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Abstract

Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of

the electromagnetic current operator. Although the existence of this moment

was recognized theoretically soon after the discovery of parity nonconserva-

tion (PNC), its experimental isolation was achieved only recently, when a

new level of precision was reached in a measurement of the hyperfine depen-

dence of atomic PNC in 133Cs. An important anapole moment bound in
205Tl also exists. In this paper, we present the details of the first calculation

of these anapole moments in the framework commonly used in other stud-

ies of hadronic PNC, a meson exchange potential that includes long-range

pion exchange and enough degrees of freedom to describe the five indepen-

dent S − P amplitudes induced by short-range interactions. The resulting

contributions of π−, ρ−, and ω−exchange to the single-nucleon anapole mo-

ment, to parity admixtures in the nuclear ground state, and to PNC exchange

currents are evaluated, using configuration-mixed shell-model wave functions.

The experimental anapole moment constraints on the PNC meson-nucleon

coupling constants are derived and compared with those from other tests of

the hadronic weak interaction. While the bounds obtained from the anapole

moment results are consistent with the broad “reasonable ranges” defined by

theory, they are not in good agreement with the constraints from the other
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experiments. We explore possible explanations for the discrepancy and com-

ment on the potential importance of new experiments.
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I. INTRODUCTION

The strangeness-conserving (∆S = 0) weak nucleon-nucleon interaction is of consider-
able interest. It provides the one experimentally accessible means of probing the neutral
current component of the hadronic weak interaction, as this component plays no role in
flavor-changing reactions. Furthermore the question of how long-range weak forces between
nucleons are connected to the underlying elementary weak quark-boson couplings of the
standard model is an important strong-interaction question, one with potential connections
to poorly understood phenomena such as the ∆ I = 1/2 rule. One of the challenges in
the field has been the experimental determination of the various spin and isospin contri-
butions to the low-energy weak NN interaction, as this interaction is dwarfed by much
larger strong and electromagnetic forces. The weak effects can be isolated only by precisely
measuring tiny effects associated with the parity nonconservation (PNC) accompanying this
interaction. Because the PNC effects are typically of relative size ∼ 10−7, only one class of
elementary NN scattering experiments, ~p + p, has reached the requisite sensitivity. PNC
effects have also been isolated in nuclear experiments, but only a few nuclear systems are
sufficiently well understood to permit theorists to relate the observable to the underlying
NN interaction. For these reasons there is interest in finding new experimental constraints.

Shortly after Lee and Yang’s proposal that weak interactions violate parity, Vaks and
Zeldovich [1] noted independently that an elementary particle (as well as composite sys-
tems like the nucleon or nucleus) could have a new electromagnetic moment, the “anapole
moment”, corresponding to a PNC coupling to a virtual photon. One contribition to the
anapole moments of hadrons would thus arise from PNC loop corrections to the electromag-
netic vertex. Despite some early work on the contribution of the nucleon anapole moment
to high-energy electron-nucleon scattering [2], the interest in anapole moments might have
been limited to theorists had not Flambaum, Khriplovich, and collaborators [3] pointed out
their enhanced effects in atomic PNC experiments in heavy atoms. As the anapole moment
is spin dependent, it contributes to the small hyperfine dependence of atomic PNC. (The
dominant PNC effects in such experiments arise from the coherent vector coupling of the
exchanged Z0 to the nucleus, and are thus independent of nuclear spin.) While nuclear-spin-
dependent effects do arise from Vector(electron)- Axial(nucleus) Z0 exchange, this nuclear
coupling does not grow systematically with the nucleon number A of the nucleus: naively,
the axial coupling in an odd-A nucleus is to the unpaired valence nucleon. Flambaum et al.
[3] observed that the anapole moment of a heavy nucleus grows as A2/3, so that weak radia-
tive corrections to spin-dependent atomic PNC associated with the anapole moment would
typically dominate over the corresonding tree-level Z0 exchange for sufficiently large A (A ∼>
20). This growth means that spin-dependent atomic PNC effects should be dominated by
the anapole moment – a radiative “correction” – and measurable in heavy atoms.

Nevertheless, spin-dependent atomic PNC effects are still exceedingly small, typically
∼ 1% of the size of nuclear-spin-independent atomic PNC effects. Despite considerable
effort, only limits existed on the anapole contribution until very recently. However, with
the Colorado group’s measurement [4] of atomic PNC in 133Cs at the level of 0.35%, a
definitive (7σ) nuclear-spin-dependent effect emerged from the hyperfine differences. This
measuement is the principal motivation for the work presented here. The goal of the present
study is to carry out an analysis of the 133Cs anapole moment that follows as closely as
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possible the formalism developed and employed in other NN and nuclear tests of the low-
energy hadronic weak interaction [5]. That formalism is based on the finite-range PNC NN
potential of Desplanques, Donoghue, and Holstein (DDH), a potential that contains sufficient
freedom to describe the long-range π exchange and the short-range physics governing the
five independent PNC S − P NN amplitudes [6]. The resulting π−, ρ−, and ω−exchange
PNC NN potential is employed in estimating the loop contributions to the single-nucleon
anapole moment and the exchange current and nuclear polarization contributions to the
nuclear anapole moment for 133Cs. We also present results for Tl, where an interesting
anapole limit exists [7,8].

The current work extends the treatment of Ref. [9] by including heavy-meson PNC con-
tributions, thereby going beyond long-range π exchange to the full DDH potential. This
extension is crucial in describing the isospin character of both the single-nucleon and nu-
clear polarizability contributions to the anapole moment. The main results of our study were
recently presented in a letter [10]. Here we give the technical details of the heavy-meson cur-
rent and polarizability calculations, and discuss the associated shell-model calculations and
their potential shortcomings. Our approach differs from most earlier calculations [3,11–15] by
avoiding one-body reductions of the currents and potentials: exchange currents and polariz-
abilities are evaluated from shell-model two-body densities matrices, modified by short-range
correlation functions that mimic the effects of missing high-momentum components. We also
use a form for the anapole operator in which components of the three-current constrained
by current conservation are rewritten in terms of a commutator with the Hamiltonian, and
thus explicitly removed.

The paper is organized as follows. In Sec. II we define the anapole moment and the
electron-nucleus interaction it induces, and discuss connections with the generalized Siegert’s
theorm. In Sec. III we describe the DDH PNC NN interaction arising from π−, ρ−, and
ω−exchange and its connections with the S−P amplitudes. The treatment of the one-body,
exchange-current, and polarization contributions to the anapole moment are given in Sec.
IV. The summation over intermediate nuclear states in the polarizability is performed by
closure, after calibrating this approach in a series of more complete shell-model calculations
in lighter nuclei. Other technical details – particularly the rather complicated heavy-meson
exchange-current evaluations – are presented in Appendices A through D. In Sec. V experi-
mental values for the anapole moments of 133Cs and 205Tl are deduced from the corresponding
hyperfine PNC measurements. Other tests of the low-energy PNC NN interaction are dis-
cussed, and the constraints they impose on various PNC meson-nucleon couplings described.
We address the issue of uncertainties in the shell-model nuclear structure calculations and
attempt to assess the effects of missing correlations phenomenologically. In the concluding
Sec. VI we discuss the resulting discrepancies and possible future work that would help
address some of the open questions.

II. THE ANAPOLE OPERATOR AND CURRENT CONSERVATION

In this section we describe the anapole moment in terms of a classical current distribution
[16,17]. The corresponding operator for a quantum mechanical current is obtained from a
multipole expansion that satisfies the generalized Siegert’s theorem. We illustrate, in a
simple one-body nuclear model, the relationship between the anapole moment and the PNC
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NN interaction and the consequences of current conservation.

A. Anapole Moments in Classical Electromagnetism

Given classical charge and current distributions, ρ(~x
′
) and ~j(~x

′
), the scalar and vector

potentials, Φ(~x) and ~A(~x), are obtain from integrals over the Green’s function. After a
Taylor expansion around the source point ~x

′
one obtains

Φ(~x) =
∫
d3x

′ ρ(~x
′
)

4π|~x− ~x ′|
=
∫
d3x

′
ρ(~x

′
){1− ~x ′ · ~∇+

1

2
(~x
′ · ~∇)2 + · · ·} 1

4π|~x| , (1)

~A(~x) =
∫
d3x

′ ~j(~x
′
)

4π|~x− ~x ′|
=
∫
d3x

′~j(~x
′
){1− ~x ′ · ~∇+

1

2
(~x
′ · ~∇)2 + · · ·} 1

4π|~x| . (2)

In the scalar potential expansion, the first term inside the curly bracket generates the
total charge (monopole) moment; the second term, the electric dipole moment; and the
third term, a combination of the quadrupole and monopole charge moments [18]. For the
vector potential, the first term vanishes as there is no net current. After carefully taking
the constraints of current conservation and the boundedness of the current density into
account (which place six constraints on the bilinear products j(~x

′
)ix

′
j ), there remain three

independent components in the second term, corresponding to the magnetic dipole moment
of a classical current distribution. Similarly, the third term involves a symmetric product
of two coordinates with the current, generating 18 independent trilinear combinations, with
10 constraints. The remaining eight independent components comprise the static magnetic
quadrupole moment and the E1 moment known as the “anapole moment” (AM).

