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Abstract

The three flavor linear sigma model is studied in order to understand

the role of possible light scalar mesons in the pi-pi, pi-K and pi-eta elastic

scattering channels. The K-matrix prescription is used to unitarize tree-level

amplitudes and, with a sufficiently general model, we obtain reasonable fits

to the experimental data. The effect of unitarization is very important and

leads to the emergence of a nonet of light scalars, with masses below 1 GeV.

We compare with a scattering treatment using a more general non-linear

sigma model approach and also comment upon how our results fit in with

the scalar meson puzzle. The latter involves a preliminary investigation of

possible mixing between scalar nonets.
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I. INTRODUCTION

In recent years there has been a renewal of interest in the σ meson (the subject of many

of the talks at this meeting) and the other scalar mesons below and above 1 GeV - for a

list of references to the ideas of various authors see [1] and also [2]. The light scalar mesons

are an interesting puzzle because their properties do not fit, in an obvious way, those of a

conventional qq̄ scalar multiplet.

We begin with the basic problem of extracting information about scalar mesons from

experiment. This is related to the problem of describing pseudoscalar meson scattering

in an energy regime which is too low for a perturbative QCD treatment, but sufficiently

high to make the chiral perturbation theory scheme difficult to implement. Previously the

Syracuse group studied ππ, πK and πη scattering [3] in a 1
Nc

-inspired unitarized non-linear

chiral Lagrangian framework and found evidence for nine scalar mesons below 1 GeV which

have the quantum numbers of an SU(3) nonet. These are the isoscalars σ and f0(980), the

isovector a0(980) and the isospinor κ(900) meson. The σ and in particular the κ meson are

rather controversial and emerge as extremely broad states requiring a generalization of a

Breit-Wigner parameterization. Many authors have found similar or related results (see [1]

and [2]).

In this context it is interesting to study pseudoscalar meson-meson scattering in a differ-

ent model in order to investigate the model-dependence of the scalar meson parameters. We

will work in the classic chiral symmetric Linear Sigma Model, in which the scalar mesons

are present from the outset. In an attempt to understand the full scalar spectrum we will

also consider the possibility of two linear sigma models with mixing.

II. SU(2) LINEAR SIGMA MODEL AND K-MATRIX UNITARIZATION

Let us focus initially on the ππ scattering amplitude. The result in the original two-flavor

Linear Sigma Model [4] is well-known. The tree-level invariant ππ amplitude is the sum of

a contact diagram and direct and crossed-channel σ-exchange diagrams:

A(s, t, u) =
2

F 2
π

(
m2
b(σ)−m2

π

) [m2
b(σ)−m2

π

m2
b(σ)− s − 1

]
. (2.1)

We have put a subscript b, denoting “bare”, on the σ mass since this quantity will be shifted

by unitarization as we shall see shortly. This amplitude reproduces the current algebra

result, which gives good agreement with experiment near threshold, in the limit where mb(σ)

is large. We see that even near threshold the σ resonance plays an important role since there
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is a delicate cancellation between the constant contact term and the σ pole contribution.

The tree-level amplitude clearly blows up at s = m2
b(σ) and so requires regularization.

We use the well-known K-matrix technique [5] whereby the unitarized partial-wave S-

matrix element (we only look at elastic scattering channels) is defined by

S ≡ 1 + iK

1− iK . (2.2)

Identifying K with the partial wave projection of the tree-level amplitude leads to the

following “regularized” partial wave amplitude

T IJ ≡
T IJ tree

1− iT IJ tree
. (2.3)

We notice that for T IJ tree << 1 we have T IJ ≈ T IJ tree and also that when T IJ tree → ∞,

Re(T IJ )→ 0. Applying this unitarization to the partial wave projection of Eq. (2.1) we can

get a reasonable fit to the ππ data up to about 1 GeV. Similar results were found for this

case in [6]. In order to try and describe the structure of the ππ scattering amplitude beyond

1 GeV and also to investigate the I = 1
2

and I = 1 scattering channels we next extend our

analysis to the SU(3) case.

