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Abstract

Rather than regarding the restriction of current lattice QCD simulations to

quark masses that are 5–10 times larger than those observed, we note that

this presents a wonderful opportunity to deepen our understanding of QCD.

Just as it has been possible to learn a great deal about QCD by treating Nc

as a variable, so the study of hadron properties as a function of quark mass is

leading us to a much deeper appreciation of hadron structure. As examples we

cite recent progress in using the chiral properties of QCD to connect hadron

masses, magnetic moments, charge radii and structure functions calculated at

large quark masses within lattice QCD with the values observed physically.

I. INTRODUCTION

In striving to understand the properties of QCD the generalization to an arbitrary num-
ber of colours, Nc, particularly the limit Nc → ∞ (or “large Nc”) has been extremely
valuable. It has even proven possible to distinguish between models of hadron structure and
to guide the further developments of such models on the basis of their large Nc behaviour
[1]. Until recently it has generally been regarded as an unfortunate liability that current
limitations on computer power restrict lattice QCD simulations with dynamical fermions to
large quark masses. We would like to present a rather different view concerning the lattice
data at large quark masses. In particular, we argue that like the behaviour as a function of
Nc, lattice results as a function of quark mass offer extremely valuable new insights into the
nature of QCD and especially into hadron structure.

To be a little more quantitative, the restriction to large quark masses in lattice simu-
lations means typically 50 MeV or higher. Thus, in order to compare hadron properties
calculated on the lattice one has to extrapolate as a function of quark mass (on top of all
the other extrapolations, lattice spacing, lattice size, etc.) all the way to the physical light
quark masses, around 5 or 6 MeV. Such extrapolations are complicated enormously by the
fact that chiral symmetry is spontaneously broken in QCD. The mass of the pion, which is
the Goldstone boson corresponding to this broken symmetry [2], behaves as:
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m2
π ∝ m̄, (with m̄ = mu = md 6= 0), (1)

as the quark mass, m̄, moves away from zero – this is the Gell Mann-Oakes-Renner (GOR)
relation. While Eq.(1) is, in principle, only guaranteed for quark masses, near zero, explicit
lattice calculations show that it holds over an enormous range, as high as mπ ∼ 1GeV.
For convenience, rather than measuring the deviation from exact chiral symmetry using m̄,
which is scale dependent, we shall use m2

π.
In terms of mπ, current lattice calculations are typically restricted to pion masses larger

than 500 MeV, with some pioneering work reporting preliminary results as low as 310 MeV.
In order to compare these results with experimental data on hadron properties it is necessary
to extrapolate the calculations at large pion masses to the physical value. In doing so it
is crucial to respect the constraints imposed by chiral symmetry in QCD. In particular, as
we discuss below, the existence of Goldstone bosons necessarily leads to behaviour which is
non-analytic in the quark mass.

The structure of this article is that we first explain the origin of the non-analyticity
associated with Goldstone boson loops. We then explain, using the specific case of the
nucleon mass, how this non-analytic structure has been incorporated into a new method for
extrapolating hadron masses from the large values characteristic of lattice calculations to
the physical region. The consequences of this for the sigma commutator are then explained.
Next we turn to recent results for baryon electromagnetic properties. Finally we discuss
the most recent investigations of the proton structure function, especially the importance
of chiral symmetry in connecting existing calculations of lattice moments with data. We
conclude with a summary of the promised insights into the nature of hadron structure within
QCD that follow from all these investigations.