One can extract the vector potential due to the AM explicitly,

~A(anapole)(~x) = (−~a∇
2

M2
+

~∇
M
~a ·

~∇
M

)
1

4π|~x| , (3)

where

~a =
M2

6

∫
d3x

′
~x
′ × (~x

′ ×~j(~x ′)). (4)

(We multiply and divide by M2 for consistency with the definition of ~a we will later in-
troduce via the Dirac equation.) We can remove the second term in Eq. (3) by a gauge
transformation, so that

~A(anapole)(~x) =
~a

M2
δ(3)(~x). (5)

Current conservation allows Eq. (4) to be rewritten as
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FIG. 1. A toroidal current winding generates a nonzero anapole moment.

~a = −M
2

4

∫
d3x

′
x
′2~j(~x

′
). (6)

(We use the Lorentz-Heaviside unit in which α = e2/4πh̄c = 1/137.) Eq. (6) is often
presented as the definition of the AM [3,12–17,19]. However it is important to note that this
form is obtained only after exploiting the constraints of current conservation.

It is apparent, for the ordinary electromagnetic current, that the associated AM operator
is odd under a parity transformation. Therefore a nonzero AM requires either the introduc-
tion of an axial vector component into the current or a parity admixture in the ground state
(allowing the ordinary electromagnetic current to have a nonvanishing expectation value).
This requirement of PNC associates the AM with the weak interaction.

Another important property is the contact nature of the AM vector potential. Thus
an atomic electron interacts with the AM of the nucleus only to the extent that its wave
function penetrates the nucleus.

Figure 1 gives a classical picture of the anapole moment as a current winding. Although
the currents on the inner and outer sides of the torus oppose one another, there is a net
contribution because of the r2 weighting (in spherical coordinates) of the current in the defi-
nition of the AM, leading to an AM that points upward. The illustrated current distribution
is odd under a parity reversal, as we have noted it must be for the ordinary electromagnetic
current. If, however, the current has a chirality – a small “pitch” corresponding to a left- or
right-handed winding that would signal PNC – a parity-even contribution to the operator
would be induced.

B. The Anapole Operator

Although one could quantize Eq. (6) directly to generate the anapole moment operator, a
better procedure is to avoid the assumption of current conservation, as this is often violated
in nuclear models. Switching to a standard spherical multipole decomposition yields the
momentum-space charge and current operators [20]

ρ(~q) =
∑

J,M

(−i)J4πY ∗JM (Ωq)M
coul
JM (q); (7)
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TABLE I. Properties of multipole moments under parity and time reversal. A slash (no slash)

denotes odd (even) behavior.

M coul T el Tmag

J = 0 PT

J = 1 P/T/ P/T PT

J = 2 PT PT/ P/T/

J = 3 P/T/ P/T PT
...

...
...

...

~jλ(~q) =
∑

J,M

(−i)J
√

2π(2J + 1)D(J)
Mλ(−φq,−θq, φq)[T elJM(q)− λTmagJM (q)], (8)

and the associated charge, transverse electric, and transverse magnetic multipole projections
of definite angular momentum and (in the absence of PNC) parity

M coul
JM (q) =

∫
d3x jJ(qx)YJM (Ωx)ρ(~x); (9)

T elJM (q) =
∫
d3x

1

q
~∇× [jJ (qx)~YM

JJ1(Ωx)] ·~j(~x); (10)

TmagJM (q) =
∫
d3x jJ(qx)~Y M

JJ1(Ωx) ·~j(~x), (11)

where ~q is the (outgoing) three-momentum transfer, jJ the spherical Bessel function, YJM
and ~Y M

JJ1 the ordinary and vector spherical harmonics, and D(J)
Mλ(−φq,−θq, φq) the rotation

matrix.
The transformation properties of the possible multipole moments under parity (P) and

time-reversal (T) are listed in Table I. Systems that are parity and time-reversal invariant
can have only even-rank Coulomb moments (charge, charge quadrupole, etc.) and odd-rank
transverse magnetic moments (magnetic dipole, magnetic octupole, etc.). The P- and T-odd
moments, which would arise in the standard model from small CP-violating contributions
to the weak interaction, correspond to the odd-rank Coulomb and even-rank transverse
magnetic multipoles (electric dipole, magnetic quadrupole, etc.). The PNC but T-even
moments, which would arise from the usual weak interaction, correspond to the odd-rank
transverse electric multipoles, with the lowest of these being the dipole moment known as
the anapole moment.

For consistency with Eq. (5), we require

∇2 ~A(~x) = −~j(~x), (12)

which then defines the anapole operator

a1λ = lim
~q2→0

−i
√

6πM2

~q2

T el1λ. (13)
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The simplest case is the general expression for the matrix element of a conserved four-
current for a free spin-1

2
particle

Ū(p′)Jµ(q)U(p) = Ū(p′)(F1(q
2)γµ − iF2(q

2)

2M
σµνqν

+
a(q2)

M2
(6 qqµ − q2γµ)γ5 − i

d(q2)

M
σµνqνγ5)U(p). (14)

from which the four moments of Table I can be immediately identified. The two vector
terms define the charge F1(q2) and magnetic F2(q

2) form factors. The axial terms that
follow are the anapole and electric dipole terms, respectively. The anapole term reduces in
the nonrelativistic limit to

a(q2)

M2
(6 qqµ − q2γµ)γ5 →

a(q2)

M2
~q 2(~σ − q̂q̂ · ~σ)

=
a(q2)

M2
~q 2~σ⊥, (15)

showing that the current is transverse and spin-dependent. From this current we then have
the AM operator for a nonrelativistic point particle

â1λ = a(0)σ1λ. (16)

C. Current Conservation and the Extended Siegert’s Theorem

The anapole operator a1λ has been defined in terms of T el1λ, and it is well known that
this operator can be transformed into other forms by exploiting the continuity equation.
These forms are equivalent in calculations where consistent charge and current operators
can be constructed and exact matrix elements evaluated. However we are interested in
nuclear calculations where, when one goes beyond the simplest descriptions to models that
treat the interactions among the nucleons, current conservation is not preserved. We lack
a prescription for constructing the many-body currents consistently that are necessary for
current conservation, and for addressing the renormalizations that account for the limited
Hilbert spaces employed in nuclear models. In such cases there is a preferred form for T el

1λ,
the form in which all components of the three-current constrained by current conservation
are reexpressed in terms of the charge operator.

A familiar example is the case of E1 transitions generated by the ordinary electromag-
netic current. Then T el1λ generates a one-body operator proportional to ~p/M , which is of
order v/c, where v is the nucleon velocity. It can be shown that the exchange current
contribution to T el1λ is also of this order. As the exchange currents, in general, cannot be
constructed faithfully, it follows that errors will arise that are necessarily of leading order in
the velocity.

Siegert [21] showed that the situation could be greatly improved by exploiting the con-
tinuity equation

~∇ ·~j(~x) = −i[H, ρ(~x)] (17)
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to write T elJ , in the long-wavelength limit, entirely in terms of the charge operator. This
generates the familiar dipole form of the transverse electric operator, proportional to ω~r,
where ω is the energy transfer. The importance of this rewriting is that the charge operator,
which is of order (v/c)0, has exchange current corrections only of order (v/c)2, or of relative
size ∼ 1%. Thus the Siegert’s form of the E1 operator is a far more controlled operator in
nuclear calculations.

A form of T el1λ consistent with Siegert’s theorem is in common use [22]

T el
′

JM(q)
.
=
Ei − Ef

q
(
J + 1

J
)1/2M coul

JM (q)

−i(2J + 1

J
)1/2

∫
d3x jJ+1(qx)~YM

JJ+11(Ωx) ·~j(~x), (18)

where
.
= means the equality holds after taking matrix elements 〈f |Ô|i〉. This form has the

correct leading-order behavior for transitions due to the first term, with the second term
vanishing as q → 0. But for a static moment, the first term vanishes; the leading-order
behavior is then governed by the second term, which the naive Siegert’s theorem does not
properly constrain.