III. SU(3) LINEAR SIGMA MODEL TREATMENT

We consider a general (possibly non-renormalizable) [7] Lagrangian of the form

L =
1

2
Tr (∂µφ∂µφ) +

1

2
Tr (∂µS∂µS)− V0 − VSB, (3.1)

where M = S + iφ is a 3 × 3 matrix field (S = S† represents a scalar nonet and φ = φ†

a pseudoscalar nonet) which transforms linearly under chiral transformations and where

V0 is an arbitrary SU(3)L × SU(3)R × U(1)V invariant potential. The symmetry breaker

VSB has the minimal form linear in S. Chiral symmetry gives relations among certain

parameters of the model [7], for example trilinear coupling constants, masses and decay

constants. In particular the “bare” mass of the strange scalar state, denoted κ, is related to

the pseudoscalar meson masses and decay constants by:

m2
b(κ) =

FKm
2
K − Fπm2

π

FK − Fπ
. (3.2)

If we use a renormalizable potential the model is extremely predictive. Once we fix five

input parameters [for example the pseudoscalar parameters mπ, mK , mη′ , Fπ and mη (or
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FIG. 1. Comparison of our best fit for the Real part of the I=J=0 ππ scattering

amplitude in the non-renormalizable SU(3) linear sigma model with experiment

[3].

FK)], it turns out that there is only one free parameter left, which we take to be the bare σ

mass, mb(σ).

We calculate the tree-level ππ scattering amplitude and again unitarize the scalar

isoscalar partial wave channel according to the K-matrix prescription. It turns out that

this one-parameter model does not allow a good fit to the experimental data.

If we consider a more general potential then both of the isoscalar scalar masses [mb(σ)

and mb(σ
′)] and also the isoscalar mixing angle are independent parameters. We perform

a best fit of the Real part of our unitarized amplitude to the experimental data and show

the result in Fig. 1 where it can be seen that we get good agreement with the data up to

approximately 1.25 GeV. The best fit values are mb(σ) = 0.847 GeV, mb(f0) = 1.3 GeV and

a bare σ-f0 mixing angle of 48.6o. We identify the “physical” masses and widths from the

poles in the unitarized partial wave amplitude.

We also considered the scalar πK channel where the strange scalar meson κ will of

course play an important role. Since mb(κ) is very sensitive [Eq. (3.2)] to the choice of

input parameters, in particular to Fπ
FK

, we consider different inputs for FK . Once again, we

calculate the tree-level amplitude from Eq. (3.1) and unitarize using the K-matrix method.

A plot of the Real part of the resulting amplitude is given in Fig. 2, where the experimental

data is also presented. Finally, we applied the same procedure to study πη scattering where

the a0(980) appears in the direct scalar channel.
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FIG. 2. Comparison of our prediction for the Real part of the I=1
2
, J=0 πK

scattering amplitude in the non-renormalizable SU(3) Linear Sigma Model with

experiment. The curves correspond to mBARE(κ) = 1.3 GeV (solid), 1.1 GeV

(dashed) and 0.9 GeV (dotted).

IV. DISCUSSION

We studied ππ, πK and πη scattering in a K-matrix unitarized version of the SU(3)

Linear Sigma Model. One crucial feature is that the masses of the scalar resonances are

shifted by unitarization from their “bare” tree-level values to “physical” values which are

presented in Table I.

σ f0 κ a0

Present Model

mass (MeV),width (MeV) 457, 632 993, 51 800, 260− 610 890− 1010, 110− 240

Comparison

mass (MeV),width (MeV) 560, 370 980± 10, 40− 100 900, 275 985, 50− 100

TABLE I. Predicted “physical” masses and widths of the scalar mesons of the

Linear Sigma Model. Suitable comparison values are also given as discussed in

text.

For comparison, we have also listed in Table I the f0(980) and a0(980) parameters given

in the 2001 Review of Particle Properties [10]. For the σ and κ parameters we present for
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comparison the results of our previous analyses [3]. We see that the masses are consistent

to within about 50-100 MeV, while the widths are more model-dependent.

The overall conclusion is that the scalar mesons of the Linear Sigma Model emerge with

physical masses below the 1 GeV region. In particular even though we studied a range of

bare κ masses between 0.9 and 1.3 GeV, unitarization of the πK scattering amplitude always

forced a physical mass of about 800 MeV.

V. FINAL NOTE

In Fig. 2 we see that although the region just above the πK threshold can be explained

in this model, the structure observed experimentally around 1.4 GeV is not accounted for.