II. GOLDSTONE BOSON LOOPS AND NON-ANALYTICITY

For our purposes the primary significance of spontaneous chiral symmetry breaking in
QCD is that there are contributions to hadron properties from loops involving the resulting
Goldstone bosons. These loops have the unique property that they give rise to terms in an
expansion of most hadronic properties as a function of quark mass which are not analytic.
As a simple example we consider the nucleon mass. The most important chiral corrections
to MN come from the processes N → Nπ → N (σNN) and N → ∆π → N (σN∆). (We
will come to what it means to say these are the most important shortly.) We write MN =
Mbare

N + σNN + σN∆. In the heavy baryon limit one has

σNN = − 3g2
A

16π2f2
π

∫ ∞

0
dk

k4u2(k)

k2 +m2
π

, (2)

where gA, fπ are strictly evaluated in the chiral limit. Here u(k) is a natural high momentum
cut-off which is the Fourier transform of the source of the pion field (e.g. in the cloudy bag
model (CBM) it is 3j1(kR)/kR, with R the bag radius [3]). From the point of view of PCAC
it is natural to identify u(k) with the axial form factor of the nucleon, a dipole with mass
parameter 1.02 ± 0.08GeV.

Regardless of the form chosen for the ultra-violet cut-off, one finds that σNN is a non-
analytic function of the quark mass. The leading non-analytic (LNA) piece of σNN is inde-
pendent of the form factor and gives
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σLNANN = − 3g2
A

32πf2
π

m3
π ∼ m̄

3
2 . (3)

This has a branch point, as a function of m̄, at m̄ = 0. Such terms can only arise from
Goldstone boson loops.

A. Case Study: the Nucleon Mass

It is natural to ask how significant this non-analytic behaviour is in practice. If the pion
mass is given in GeV, σLNANN = −5.6m3

π and at the physical pion mass it is just –17 MeV.
However, at only three times the physical pion mass, mπ = 420MeV, it is –460MeV – half
the mass of the nucleon. If one’s aim is to extract physical nucleon properties from lattice
QCD calculations this is extremely important. The most sophisticated lattice calculations
with dynamical fermions are only just becoming feasible at such low masses and to connect
to the physical world one must extrapolate from mπ ∼ 500MeV to mπ = 140MeV. Clearly
one must have control of the chiral behaviour.

Figure 1 shows recent lattice calculations of MN as a function of m2
π from CP-PACS and

UKQCD [4]. The dashed line indicates a fit which naively respects the presence of a LNA
term,

MN = α + βm2
π + γm3

π, (4)

with α, β and γ fitted to the data. While this gives a very good fit to the data, the chiral
coefficient γ is only -0.761, compared with the value -5.60 required by chiral symmetry. If
one insists that γ be consistent with QCD the best fit one can obtain with this form is the
dash-dot curve. This is clearly unacceptable.

An alternative suggested recently by Leinweber et al. [5], which also involves just three
parameters, is to evaluate σNN and σN∆ with the same ultra-violet form factor, with mass
parameter Λ, and to fit MN as

MN = α+ βm2
π + σNN(mπ,Λ) + σN∆(mπ,Λ). (5)

Using a sharp cut-off (u(k) = θ(Λ−k)) these authors were able to obtain analytic expressions
for σNN and σN∆ which reveal the correct LNA behaviour – and next to leading (NLNA) in
the ∆π case, σNLNAN∆ ∼ m4

π lnmπ.
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FIGURES

FIG. 1. A comparison between phenomenological fitting functions for the mass of the nucleon

– from Ref. [5]. The two parameter fit corresponds to using Eq.(4) with γ set equal to the value

known from χPT. The three parameter fit corresponds to letting γ vary as an unconstrained fit

parameter. The solid line is the two parameter fit based on the functional form of Eq.(5).

These expressions also reveal a branch point at mπ = M∆ −MN , which is important if
one is extrapolating from large values of mπ to the physical value. The solid curve in Fig. 1
is a two parameter fit to the lattice data using Eq.(5), but fixing Λ at a value suggested by
CBM simulations to be equivalent to the preferred 1 GeV dipole. A small increase in Λ is
necessary to fit the lowest mass data point, at m2

π ∼ 0.1 GeV2, but clearly one can describe
the data very well while preserving the exact LNA and NLNA behaviour of QCD.