However the extension of Siegert’s theorem to arbitrary q was derived by Friar and
Fallieros [23,22]: at every order in q those components of the current constrained by current
conservation are identified and rewritten in terms of the charge operator. The result is

T el
′′

JM (q)
.
=
Ei − Ef

q
(
J + 1

J
)1/2

∫
d3x

(qx)J

(2J + 1)!!
gJ (qx)YJM(Ωx)ρ(~x)

− q

J + 2

∫
d3x

(qx)J

(2J + 1)!!
hJ (qx)~YM

JJ+11(Ωx) · (~x×~j(~x)), (19)

where gJ and hJ are polynomials in q [23]. Combining Eq. (19) and Eq. (13) one finds [9]

aλ = −M
2

9

∫
d3x x2[jλ(~x) +

√
2π(Y2(Ωx)⊗~j(~x))λ] (20)

This is the AM operator form used here and in our earlier work; to our knowledge all other
analyses have been based on the naive form of Eq. (6).

We stress that the three transverse electric operators T el ,T el
′
, and T el

′′
are equivalent for

simple one-body models which ignore nucleon-nucleon interactions, provided the resulting
one-body currents are properly generated by minimal substitution. The differences in these
operators arise when they are used in more realistic calculations.

D. Simple Examples

In this section we illustrate how this equivalence is manifested in non-interacting shell
model calculations of the nuclear AM of 133Cs. The PNC interaction is also taken to be a
one-body effective potential, H

(1)
PNC.

The elements of the calculation include:

9



1. Extreme single-particle forms for the ground-state nuclear wave function. As 133Cs is
an odd-even nucleus with J = 7/2+, the odd proton is placed in the 1g7/2 shell, outside
an otherwise fully spin-paired closed core.

2. The strong Hamiltonian is a one-body harmonic oscillator potential with spin-orbit
interaction. While this description is primitive, it does yield the proper ground-state
spin and parity for the (nearly spherical) nucleus 133Cs. The harmonic oscillator wave
functions allow analytic calculations of polarizabilities, etc.

3. H
(1)
PNC is treated perturbatively: only linear terms are retained.

Thus the resulting Hamiltonian is

H = H0 +H
(1)
PNC , (21)

with

H0 =
A∑

i=1

~p(i)2

2M
+

1

2
Mω2~x(i)2 − f~s(i) · ~l(i); (22)

H
(1)
PNC =

A∑

i=1

gS + gV τ3(i)

2M
~σ(i) · ~p(i), (23)

where ω is related to the harmonic oscillator size parameter b by ω = 1/Mb2, the spin-orbit
strength f can be determined from shell splittings near the 3s2d1g shell, and gS and gV , the
isoscalar and isovector strengths in the one-body PNC potential, can be chosen to represent
the average potential exerted by the core nucleons. The analytic expressions we obtain
illustrate the functional dependence on all of these parameters. Thus we are not concerned
here with specific numerical values.

By minimal substitution

H → H + eΦ ; ~p→ ~p− e ~A, (24)

one can derive the charge and current densities to order 1/M ,

ρ(~x) = e
A∑

i=1

1 + τ3(i)

2
δ(3)(~x− ~xi), (25)

and

~jconv(~x) = e
A∑

i=1

1 + τ3(i)

2M
{~p(i), δ(3)(~x− ~xi)}sym ; (26a)

~jmag(~x) = e
A∑

i=1

µS + µV τ3(i)

2M
~∇× (~σ(i)δ(3)(~x− ~xi)); (26b)

~js.o.(~x) = e
A∑

i=1

1 + τ3(i)

2

f

2
~x(i)× ~σ(i)δ(3)(~x− ~xi); (26c)

~jPNC(~x) = e
A∑

i=1

1 + τ3(i)

2M

gS + gV
2

~σ(i)δ(3)(~x− ~xi), (26d)
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where the subscripts conv,mag, s.o., and PNC denote the current densities arising from
convection (kinetic energy), magnetization (intrinsic nucleon spin), the spin-orbit interac-
tion, and the PNC potential, respectively. The first three are vector currents while the last
is axial vector. Current conservation is then easily verified

~∇ · (~jconv(~x) +~jmag(~x) +~js.o.(~x) +~jPNC(~x)) = −i[H0 +H
(1)
PNC , ρ(~x)]. (27)

Contributions to the AM are generated by the axial-vector current acting between the
unperturbed nuclear ground state and by vector currents that contribute because H

(1)
PNC

perturbs the ground state,

〈ψ|T el1 |ψ〉 = 〈ψ0|T el(A)
1 |ψ0〉

+
∑

χ0

(
〈ψ0|T el(V )

1 |χ0〉〈χ0|H(1)
PNC |ψ0〉

Eψ0 − Eχ0

+H.c.), (28)

where ψ0 and χ0s are single particle unperturbed eigenfunctions of definite (and opposite)
parities, and the superscripts (A) and (V) label the components of T el

1 generated by the
axial-vector and vector currents, respectively.

The special case of no spin-orbit interaction is interesting because the first-order per-
turbed wave function (in fact, the result can be generalized to all orders) is given by the
Michel transformation [24]

ψ0(~x)→ ψ(~x) = (1 − ig~σ
2
· ~x)ψ0(~x)

∼= e−i~s·(gx)x̂ψ0(~x), (29)

where g = gS ± gV for a proton(+) or neutron(-). Eq. (29) shows that H
(1)
PNC generates a

spin rotation along the radial direction characterized by a small angle proportional to g and
to the distance to the center of the nucleus. Consider an S1/2 state aligned along the +z
axis. The spin probability around a ring, centered at the origin, would be uniform and in the
+z direction: we visualize this as a uniform array of up-spinors. When the weak interaction
is turned on, the Michel rotation will produce a spin helix [16] structure for this chain of
spinors as shown in Fig. 2. If we picture each spin as a small current loop, the combination
of all horizontal spin components S// can be viewed as a toroidal current winding producing
an AM, as discussed in Sec. II A.

Moreover, if the Michel transformed wave function is used in a calculation of the AM,
one finds that the contributions from ~jPNC and ~jconv cancel exactly, so that ~jmag is entirely
responsible for the AM. Even with the inclusion of the spin-orbit interaction, the magneti-
zation current remains the major contribution to the AM [3].

The sum over intermediate states in Eq. (28) simplies considerably in the harmonic
oscillator since the momentum operator ~p only generates transitions of one h̄ω. Thus the
transitions that must be consider in the extreme single-particle limit are the simple 1p and
2p1h single-shell transitions of Fig. 3 [15].

Some preliminary algebraic manipulations are helpful. Using the commutation relation

[
~p2

2M
+

1

2
Mω2~x2, ~x] = −i ~p

M
, (30)
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FIG. 2. Spin helix structure due to the parity mixing.
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the PNC one-body potential can be rewritten as

H
(1)
PNC =

g

2M
~σ · ~p

= i
g

2M
([H0, ~σ · ~x] +

f

2
[~σ ·~l, ~σ · ~x]). (31)

Using this result in the polarization sum yields

a(pol) = i
gM2

2
〈i|[~σ · ~x, T el(V )

1 ]|i〉

+
gM2

2
f
∑

n

〈i|~σ · (~x× ~l)|n〉〈n|T el(V )
1 |i〉/(Ei − En) +H.c. (32)

As a typical value for the nuclear spin-orbit strength is f/ω ≡ α ∼ 0.1, one can work to first
order in f , yielding for the various AM contributions

a(conv) ∼= gM

8
〈i|x2~σ|i〉

−gM
4
f
∑

n

〈i|~σ · (~x× ~l)|n〉〈n|1
2

(x2~p − i~x)|i〉/(Ei − En) +H.c. , (33)

a(mag) ∼= gM

4
µ
{
〈i|(~σ · ~x)~x− x2~σ|i〉

−f
∑

n

〈i|~σ · (~x× ~l)|n〉〈n|1
2
~σ × ~x|i〉/(Ei − En) +H.c.

}
, (34)

a(s.o.) ∼= −gM
2

8
f〈i|x2((~σ · ~x)~x− x2~σ)|i〉 , (35)

a(PNC) ∼= −gM
8
〈i|x2~σ|i〉 . (36)

As the O(f0) terms from a(conv) and a(PNC) exactly cancel, a(mag) determines the leading-
order (LO) contribution

aLO =
gM

4
µ〈i|(~σ · ~x)~x− x2~σ|i〉. (37)

For the next-to-leading-order (NLO) O(f 1) contributions, we approximate Ei − En ' −h̄ω
(as the spin-orbit correction to this are higher order) and invoke closure

a
(conv)
NLO '

gM

4
α〈i|{~σ · (~x× ~l), 1

2
(x2~p − ~x)}|i〉, (38)

a
(mag)
NLO '

gM

4
αµ〈i|{~σ · (~x× ~l), 1

2
(~σ × ~x)}|i〉. (39)

Therefore, assuming these matrix elements are of the same order of magnitude, one obtains
for the relative sizes

|a(conv)
NLO /aLO| ∼

∣∣∣∣∣
α

µ

∣∣∣∣∣ , (40)

|a(mag)
NLO /aLO| ∼ |α| , (41)

|a(s.o.)/aLO| ∼
∣∣∣∣∣
α

2µ

∣∣∣∣∣
〈x2〉
b2
∼ A1/3

∣∣∣∣∣
α

2µ

∣∣∣∣∣ ∼ |α| , (42)

13



TABLE II. Matrix elements corresponding to four choices of the anapole operator. Note the

dimensionless parameter α ≡ f/ω = fMb2, where b is the oscillator parameter. The results are in

units of C ≡ 4π
√

2
7(gS + gV )Mb2, another dimensionless quantity.

