions for the small-x evolution using the McLerran-
Venugolalan model. The nuclear matrix element of the
two-Wilson-line operator (“color dipole”) is given by the
Glauber formula, [22–24] see Fig. 2.

∫
d2z⊥〈A|TrU (x⊥ + z⊥)U (z⊥)|A〉

= Nc

∫
d2b

[
1− e−g2cF G(x2

⊥)Lb
]

(14)

Here Lb ≡ 2
√
R2 − b2 is the propagation length of the

dipole (located at the impact parameter b) through the
nucleus, ρ = A

4/3πR3 is the nuclear density, and

G(x2
⊥) ≡ πx2

⊥
4(N2

c − 1)
ρσ0G(σ0, µ

2 =
1

x2
⊥

). (15)

The Eq. (15) is derived under the assumption that the
characteristic size of the dipole (the “saturation scale ”)
is smaller than the size of the nucleon 3. In this case,
the quarks propagating along the straight light-like lines
4 interact by the instantaneous (in the light-cone time
x+) potential

ρg2ta ⊗ ta
∫

d2p⊥
(2π)2

g2

2p4
⊥

(
ei(p,x−y)⊥ − 1

)

= g2ta ⊗ taραs
8

(x − y)2
⊥ ln(x− y)2

⊥m
2
0 (16)

where m0 ' mN
2 is the IR cutoff. [23] It is worth noting

that the factor −1 in the parenthesis in the l.h.s. comes

3This assumption is certainly true at A → ∞. For real
nuclei, one should find the saturation scale Qs from the final
result for the matrix element of the color dipole between the
nuclear states, and verify that Qs � 1GeV

4As we mentioned above, the energy sσ0 should be high
enough so we can replace the slope p1 + ζ0p2 by p1 in the
non-logarithmical expressions.

from the diagrams with the two gluons attached to the
same nucleon and the same Wilson line. Taking into
account the color factors, one obtains the Eq. (14) with
xBG

(
xB, µ

2 = x−2
⊥
)

= 4αs
π lnx−2

⊥ /m2
0, see Ref. [23].

Similarly to Eq. (13), it is possible to represent this
result as a functional integral over a variable Λ(x⊥, l) ∈
SU (3):
∫
d2z〈A|U η0

x+zU
†η0
z |A〉 (17)

=

∫
d2b

∫ Λ′(Lb,y)=0

Λ(0,y)=1

DΛ(y, l) Λ(x+ z, Lb) Λ†(z, Lb)

× exp
{ 1

2g2ρ

∫ Lb

0

dl

∫
d2y
(
Λ(l, y)Λ′(l, y)

)a

× (−~∂2 + m2
0)2
(
Λ(l, y)Λ′(l, y)

)a}

where Λ′ ≡ ∂
∂lΛ. Extra U η0(x)

(
U †η0 (x)

)
lead to extra

Λ(x, Lb)
(
Λ†(x, Lb)

)
in the pre-exponent.

The final formula for the martix element of the color
dipole operator at small xB is obtained by combining the
functional integrals (13) and (17):
∫
d2z〈A|U ηA(x+ z)⊗ U †ηA(z)|A〉

=

∫
d2b

∫ Λ′(Lb,y⊥)=0

Λ(0,y⊥)=1

∫ Ω̇1,2(ηA,y)=0

Ω1,2(η0 ,y)=1

DΛ(l, y)DΩ1(y, η)

× DΩ2(y, η) Ω†1(x+ z, ηA)Λ(Lb, x+ z)

⊗ Ω2(x+ z, ηA)Ω†2(z, ηA)Λ†(Lb, z)Ω1(z, ηA)

× exp

{
− 1

2g2ρ

∫ Lb

0

dl

∫
d2y
(
iΛ(l, y)Λ′(l, y)

)a

× (m2
0 − ~∂2)2

(
iΛ(l, y⊥)Λ′(l, y)

)a

− 1

αs

∫ ηA

η0

dη

∫
d2y~∂2

(
iΩ†1(y, η)Ω̇1(y, η)

)a

×
[
~∂2
(

Ω†2(y, η)Λ†(Lb, y)Ω1(y, η)
)]−1

ab

× ~∂2
(
iΩ†2(y, η)Ω̇2(y, η)

)b
}
. (18)

The gluon structure function in the LLA is propor-
tional to the matrix element of the dipole operator
xBG

(
xB, µ

2 = x−2
⊥
)

= −2π
s
〈A|TrU ηAi (x⊥)UηAi (0)|A〉, so

the numerical calculation of the functional integral (18)
should give the nuclear structure functions at small x.
This would be complementary to the approximate solu-
tions of Refs. [11,17,12,19,20,26] since it could give the
structure functions not only in the asymptotic black-
body limit, but also in the intermediate region defining
the saturation scale Qs.

It should be mentioned that our formula (13) gives
the evolution of the color dipole only in the LLA. In the
case of large nucleus we have an additional parameter
A� 1 so our LLA approximation based on the non-linear
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equation (3) has a window α2
sA

1/3 ∼ 1, αs lnxB ∼ 1
where it is justified even at moderately small xB. In the
case of nucleon, our αs(Qs) � 1, αs(Qs) lnxB ∼ 1 ap-
proximation should be justified a posteriori after check-
ing that the saturation does occur at sufficiently small
xB. If the saturation takes place at such low x that
αs(Qs) lnxB � 1, our LLA breaks down and we need to
take into account the non-fan diagrams such as t-channel
loops formed by BFKL pomerons. However, the non-
linear equation (3) leads to the result for the structure
function which does not violate unitarity (see the discus-
sion in Refs. [11–13,17,25]) and therefore we should not
expect the large discrepancy between the unitary LLA
result and the exact amplitude at present energies.
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