B. Consequences for the Sigma Commutator

The analysis of the lattice data for MN , incorporating the correct non-analytic behaviour,
can yield interesting new information concerning the sigma commutator of the nucleon:

σN =
1

3
〈N |[Qi5, [Qi5,HQCD]]|N〉 = 〈N |m̄(ūu+ d̄d)|N〉. (6)

This is a direct measure of chiral SU(2) symmetry breaking in QCD, and the widely accepted
experimental value is 45 ± 8MeV [6]. (Although there are recent suggestions that it might
be as much as 20 MeV larger [7].) Using the Feynman-Hellmann theorem one can also write

σN = m̄
∂MN

∂m̄
= m2

π

∂MN

∂m2
π

. (7)

Historically, lattice calculations have evaluated < N |(ūu+ d̄d)|N > at large quark mass and
extrapolated this scale dependent quantity to the “physical” quark mass, which had to be
determined in a separate calculation. The latest result with dynamical fermions, σN = 18±5
MeV [8], illustrates how difficult this procedure is. On the other hand, if one has a fit to
MN as a function of mπ which is consistent with chiral symmetry, one can evaluate σN
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directly using Eq.(7). Using Eq.(5) with a sharp cut-off yields σN ∼ 55 MeV, while a dipole
form gives σN ∼ 45 MeV [9]. The residual model dependence can only be removed by
more accurate lattice data at low m2

π. Nevertheless, the result σN ∈ (45, 55) MeV is in
very good agreement with the data. In contrast, the simple cubic fit, with γ inconsistent
with chiral constraints, gives ∼ 30 MeV. Until the experimental situation regarding σN
improves, it is not possible to draw definite conclusions regarding the strangeness content of
the nucleon. However, the fact that two-flavour QCD reproduces the current prefered value
should certainly stimulate some thought and a lot of work.

III. ELECTROMAGNETIC FORM FACTORS
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FIG. 2. Recent data for the neutron electric form factor in comparison with CBM calculations

for a confining radius around 0.95fm – from Ref. [10].

It is a general consequence of quantum mechanics that the long-range charge structure
of the proton comes from its π+ cloud (p→ nπ+), while for the neutron it comes from its π−

cloud (n→ pπ−). However, it is not often realized that the LNA contribution to the nucleon
charge radius goes like lnmπ and diverges as m̄ → 0 [11]. This cannot be reproduced by a
constituent quark model. Figure 2 shows the latest data from Mainz and NIKHEF for the
neutron electric form factor, in comparison with CBM calculations for a confinement radius
between 0.9 and 1.0 fm. The long-range π− tail of the neutron plays a crucial role.

While there are only limited (and indeed quite old) lattice data for hadron charge radii,
recent experimental progress in the determination of hyperon charge radii has led us to
examine the extrapolation procedure for obtaining charge data from the lattice simulations
[12]. Figure 3 shows the extrapolation of the lattice data [13] for the charge radius of the
proton. Clearly the agreement with experiment is much better once the chiral log required
by chiral symmetry is correctly included, than if, for example, one simply made a linear
extrapolation in the quark mass (or m2

π). Full details of the results for all the octet baryons
may be found in Ref. [12].
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FIG. 3. Fits to lattice results for the squared electric charge radius of the proton – from Ref.

[12]. Fits to the contributions from individual quark flavours are also shown: the u-quark sector

results are indicated by open triangles and the d-quark sector results by open squares. Physical

values predicted by the fits are indicated at the physical pion mass, where the full circle denotes

the result predicted from the first extrapolation procedure and the full square denotes the baryon

radius reconstructed from the individual quark flavor extrapolations. (N.B. The latter values are

actually so close as to be indistinguishable on the graph.) The experimental value is denoted by

an asterisk.

The situation for baryon magnetic moments is also very interesting. The LNA contribu-
tion in this case arises from the diagram where the photon couples to the pion loop. As this
involves two pion propagators the expansion of the proton and neutron moments is:

µp(n) = µ
p(n)
0 ∓ αmπ +O(m2

π). (8)

Here µ
p(n)
0 is the value in the chiral limit and the linear term in mπ is proportional to m̄

1
2 ,

a branch point at m̄ = 0. The coefficient of the LNA term is α = 4.4µNGeV−1. At the
physical pion mass this LNA contribution is 0.6µN , which is almost a third of the neutron
magnetic moment. No constituent quark model can or should get better agreement with data
than this.