〈||a||〉/e T el1 T el
′

1 T el
′′

1 Cartesian

conv −1.1
1−4α + −5.4

1+4α
−2.8
1−4α + −2.7

1+4α
−4/3
1−4α + −6

1+4α
0.5

1−4α + −10.125
1+4α

mag 11.16
1−4α + 50.22

1+4α
11.16
1−4α + 50.22

1+4α
11.16
1−4α + 50.22

1+4α
11.16
1−4α + 50.22

1+4α

s.o. −15.6α
1−4α + −30.6α

1+4α
−8.8α
1−4α + −19.9α

1+4α
−44α/3
1−4α + −33α

1+4α
−22α
1−4α + −49.5α

1+4α

PNC 13/2 11/2 22/3 77/8

Tot. 11.16−20α
1−4α + 50.22−9α

1+4α same same same

where in the last line we assume an odd-proton nucleus with A ∼ 100, similar to Cs.
In Table II we present our results for the AM of 133Cs in this single-particle scheme using

the four different T el1 s discussed previously (T el1 ,T el
′

1 ,T el
′′

1 , and the one from the Cartesian
decomposition using Eq. (13) and Eq. (6)) to define our anapole operator. Agreement is
achieved only when: i) all the currents–conv,mag, s.o., and PNC–and ii) a complete set of
excitations–valence and core–are considered. This illustrates a point made earlier, that the
use of incomplete current operators or Hilbert spaces breaking current conservation will in
general lead to difficulties.

The table also shows that the contribution of the magnetization current, which is sep-
arately conserved (~∇ · ~j(mag) = 0), is independent of the choice of the anapole operator.
This term is entirely responsible for the leading O(α0) result (given the conv–PNC cancel-
lation in this order). It is also apparent that the NLO contribution attributed to a given
current depends on the anapole operator chosen: it is the sum over all contributions, not in-
dividual contributions, that is kept constant in calculations satisfying current conservation.
The numerical value of the LO contribution (61.4) is reduced by ∼ 20% to 50.5 when the
NLO contributions are included (α = 0.1), consistent with our earlier assertion that these
corrections are perturbations.

III. THE PNC NUCLEON-NUCLEON POTENTIAL

The AM calculations presented here are the first to employ an NN weak potential
sufficiently general to describe long-range π exchange and all five short-range S − P NN
amplitudes. This section summarizes the isospin structure of the ∆S = 0 hadronic weak
interaction and its description in terms of π−, ρ−, and ω−exchange.

A. The Isospin Structure of the Hadronic Weak Interaction

The standard model specifies the weak charged and neutral currents, JW and JZ, asso-
ciated with the absorption/emission of weak bosons by quarks [25]. The couplings to the
light quarks (u,d,s) are
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JµW = cos θCūγ
µ(1 − γ5)d + sin θCūγ

µ(1 − γ5)s ; (43)

JµZ =
1√

2 cos θW
{ūγµ(1− 8

3
sin2 θW + γ5)u− d̄γµ(1 − 4

3
sin2 θW + γ5)d

−s̄γµ(1 − 4

3
sin2 θW + γ5)s}, (44)

where θC is the Cabbibo angle, with sin θC ∼ .22 and θW is the Weinberg angle, with
sin2 θW ∼ 0.23. The effective quark-quark weak interaction at low energies can be described
by a phenomenological current-current Lagrangian

LWeak =
GF√

2
(J †WJW + JWJ

†
W + J †ZJZ), (45)

By assigning proper isospin and strangeness quantum number to each quark field, we
can decompose these hadronic currents

JW = cos θCJ
(1,0)
W + sin θCJ

( 1
2
,1)

W ; (46)

JZ = J
(1,0)
Z + J

(0,0)
Z , (47)

where the first superscript denotes the change in isospin (∆I), and the second in strangeness

(∆S). The current J
(1,0)
W drives the u→ d transition, while J

( 1
2
,1)

W drives the u→ s transition.
We can construct the strangeness conserving (∆S=0) hadronic weak interaction Lagrangian
density

L(∆S=0)
Weak =

GF√
2

(
(cos2 θCJ

(1,0)†
W J

(1,0)
W + sin2 θCJ

( 1
2
,1)†

W J
( 1

2
,1)

W +H.c.)

+ J
(1,0)†
Z J

(1,0)
Z + J

(1,0)†
Z J

(0,0)
Z + J

(0,0)†
Z J

(1,0)
Z + J

(0,0)†
Z J

(0,0)
Z

)
. (48)

An important aspect of this Lagrangian density is its isospin content. The symmetric
product of two J

(1,0)
W currents forms ∆I = 0 (isoscalar) and ∆I = 2 (isotensor) interactions,

while the symmetric product of two J
( 1

2
,0)

W currents forms a ∆I = 1 (isovector) interaction.
Therefore the charged current weak NN interaction in the ∆I = 1 channel is suppressed by
tan2 θC relative to the ∆I = 0 or 2 contributions. As there is no isovector suppression for
the neutral current, one concludes that the ∆I = 1 NN channel provides experimentalists
their best opportunity for studying the neutral current component of the hadronic weak
interaction.

The physical states are strongly interacting composites, nucleons and mesons. The strong
interaction dresses the underlying quark-boson couplings, and we have not yet developed the
theoretical tools needed to evaluate the strong effects quantitatively. The physical couplings
associated with the effective operators for nucleons and mesons are thus expected to differ –
perhaps substantially – from the underlying bare couplings. One famous example of this is
the ∆I = 1/2 rule in strangeness-changing weak decays: in experiments one finds a strong
enhancement of ∆I = 1/2 over ∆I = 3/2 amplitudes, relative to expectations based on the
underlying standard-model couplings and efforts to evaluate strong renormalizations. One
reason for the interest in PNC is the hope that we can learn more about such strong effects
by adding precise data on ∆S = 0 weak hadronic interactions.
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B. Meson Exchange and the Long-range PNC NN Potential

The most straightforward contribution to the PNC nuclear potential is from the direct
exchange of W±and Z0 between nucleons. Because of the small Compton wavelengths of
these bosons (∼ 0.002 fm) direct exchanges effectively occur only when two nucleons overlap.
We do not yet have an adequate understanding of such short-range contributions to either
the PNC or parity-conserving (PC) NN interactions. Fortunately, for energies characteristic
of bound nucleons, the NN interaction takes place primarily at distances large compared to
the nucleon size. This is due in part to the strong repulsion in the NN interaction at short
distances, and in part because nuclei are moderately dilute Fermi systems. Thus we expect
long-range contributions, which can be described without explicit reference to the structure
of the nucleon, to dominate the PNC interaction at low energies.

The strong PC NN interaction at low energies (∼< 400 MeV) has been quite successfully
modeled in terms of meson-exchange potentials. The complicated short-distance quark and
gluon dynamics governing this interaction are parameterized by various meson-nucleon cou-
plings and phenomenological form factors constrained by experiment. This meson-exchange
strong interaction model can be enlarged to include the weak PNC NN interaction by re-
placing one of the strong meson-nucleon couplings by a weak coupling. All of the physics
of W and Z exchange between quarks – and the attendant strong interaction dressing –
is buried inside the weak meson-nucleon vertices. As in the case of the strong NN inter-
action, the weak vertices depend on momentum-independent meson-nucleon couplings and
phenomenological form factors. For this model to make sense, one should, at a minimum,
be able to derive a consistent and reliable set of meson-nucleon couplings from PNC observ-
ables. Should such a set emerge, the longer term goal would be to develop a first-principles
understanding of the relationship between the effective hadronic couplings and the under-
lying standard model bare couplings, dressed by a complicated soup of strong quark-quark
interactions.

In developing a sensible meson-exchange model for the PNC NN force, one must first
truncate the tower of possible dynamical mesons, effectively “integrating out” those which
do not contribute explicitly to the interaction. At small center-of-mass energies light mesons
dominate the PNC potential because they have longer ranges. Candidates below the chi-
ral symmetry breaking scale of ∼ 1 GeV include the pseudoscalar mesons π(140MeV),
η(549MeV), and η

′
(958MeV); the scalar mesons S(975 MeV) and δ(983MeV); and the vector

mesons ρ(769MeV), ω(783MeV) and φ(1020MeV). One could also consider crossed two-pion
exchanges, etc. Barton’s theorem [26], which states that CP invariance forbids any coupling
between neutral J=0 mesons and on-shell nucleons, helps to restrict the possibilities, elim-
inating exchanges of π0, η, η

′
, S, and δ0 (to the extent that CP violation can be ignored).