This is associated with the well-established K∗0(1430) resonance and thus suggests that

this state is not described in the simple version of the Linear Sigma Model studied so far.

Similarly, the heavier isovector a0(1450) state does not fit in this picture. If there is a nonet

of light (masses < 1 GeV) scalar mesons the question remains not only of understanding

their quark substructure (a long-standing puzzle in meson spectroscopy), but also that of

the experimentally observed heavier scalar states such as the K∗0 (1430) and a0(1450).

Previously [11] we found in a non-linear chiral Lagrangian approach that various proper-

ties of the light and heavier scalar mesons could be neatly understood by considering them

to be mixtures of two nonets. This leads us to look at the possibility of mixing in the

context of the Linear Sigma Model also. We observe that since there are infinitely many

different quark substructures which lead to meson fields M(x) with identical transformation

properties under SU(3)L × SU(3)R, C and P , it is not possible, at the level of the meson

Lagrangian, to distinguish between these quark substructures (except perhaps through their

U(1)A transformation properties). In fact there are various interesting proposals in the lit-

erature (for more detail and for explicit realizations of such objects see [1] and references

therein) to explain the light scalar mesons, for example as meson-meson “molecules” or as

multiquark (qqq̄q̄) states.

Let us consider a toy mixing model given by the following Lagrangian density,

L =
1

2
Tr
(
∂µM∂µM†

)
+

1

2
Tr
(
∂µM

′∂µM ′†
)

(5.1)

+ c2Tr
(
MM†

)
− c4Tr

(
MM†MM†

)
− d2Tr

(
M ′M ′†

)
− eTr

(
MM ′† −M ′M†

)
.

Here c2, c4 and d2 are positive real constants. The M matrix field, which we consider to be

qq̄, is chosen to have a wrong sign mass term so that there will be spontaneous breakdown

of chiral symmetry. A pseudoscalar octet will thus be massless (for simplicity we do not
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include a quark mass effective term VSB) . A second matrix field M ′, which may represent an

unconventional quark substructure such as qqq̄q̄, is introduced with trivial dynamics except

for its mixing with M . The mixing is controlled by the parameter e and the e-term is the

only one which violates U(1)A symmetry.

The mass spectrum resulting from Eq. (5.2) has two scalar octets and two pseudoscalar

octets, each with an associated SU(3) singlet. Each octet has eight degenerate members

since the quark mass terms have been switched off. In order to see whether the mixing can

give a spectrum in reasonable agreement with experimental observations let us focus on the

I=1, positively charged particles as an example. It turns out that the mass eigenvalues for

the pseudoscalar states are:

m2 (πp) = 0, m2
BARE

(
π′p
)

=
2e2

d2
+ 2d2. (5.2)

We put the subscript “BARE” on m2
(
π′p
)

to indicate that it may receive non-negligible

corrections from K-matrix unitarization.

The mixing angle for the I=1 scalar states is given by

tan2ω =
4e

2d2 − 4c2 − 6e2

d2

(5.3)

and the corresponding mass eigenvalues are

m2
BARE

(
ap, a

′
p

)
= 2c2 + d2 +

3e2

d2
∓ 2ecsc2ω, (5.4)

where the upper (lower) sign stands for ap,
(
a′p
)
. It is interesting to examine the masses

of the degenerate octets in a little more detail. For orientation we begin with the case

when the mixing parameter e vanishes. The usual “qq̄” pseudoscalars πp are zero mass

Goldstone bosons in this limit while ap (the scalar partner of πp) and a′p (the “qqq̄q̄” scalar)

are degenerate. If 2c2 > d2 then ap and a′p are both heavier than π′p. Then, as the mixing is

turned on a four quark condensate develops and the mass ordering becomes

mBARE(ap) > mBARE(π′p) > mBARE(a′p) > mBARE(πp) = 0. (5.5)

The mixing angle ω remains small, because the denominator of Eq. (5.3) is always negative

and increases in magnitude as e2 increases, which means that a′p is predominantly qqq̄q̄. The

ordering in Eq. (5.5) is generally consistent with an identification of these states with the

experimentally observed states a0(1450), π(1300), a0(980) and π respectively. It also shows

that the lowest-lying scalar may not come out as predominantly qq̄, and that in fact the

scalar state closer to qq̄-type can be heavier, and so possibly in the mass range expected

from the quark model.
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