Just as for MN , the chiral behaviour of µp(n) is vital to a correct extrapolation of lattice
data. One can obtain a very satisfactory fit to some rather old data, which happens to be
the best available, using the simple Padé [14]:

µp(n) =
µ
p(n)
0

1± α

µ
p(n)
0

mπ + βm2
π

(9)
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FIG. 4. Absolute value of the ratio of the proton to neutron magnetic moments as a function

of m2
π obtained from the Padé approximants in Eq. (9). We stress that the behaviour as m2

π → 0

is model independent.

The data can only determine two parameters and Eq.(9) has just two free parameters
while guaranteeing the correct LNA behaviour as mπ → 0 and the correct behaviour of
heavy quark effective theory (HQET) at large m2

π. The extrapolated values of µp and µn at
the physical pion mass, 2.85 ± 0.22µN and −1.90 ± 0.15µN , respectively, are currently the
best estimates from non-perturbative QCD [14]. For more details of this fit we refer to Ref.
[14], while for the application of similar ideas to other members of the nucleon octet we refer
to Ref. [15], and for the strangeness magnetic moment of the nucleon we refer to Ref. [16].

Incidentally, from the point of view of the naive quark model it is interesting to plot
the ratio of the absolute values of the proton and neutron magnetic moments as a function
of m2

π. The agreement of the constituent quark result, namely 3/2, with the experimental
value to within a few percent is usually taken as a major success. However, we see from Fig.
4 that it is in fact fortunate to obtain such close agreement [17]. We stress that the large
slope of the ratio near m2

π = 0 is model independent.

IV. STRUCTURE FUNCTIONS

The parton distribution functions (PDFs) of the nucleon are light-cone correlation func-
tions which, in the infinite momentum frame, are interpreted as probability distributions
for finding specific partons (quarks, antiquarks, gluons) in the nucleon. They have been
measured in a variety of high energy processes, ranging from deep-inelastic lepton scattering
to Drell-Yan and massive vector boson production in hadron–hadron collisions. A wealth of
experimental information now exists on spin-averaged PDFs, and an increasing amount of
data is being accumulated on spin-dependent PDFs [18].

At high momentum transfer (Q2) the dominant component of the PDFs are determined
by non-perturbative matrix elements of certain “leading twist” operators. In principle these
matrix elements, which correspond to moments of the measured structure functions, con-
tain vital information about the non-perturbative structure of the target. An extensive phe-
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nomenology has been developed over the years within model QCD studies, and in some cases
remarkable predictions have been made from the insight gained into the non-perturbative
structure of the nucleon. An example is the d̄− ū asymmetry, predicted [19] on the basis of
the nucleon’s pion cloud [20], which has been spectacularly confirmed in recent experiments
at CERN and Fermilab [21]. Other predictions, such as asymmetries between strange and
antistrange [22] and spin-dependent sea quark distributions, ∆ū − ∆d̄, still await experi-
mental confirmation. Note that none of these could be anticipated without insight into the
non-perturbative structure of QCD.

Despite the phenomenological successes in correlating deep-inelastic and other high en-
ergy data with low energy hadron structure, the ad hoc nature of some of the assumptions
made in deriving the low energy models from QCD leaves open a number of questions about
the ability to reliably assign systematic errors to the model predictions. One approach in
which structure functions can be calculated systematically from first principles, and which
at the same time allows one to search for and identify the relevant low energy QCD degrees
of freedom, is lattice QCD.

FIG. 5. First moment of the difference u − d from various lattice QCD simulations (QCDSF

[24–26] and MIT [27]), at a scale Q2 = 4 GeV2. Calculations from the CBM are shown as small

squares. The dashed curve is a simple fit which is linear in m2
π, while the solid curve incorporates

the constraints of chiral symmetry, as in Eq.(10).