Furthermore McKellar and Pick have argued that δ± exchange can be regarded as a form
factor correction to π± exchange [27], and φ is strongly suppressed relative to ρ and ω. This
motivates a PNC potential based on π±, ρ0, ρ±, and ω0 exchanges. (We will present below
another argument that will make this potential seem less arbitrary.)

The PC and PNC meson-nucleon interaction Lagrangian density in the π−, ρ−, and
ω−exchange model is

LPC = igπNNN
′
γ5~τ · ~πN − gρNNN

′
(γµ − i

µV
2M

σµνq
ν)~τ · ~ρµN
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−gωNNN
′
(γµ − i

µS
2M

σµνq
ν)ωµN, (49)

LPNC = − fπ√
2
N
′
(~τ × ~π)3N +N

′(
h0
ρ~τ · ~ρµ + h1

ρρ
µ
3 +

h2
ρ

2
√

6
(3τ3ρ

µ
3 − ~τ · ~ρµ)

)
γµγ5N

+N
′
(h0

ωω
µ + h1

ωτ3ω
µ)γµγ5N, (50)

where gπNN , gρNN , and gωNN are the strong π−, ρ−, and ω−nucleon coupling constants and
fπ, h(0,1,2)

ρ , and h(0,1)
ω (the superscripts denote the rank of isospin) are the weak π−, ρ−, and

ω−nucleon coupling constants. (In the literature fπ is also frequently called hπ or h1
π.) Note

that the γ5 convention is that of Bjorken and Drell, and that q is the outgoing momentum
of the produced meson. (Both of these conventions are opposite in sign to those of [6].)
Evaluating the one-boson exchange diagrams, where one of the vertices is PC and the other
PNC, and making a non-relativistic reduction, one obtains the PNC NN potential

H
(2)
PNC(~r) =

iFπ
M

[~τ (1)× ~τ (2)]3[~σ(1) + ~σ(2)] · ~uπ(~r)

+
1

M

({
F0~τ (1) · ~τ (2) +

F1

2
[τ (1)3 + τ (2)3] +

F2

2
√

6
[3τ3(1)τ3(2)− ~τ (1) · ~τ (2)]

}

×{(1 + µV )i[~σ(1) × ~σ(2)] · ~uρ(~r) + [~σ(1) − ~σ(2)] · ~vρ(~r)}

+
{
G0 +

G1

2
[τ3(1) + τ3(2)]

}
× {(1 + µS)i[~σ(1)× ~σ(2)] · ~uω(~r)

+[~σ(1)− ~σ(2)] · ~vω(~r)}+
1

2
[τ3(1)− τ3(2)][~σ(1) + ~σ(2)] · [G1~vω(~r)− F1~vρ(~r)]

)
, (51)

where ~r = ~r1−~r2, ~u(~r) = [~p, e−mr/4πr], ~v(~r) = {~p, e−mr/4πr}, and ~p = ~p1− ~p2. The various
coefficients in this potential are products of PC and PNC couplings: Fπ = gπNNfπ/

√
32,

F0 = −gρNNh0
ρ/2, F1 = −gρNNh1

ρ/2, F2 = −gρNNh2
ρ/2, G0 = −gωNNh0

ω/2, and G1 =
−gωNNh0

ω/2. We use the strong couplings gπNN = 13.45, gρNN = 2.790, and gωNN = 8.37.
Vector dominance fixes the strong scalar and vector magnetic moments, µS = −0.12 and
µV = 3.70. Note that the π-exchange channel is I=1; numerically it dominates the isovector
NN weak interaction. This is the channel which tests the strength of the neutral current
component of the hadronic weak interaction.

While the field has seen considerable experimental progress in constraining the PNC
meson-nucleon couplings, the theoretical situation has hardly advanced beyond the bench-
mark analysis of Desplanques, Donoghue, and Holstein (DDH) [6], carried out twenty years
ago. Using SU(6)W symmetry, current algebra, and the constituent quark model, DDH
related charged current components of fπ and the hiV to experimental PNC amplitudes for
∆S = 1 nonleptonic hyperon decays. Portions of the neutral current contributions were
also related to hyperon decays, while the remaining pieces – unaccessible through symmetry
techniques – were computed using explicit quark model calculations. Uncertainties associ-
ated with the latter imply considerable lattitude in the theoretical predictions. The resulting
“best values” and “reasonable ranges” are given in Table III. The case of fπ is particularly
acute, as this coupling is nominally dominated by neutral current interactions.

Subsequent to the DDH work, other approaches, such as soliton models [30] and QCD
sum rules [31], have been applied to the weak meson-nucleon couplings. None of these
approaches, however, has yielded a sharper theoretical picture. Part of the difficulty may
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TABLE III. Weak meson-nucleon coupling “best values” and “reasonable ranges” (in units

of 10−7) from the standard model calculations of Desplanques, Donoghue, and Holstein. For

comparison, the last two columns give the corresponding results of Dubovik and Zenkin (DZ) and

Feldman, Crawford, Dubach, and Holstein (FCDH).

Coupling “Reasonable Range“ “Best Value“ DZ [28] FCDH [29]

fπ 0.0↔11.4 4.6 1.1 2.7

h0
ρ -30.8↔11.4 -11.4 -8.4 -3.8

h1
ρ -0.38↔0.0 -0.19 0.4 -0.4

h2
ρ -11.0↔-7.6 -9.5 -6.8 -6.8

h0
ω -10.3↔5.7 -1.9 -3.8 -4.9

h1
ω -1.9↔-0.8 -1.1 -2.3 -2.3

lie in the assumption of valence quark dominance for the hadronic weak interaction. In
particular, it has recently been shown, in the context of chiral perturbation theory, that chiral
corrections to the leading-order PNC πNN interaction may be large [32]. These corrections,
which have no analog in constituent quark models, reflect the presence of “disconnected”
light q̄q sea contributions. Given the present interest of hadron structure physicists in the sea
quark structure of light hadrons, the possibility of important sea quark contributions makes
fπ a particularly interesting object of study. Achieving agreement among all determinations
of this coupling is, thus, important. As we observe below, the current interpretation of the
Cs and Tl AMs in terms of DDH couplings shows that such agreement is not yet in hand.

In can be argued that an analysis in terms of meson-exchange PNC couplings is in fact
quite general, if limited to low-energy observables: the DDH couplings are a shorthand
for another representation of the low energy PNC NN interaction, one based on the five
independent S −P amplitudes. The DDH description in terms of π, ρ, and ω exchange can
be viewed as an effective theory, valid at momentum scales much below the inverse range of
the vector mesons. At low momentum the detailed short-range behavior of the potential is
not resolvable: thus one could characterize the vector-meson contribution to the weak NN
interaction by five strengths describing the five S−P amplitudes. A sixth parameter would
be needed to describe π exchange, as this interaction is long ranged. The six DDH couplings
thus are equivalent to such a description of the weak potential.

In an ideal world one would determine the low-energy NN S−P amplitudes, or equiva-
lently the six weak meson-nucleon couplings, by a series of NN scattering experiments. Such
experiments require measurements of asymmetries ∼ 10−8, the natural scale for the ratio
of weak and strong amplitudes, 4πGFm

2
π/g

2
πNN . As we will detail later, only a single NN

measurement, the longitudinal analyzing power for AL for ~p + p, has produced a definitive
result. This result has been supplemented by PNC measurements in few-body nuclei and in
some special nuclear systems where nuclear structure uncertainties can be largely circum-
vented, allowing the experiments to be interpretted reliably. An analysis of these results,
which have been in hand for some time, suggests that the isoscalar PNC interaction – which
is dominated by ρ and ω exchange – is comparable to or slightly larger than the DDH “best
value,” while the isovector interaction – dominated by π exchange – is significantly weaker
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FIG. 5. Two-body axial-vector currents. One meson-nucleon vertex is strong, the second is

weak.

[5]. As the isovector channel is expected to be enhanced by neutral currents, there is great
interest in confirming this result. One reason for the interest in the 133Cs AM is the hope
that spin-dependent atomic PNC measurements can provide such a cross check.

IV. CONTRIBUTIONS TO NUCLEAR ANAPOLE MOMENTS

The DDH meson exchange model – which we have argued provides a very general de-
scription of the PNC NN interaction at low energies – has become the standard formalism
for discussing low-energy properties of the weak NN interaction. We now extend this for-
malism to nuclear AMs, discussing the various PNC meson-exchange mechanisms by which
a virtual E1 photon can be absorbed by the nucleus.