Early calculations of structure function moments within lattice QCD were performed
by Martinelli and Sachrajda [23]. However, the most comprehensive analysis has been
performed by the QCDSF Collaboration [24–26] – albeit within quenched QCD. Recently
the MIT group has performed the first full (unquenched) QCD calculations of non-singlet
moments [27]. The moments from the full QCD simulations are very similar to those from
the quenched calculations. This is consistent with the suggestions of chiral quark models,
like the CBM, that in the mass region currently accessible quark loops are suppressed.

As for the other nucleon properties discussed above, we propose to extraplate the lattice
data to the physical pion mass using a formula which is compatible with the LNA structure
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of the PDFs. This behaviour was derived recently, with the result that the LNA behaviour
involved a term in m2

π lnmπ [28]. For an initial investigation we concentrate on the non-
singlet combination of PDFs, u−d, in which “disconnected” quark loops cancel. Calculations
based on the CBM (which incorporate the LNA chiral structure just discussed) actually
produce quite a reasonable description of the behaviour of the moments of the PDFs as
a function of quark mass, as shown in Fig. 5 (open squares). More important from the
phenomenological point of view, the CBM calculations (for the n’th moment of the PDFs)
can be fit with the simple expansion in mπ:

〈xnu − xnd〉 = an + bnm
2
π + ancLNAm

2
π ln

(
m2
π

m2
π + µ2

)
, (10)

where cLNA is model independent.
The scale µ in Eq.(10) is effectively the scale at which the rapid, chiral variation at

low mπ turns off. The best fit to the lattice data is obtained with a value µ ∼ 0.4 − 0.5
GeV – a very similar scale to that found, for example, for the magnetic moments. Clearly
Eq.(10) gives a very good description of the lattice data for the first moment of the non-
singlet distribution d − u. Taking into account the rapid chiral variation as m2

π → 0 there
is also quite good agreement between the extrapolated value of the first moment and the
experimentally determined moment. A similar result holds for the second and third moments
too [29].

V. CONCLUSION

In the light of the numerous examples presented in this brief review, it should be evident
that the study of hadron properties as a function of quark mass shows a clear pattern:

• In the region of quark masses m̄ > 60 MeV or so (mπ greater than typically 400-
500 MeV) hadron properties are smooth, slowly varying functions of something like a
constituent quark mass, M ∼M0 + cm̄ (with c ∼ 1).

• Indeed, MN ∼ 3M,Mρ,ω ∼ 2M and magnetic moments behave like 1/M .

• As m̄ decreases below 60 MeV or so, chiral symmetry leads to rapid, non-analytic
variation, with δMN ∼ m̄3/2, δµH ∼ m̄1/2 and
δ < r2 >ch∼ ln m̄.

• Chiral quark models like the cloudy bag provide a natural explanation of this transi-
tion. The scale is basically set by the inverse size of the pion source – the inverse of
the bag radius in the bag model.

These are remarkable results that will have profound consequences for our further explo-
ration of hadron structure within QCD as well as the analysis of the vast amount of data now
being taken concerning unstable resonances. In terms of immediate results for the structure
of the nucleon, we note that the careful incorporation of the correct chiral behaviour of QCD
into the extrapolation of its properties calculated on the lattice has produced:

• The best values of the proton and neutron magnetic moments from QCD.
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• The best value of the sigma commutator.

• Improved values for the charge radii of the baryon octet.

• Improved values for the magnetic moments of the hyperons.

• Good agreement between the extrapolated moments of the non-singlet distribution
u− d and the experimentally measured moments.

In addition, although we did not have time to discuss it, this approach has led to the best
current value for the strangeness magnetic moment of the proton from lattice QCD [16].

Clearly, while much has been achieved, even more remains to be done. It is vital that
lattice calculations with dynamical fermions are pushed to the lowest possible quark masses,
taking advantage of developments of improved actions and so on. It is also vital to further
develop our understanding of the physics of chiral extrapolation by comparison with these
new calculations, by looking at new applications and by further comparison with chiral
models.
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