1. Fig. 4 illustrates a PNC pion cloud dressing of a nucleon (one pion-nucleon coupling
is PNC and one PC) and a vector-meson pole graph, leading to E1 photon absorption
by a nucleon. The axial currents corresponding to such pion-loop and vector meson
dominance diagrams generate nucleonic AMs [9,33–36], which we discuss in more detail
in Sec. IV A.

2. The two-body H
(2)
PNC also generates two-body axial vector exchange currents (See Fig.

5). The diagrams we evaluate include: i) pair currents, where E1 photons couple to
the NN̄ pairs excited by the two-body potential, and ii) transition currents, where E1
photons couple to the exchanged mesons. Detailed calculations are described in Sec.
IV B.
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FIG. 6. An opposite-parity polarization of the nuclear ground state induced by the PNC weak

NN interaction.

3. The two-body H
(2)
PNC polarizes the nucleus, producing an opposite-parity ground state

component. This component then couples back to the unperturbed ground state via
the amplitude for absorbing a virtual E1 photon. The resulting polarizability requires
one to sum over a complete set of opposite-parity intermediate states (Fig. 6). This
is discussed in Sec. IV C.

The dependence of these contributions on nucleon number A is important. As the one-
body anapole contribution involves a coupling to spin, it is easy to see that the nucleonic
contribution acts very much like a nuclear magnetic moment: in a naive picture of an odd-A
nucleus as an unpaired nucleon outside of a spin-paired core, the core contribution cancels,
leaving only the valence nucleon contribution. While that contribution will depend on the
quantum labels of the valence orbital, there is no general growth of the nucleonic contribution
with A. In contrast, it was the important observation that that polarization contribution
grows as A2/3 [3] that led atomic experimentalists to realize that AMs might be measureable.
This growth not only leads to larger AMs in heavy nuclei, but guarantees that the AM will
dominate over other sources of spin-dependent PNC, such as direct V(electron)-A(nucleus)
Z0 exchange (another nucleonic coupling that effectively sees only the unpaired valence
spin). Similarly, it was shown in [9] that the exchange current contribution also grows like
A2/3. Note that the polarization contribution could be additionally enhanced if the ground
state is a member a fortuitous parity doublet. There has been some discussion of anapole
(and electric dipole) moment enhancements because of such accidental near-degeneracies
[37].

In Figs. 4 - 6 the AM is shown interacting with an external photon. Yet the illustrated
processes are not physical, as the anapole coupling vanishes for on-shell photons. The
underlying physical processes involve a scattering particle – e.g., an atomic electron, the
source of the virtual photon. It follows that the AM need not be a gauge invariant quantity:
instead it is one of a larger class of weak radiative corrections – corrections naively of
O(GFα) – that together form a gauge invariant physical amplitude. Included in this larger
set of radiative corrections would be various “box” diagrams corresponding to simultaneous
exchange between the electron and nucleus of a photon and Z0, etc. However the long-
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distance contributions to the AM of a nucleus – the meson cloud contributions and many-
body contributions due to wave function polarization and exchange currents discussed here
– are both dominant numerically and separately gauge invariant [33]. This is one reason the

set of anapole contributions associated with H
(2)
PNC discussed here are of such interest.

The calculations require wave functions for the nuclear ground state and one- and two-
body transition density matrices for evaluating the effects of one- and two-body operators
on the ground state. The wave functions were derived from shell model (SM) diagonal-
izations with harmonic oscillator Slater determinants and with suitable residual two-body
interactions. For 133Cs, the oscillator parameter is b = 2.27f and the canonical SM space
is between the magic shells of 50 and 82, i.e., 1g7/2-2d5/2-1h11/2-2d3/2-3s1/2. Calculations
were performed with the five valence protons restricted to the first two of these shells and
four neutron holes to the last three. This produced an m-scheme basis of about 200,000.
Two interactions were employed, the Baldridge-Vary potential [38] and a recent potential
developed by the Strasbourg group [39], both of which are based on the addition of mul-
tipole terms to g-matrix interactions and are designed for the 132Sn region. As the results
are very similar, here we only quote results from the Baldridge-Vary calculation. For 205Tl,
an oscillator parameter b = 2.54f was chosen. The ground state was described as a proton
hole in the orbits immediately below the Z=82 closed shell, i.e., 3s1/2-2d3/2-2d5/2 (though
the 1h11/2 lies between two d shells, we omitted this opposite-parity shell to keep the SM
space manageable), and the two neutron holes are in the space between magic shells of 126
and 82, i.e., 3p1/2-2f5/2-3p3/2-1i13/2-2f7/2-1h9/2. A simple Serber-Yukawa force was used as
the residual interaction.

A. Nucleonic Anapole Moments

As illustrated in Fig. 4, the one-body PNC electromagnetic currents (parity even) can
be derived from pion loop diagrams, where one meson-nucleon vertex is weak and PNC and
the other strong and PC, and from vector meson dominance. After plugging these one-body
PNC currents into Eq. (20), the one-body anapole operator takes the form

a1−body
λ =

A∑

i=1

[as(0) + av(0)τ3(i)]σλ(i). (52)

This form makes it clear that the contributions of spin-paired core nucleons cancel, leaving
only the valence nucleon AM. The results from [9], where only the pion contribution was
considered, are

as(0) ∼= −0.193fπe, (53)

av(0) ∼= −0.048fπe. (54)

Thus the pion loops generate an isoscalar coupling that is about four times larger than the
isovector one. Later this calculation was extended to include the ρ0-pole contribution by
vector meson dominance [33]. This work was further extended to included the full set of one-
loop contributions involving the DDH vector meson PNC couplings [35], using the framework
of heavy baryon chiral perturbation theory (HBχPT) and retaining contributions through
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O(1/Λ2
χ), where Λχ = 4πFπ ∼ 1GeV is the chiral symmetry breaking scale and Fπ ∼= 93MeV

is the pion decay constant. This yielded the nucleonic AM couplings

as(0)

e
∼= −0.24fπ − 0.37h1

ρ − 0.11h0
ω + 0.07h0

φ − 1.43h1
A + 0.0051hnΣ−K

+0.047(hnΣ̄K+

V +
hpΣ0K+

V√
2

)− 0.3(hpKA + hnKA ) + 0.009hpΛK − 0.125hpΛK+

V , (55)

av(0)

e
∼= −0.37(h0

ρ +
h2
ρ√
6

)− 0.12h1
ω + 0.07h1

φ − 1.43h1
A + 0.9(h0

V +
3

4
h2
V ) + 0.0051hnΣ−K

+0.047(−hnΣ̄K+

V +
hpΣ0K+

V√
2

)− 0.3(hpKA − hnKA ) + 0.009hpΛK − 0.125hpΛK+

V . (56)

The HBχPT result for the pionic contribution is consistent with the earlier pion loop esti-
mates: the isoscalar coupling is 1.3 times the pion loop value, while the isoscalar coupling
is zero to this order in χPT. However, the vector mesons greatly enhance the isovector AM.
An evaluation using DDH best values shows that av(0) ∼ 7as(0). That is, the inclusion of
the vector mesons enhances the AM and qualitatively changes its isospin character, with the
proton and neutron AMs opposite in sign. The HBχPT calculation included non-Yukawa
type πNN couplings (defined as hivs and hiAs in [35]) associated with derivative interactions.
Here we include only the standard DDH contributions, omitting the rest. Using “best val-
ues” for the neglected terms [35], this omission is estimated to generate a 3% error in the
dominant isovector coupling and 100% in as(0). The reason for the omission is consistency:
such derivative couplings are absent in the DDH PNC NN potential, the parameters of
which are constrained by experiment. A consistent treatment of the derivative coupling
would require not only their propagation through the polarization and exchange current
calculations for the AM, but also redoing the DDH potential fits to all other low-energy NN
and nuclear PNC observables. We leave this ambitious task to future work.

Folding these expressions with our SM matrix elements (〈I||∑A
i=1 σ(i)||I〉 = -2.372 and

2.532, 〈I||∑A
i=1 σ(i)τ (i)||I〉= -2.305 and 2.282, for Cs and Tl, respectively) yields the results

in Table VI.

B. Exchange Currents

The virtual E1 photon can also be absorbed on a pair of nucleons coupled by the PNC
potential. Such PNC exchange currents are evaluated in the standard way. The transition
matrix is derived and reduced nonrelativistically, retaining terms through 1/M . This re-
sulting momentum-space current is then Fourier transformed to produce a coordinate-space
two nucleon current,

jµ(~x, ~x1, ~x2) =
∫

d~k

(2π)3
ei
~k·~x
∫
d(~p

′
1 − ~p1)

(2π)3
ei(~p

′
1−~p1)·~x1

∫
d(~p

′
2 − ~p2)

(2π)3
ei(~p

′
2−~p2)·~x2

×jµ(~k, ~p
′

1 − ~p1, ~p
′

2 − ~p2), (57)

where ~x is the field point, ~x1 and ~x2 the source points.
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In Appendix A we give the two-body charge and current operators in momentum
space. In Appendix B we give the nonvanishing three-current coordinate-space operators to
O(1/M), the forms needed for the AM calculation. The π contribution, which turns out to
dominate numerically, is

~j(π)(~x, ~x1, ~x2) = ~j
(π pair)
γ−PC (~x, ~x1, ~x2) +~j

(π pair)
γ−PNC(~x, ~x1, ~x2) +~j(ππγ)(~x, ~x1, ~x2)

=
−egπNNfπ
8
√

2πM
(~τ (1) · ~τ (2) − τ (1)3τ (2)3)

{
~σ(1)δ(3)(~x− ~x1) + ~σ(2)δ(3)(~x− ~x2)

−1

2
(~σ(1) · ~∇1 − ~σ(2) · ~∇2)

[
(δ(3)(~x− ~x1) + δ(3)(~x− ~x2))(~x1 − ~x2)

+
1

2

|~x1 − ~x2|
mπ

~∇(δ(3)(~x− ~x1) + δ(3)(~x− ~x2))
]}e−mπ |~x1−~x2 |

|~x1 − ~x2|
. (58)

Even with the complete exchange currents in hand, evaluating their shell model matrix
elements is a formidable task. (The one previous AM exchange current calculation treated
only π exchange [9].) For example, the form of ~jρργ is far more involved than any of the pionic
contributions. The procedure we follow is to first identify which currents are numerically
significant by averaging the currents over the nuclear core. Once identified, full two-body
evaluations are then performed for these cases.

The one-body average, first performed for PNC potentials by Michel [24], involves direct
and exchange terms

〈α|O(1)|β〉 ≡
∑

γ

〈αγ|O(2)|βγ〉 − 〈αγ|O(2)|γβ〉, (59)

where the sum extends over all single-particle core states. The averages are done in a
Fermi gas, a simple choice because spin, isospin, and spatial averages can be performed
independently. The nucleus is viewed as a single particle outside a spin-paired (but isospin
asymmetric) Fermi sea. The one-body average operators are obtained in closed form, though
the average done over the spatial functions produces, in general, a complicated but smooth
function of the single-particle initial and final momenta (the Y and W functions below).
The smoothness allows us to replace this function with an average value, with little loss of
accuracy. Appendix C contains an example of this averaging procedure, while the full results
for the various currents are listed in Appendix D. In the case of π exchange the result is

~j(π)(~x, ~xi) = ~j
(π−pair)
γ−PC (~x, ~xi) +~j

(π−pair)
γ−PNC (~x, ~xi) +~j(ππγ)(~x, ~xi)

=
egπNNfπ

2
√

2Mm2
π

((θn + θp) + (θn − θp)τ3)× ρ
{
〈W ′(π)〉~σδ(3)(~x− ~xi)

− 2

m2
π

[
〈Y3〉p2

F~σδ
(3)(~x− ~xi)− 〈Y1〉[~σ · ~∇, [~∇, δ(3)(~x− ~xi)]]

−1

4
〈Y2〉{~σ · ~∇i, {~∇i, δ

(3)(~x− ~xi)}}
]

(60)

The one-body estimate of the exchange current contributions to the AM can be obtained
by plugging the averaged currents into Eq. (20). The Fermi-gas-averaged AM results are
tabulated in the FGA columns of Table IV. The results are given as a fraction of the π
pair current contribution, as this is the dominant term. These results are compared to full
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TABLE IV. A comparison of anapole moment estimates from a one-body Fermi gas average

with full two-body shell model results. DDH best-value couplings are used, and no short-range

correlation function corrections are included in either set of results. The labels PC and PNC denote

whether the nucleon absorbing the photon has a PC or PNC meson-nucleon coupling.

〈||a||〉/e× 107 π pair ρ pairPC ρ pairPNC ω pairPC ω pairPNC ππγ ρργ ρπγPC
133Cs FGA 110 13.0% -19.0% -0.4% 8.1% -34.9% 6.6% 0.5%

SM 67 12.9% -18.2% 8.6% -24.0%
205Tl FGA -75 12.8% -18.2% -0.3% 7.8% -35.5% 7.8% 0.0%

SM -27 15.4% -21.5% 12.8% -29.4%

two-body SM results, similarly normalized to the SM π pair current AM value. The absolute
π pair current results are also given for both calculations.

We see from the table that, while the Fermi gas average tends to overestimate the AM
contribution by a factor of ∼ 2-3, compared to the SM, the Fermi gas and SM agree very
well on the relative values of the various contributions. (The comparison is less impressive
for Tl than for Cs, but the Fermi gas parameters used for both nuclei were tailored to Cs.)
This suggests that the one-body average AM values should be reliable indicators of which
exchange current contributions are important.

The Fermi gas model is an independent particle model. The SM, while incorporating
certain correlations, omits the high-momentum components of the Hilbert space necessary
for describing the short-range hard core. While the SM (and associated Fermi gas) short-
comings could in principle be corrected by introducing effective operators and wave function
renormalizations, in practice this is never done. Instead, most frequently the omitted short-
range physics is mocked up by a correlation function which, in SM PNC studies, is often
taken from Miller and Spencer [40],

f(r12) = 1 − (1− br2
12)e

−ar2
12, (61)

with a = 1.1 fm−2 and b = 0.68 fm−2. This correlation function reduces two-body matrix
elements by ∼ 25-30% for π currents, 75-80% for ρ and ω currents, ∼ 80% for ππ currents,
and ∼ 90-95% for ρρ and ρπ.

No short-range correlation corrections have been included in the results of Table IV.
It is thus apparent that the true ~jω pair

γ−PC , ~jρργ (the most complicated current), and jρπγ

exchange current contributions (with short-range correlations included) would be ∼ 1% of
the dominant π pair result. It is then reasonable to ignore these unimportant but complicated
exchange currents, evaluating all others with the full two-body SM density matrix, modified
by the Miller-Spencer correlation function. While a complete list of the two-body AM
operators is too long to list here, the dominant π operator is found to be

~a(π) =
egπNNfπM

72
√

2π
(~τ (1) · ~τ (2)− τ3(1)τ3(2))

×
[
x2

1~σ(1) + x2
2~σ(2) +

√
2π{x2

1[Y2(Ω1)⊗ ~σ(1)]1 + x2
2[Y2(Ω2)⊗ ~σ(2)]1}
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−1

2
(~σ(1) · ~∇1 − ~σ(2) · ~∇2)

×
(
(x2

1 + x2
2)~x+

√
2π{x2

1[Y2(Ω1)⊗ ~x]1 + x2
2[Y2(Ω2)⊗ ~x]1}+

3

2

x

mπ

~x
)]e−mπx

x
, (62)

where ~x = ~x1 − ~x2. The numerical results for the sum of all exchange current contributions
to the Cs and Tl AMs is given in Table VI.

C. Nuclear Polarization Contributions

As illustrated in Fig. 6, the two-body PNC NN potential perturbs the ground state,
mixing it with excited states of opposite parity. The resulting odd-parity ground state
component allows the ordinary (vector) E1 current to couple to the ground state. The
first-order perturbation theory AM is thus

∑

n

〈I|aV |n〉〈n|H(2)
PNC |I〉

Eg.s. − En
+
〈I|H(2)

PNC|n〉〈n|aV |I〉
Eg.s. − En

, (63)

where |I〉 is the unperturbed ground state of good parity and the sum extends over a
complete set of nuclear states n of angular momentum I and opposite parity. The operator
aV is obtained by plugging the ordinary electromagnetic current into Eq. 20,

~aV1 = −Me

6
√

2

A∑

i=1

{
1√
2
~r1(i)τ3(i) + [~r(i)⊗ ~l(i)]1[1 + τ3(i)]

+
3

2
[~r(i)⊗ ~σ(i)]1[µs + µvτ3(i)]

}
(64)

where µs = 0.88 and µv = 4.706.
The summation over a complete set of intermediate SM states for 133Cs or 205Tl is

impractical either directly or by the summation-of-moments method discussed in Ref. [9]
and below. However, because no nonzero E1 transition exists among the valence orbits
(e.g., the h11/2 and g7/2 orbitals have opposite parity but cannot be connected by a dipole
operator), an alternative of completing the sum by closure, after replacing 1/∆En by an
average value 〈1/∆E〉 is quite attractive

−
∑

n

〈I|aV |n〉〈n|H(2)
PNC |I〉+ 〈I|H(2)

PNC|n〉〈n|aV |I〉
∆En

→ −〈 1

∆E
〉
∑

n

〈I|aV |n〉〈n|H(2)
PNC |I〉+ 〈I|H(2)

PNC|n〉〈n|aV |I〉 = −〈 1

∆E
〉〈I|{aV ,H(2)

PNC}|I〉 (65)

The resulting product of aV and H
(2)
PNC contracts to a two-body operator, so that only the

two-body ground state density matrix is needed, a considerable simplification. (No three-
body terms arise because the absence of E1 valence transitions guarantees they vanish for
our SM spaces.)

The closure approximation can be considered as an identity, clearly, if one knows the
correct 〈1/E〉, that is, how to parameterize the relationship between the 1/E-weighted and
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non-energy-weighted sums. In practical terms, this means demonstrating that a systematic
relationship exists between 〈1/E〉 and some experimentally known quantity, such as the
position of the E1 giant resonance. Note that the E1 operator is closely related to the
anapole operator aV .

To investigate the systematics we completed a series of exact calculations in 1p− and light
2s1d−shell nuclei (7Li, 11B, 17,19,21F, 21,23Na), evaluating both the 〈1/E〉 and non-energy-
weighted sums. First, the ground states are determined from full 0h̄ω diagonalizations. The
polarization sum involves the complete set of 1h̄ω states that connect to the ground state
through the anapole operator. The summation was performed by exploiting a variation of
the Lanczos algorithm to evaluate the effect of the nuclear propagator 1/Eg.s. −H (see Sec.
V.D). The algorithm efficiently completes the sum via moments, even though the dimensions
of the 1h̄ω bases ranged up to ∼ 500,000. The appropriate closure energies were found not
only for the anapole polarization sum, but also for E1 operator. This allowed us to compare
the 〈1/E〉 appropriate for the AM calculation with that appropriate for photoexcitation. As
photoexcitation response functions have been mapped in many nuclei, this in turn allows us
to relate the anapole 〈1/E〉 to an experimental observable.

The results show that the anapole and photoexcitation average excitation energies track
each other very well, provided one takes into account the three isospins contributing to
H

(2)
PNC . Measured as a fraction of the 1/E-weighted giant dipole average excitation energy,

which is 〈1/E〉−1 ∼ (22-26) MeV for these nuclei, the appropriate effective energies for the
anapole closure approximation are 0.604 ± 0.056 for h0

ρ and h0
ω(isoscalar channel), 0.899 ±

0.090 for fπ (isovector channel), and 1.28±0.14 for h2
ρ (isotensor channel). The larger 〈1/E〉

for h0
ρ and h0

ω enhances the isoscalar contribution to the anapole polarizability. The small
variation in 〈1/E〉, once the isospin dependence is recognized, supports the notion that we
can connected the closure result to the true polarization sum.

Inspired by the nuclear systematics we found above, we estimate T=0,1,2 closure energies
from known E1 distributions, that is, we fix the anapole closure energy as 0.6, 0.9, and 1.28
of the E1 closure energy evaluated from the experimental dipole distribution. For 133Cs
[41], this gives 9.5, 14.1, and 20.2 MeV, respectively. The corresponding 205Tl values are
8.7, 12.9, and 18.5 MeV. The ground-state expectation values for the contracted two-body
effective operator {aV ,H(2)

PNC} are then evaluated from the SM two-body density matrices
for Cs and Tl. The Miller-Spencer correlation function is again included in the two-nucleon
matrix elements of H

(2)
PNC. The resulting polarization contributions are given in Table VI.

V. EXPERIMENTAL CONSTRAINTS, RESULTS, AND UNCERTAINTIES

In this sections we discuss atomic PNC experiments that determined (or limited) the
AMs of 133Cs and 205Tl, other experimental tests of the PNC hadronic weak interaction,
and the consistency of the AM results with these other tests. We also discuss nuclear
structure uncertainties in the interpretation of the AM measurements.
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TABLE V. Nuclear systematics found in light odd-proton nuclei: The second column shows the

functional dependences of SM results for the direct anapole polarization sums and the third column

shows the forms for sums by closure approximation using the closure energy 〈1/E〉E1 which is

derived from the 1/E-weightedE1 sum rule (also evaluated in the SM). The same normalization has

been applied to the second and third columns. By comparing these two columns, it is apparent that

in order for the closure approximation to be correct, the anapole closure energies 〈1/E〉AM(T=0,1,2)

should be different from 〈1/E〉E1. In columns 4-6 we express 〈1/E〉−1
AM(T=0,1,2) in units of 〈1/E〉−1

E1:

thus a value less than one means that the appropriate anapole average excitation energy is lower

than the corresponding average over the photoexcitation peak. Note the closure result faithfully

reproduces the correct h0
ρ−h0

ω combination. We omit the dependence on h1
ρ and h1

ω because the net

isovector contribution is almost entirely from fπ . In the case of 19F, the lowest, nearly degenerate

1/2− state was removed from all sums.

Nucleus Direct Pol. Sum Closure with 〈1/E〉E1 〈1/E〉−1
AM(0)

〈1/E〉−1
AM(1)

〈1/E〉−1
AM(2)

7Li fπ − 0.34(h0
ρ + 0.58h0

ω) + 0.05h2
ρ 0.80fπ − 0.20(h0

ρ + 0.63h0
ω) + 0.05h2

ρ 0.59 0.80 1.0
11B fπ − 0.53(h0

ρ + 0.52h0
ω) + 0.05h2

ρ 0.89fπ − 0.37(h0
ρ + 0.52h0

ω) + 0.07h2
ρ 0.70 0.89 1.4

17F fπ − 0.60(h0
ρ + 0.48h0

ω) + 0.04h2
ρ 1.02fπ − 0.40(h0

ρ + 0.46h0
ω) + 0.05h2

ρ 0.66 1.02 1.2
19F fπ − 0.33(h0

ρ + 0.56h0
ω) + 0.02h2

ρ 0.90fπ − 0.19(h0
ρ + 0.59h0

ω) + 0.03h2
ρ 0.58 0.90 1.5

21F fπ − 0.41(h0
ρ + 0.55h0

ω) + 0.03h2
ρ 0.97fπ − 0.24(h0

ρ + 0.54h0
ω) + 0.04h2

ρ 0.60 0.97 1.3
21Na fπ − 0.57(h0

ρ + 0.51h0
ω) + 0.02h2

ρ 0.77fπ − 0.31(h0
ρ + 0.49h0

ω) + 0.03h2
ρ 0.54 0.77 1.5

23Na fπ − 0.67(h0
ρ + 0.53h0

ω) + 0.05h2
ρ 0.95fπ − 0.38(h0

ρ + 0.52h0
ω) + 0.07h2

ρ 0.57 0.95 1.4

TABLE VI. Decomposition of the SM estimates of the anapole matrix element 〈I ||A1||I〉/e
into its weak coupling contributions.

Nucleus Source fπ h0
ρ h1

ρ h2
ρ h0

ω h1
ω

133Cs nucleonic 0.59 0.87 0.90 0.36 0.28 0.29

ex. cur. 8.58 0.02 0.11 0.06 -0.57 -0.57

polariz. 51.57 -16.67 -4.88 -0.06 -9.79 -4.59

total 60.74 -15.78 -3.87 0.36 -10.09 -4.87
205Tl nucleonic -0.63 -0.86 -0.96 -0.35 -0.29 -0.29

ex. cur. -3.54 -0.01 -0.06 -0.03 0.28 0.28

polariz. -13.86 4.63 1.34 0.08 2.77 1.27

total -18.03 3.76 0.33 -0.30 2.76 1.26
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FIG. 7. Atomic parity mixing induced by Z0 exchange.

A. Constraints from the Nuclear Anapole Moments of 133Cs and 205Tl

A thirty-year program to study atomic PNC [42] has yielded in the past few years
exquisitely precise (sub 1%) results. The primary focus of these studies has been to obtain
accurate values of the strength of direct Z0 exchange between electrons and the nucleus. The
PNC effects are dominated by the exchange involving an axial Z0 coupling to the electron
and a vector coupling to the nucleus. The nuclear coupling is thus coherent, proportional to
the weak vector charge, QW ∼ Z(1− 4 sin2 θW )−N ∼ −N , and independent of the nuclear
spin direction. It is widely recognized that these atomic measurements are important tests of
the standard electroweak model and its possible extensions, complementing what has been
learned at high energy accelerators that directly probe physics near the Z0 pole [43,44].

In heavy atoms the weak electron-nucleus interaction will induce a small P−wave parity
admixture in an atomic S orbital on the order of parts in 1011. This will produce, in a
transition that is normally M1, a small E1 component. The PNC signal will be easier to
detect if the parity-allowed M1 transition is hindered, as the observable depends on the
E1/M1 ratio. The forbidden M1 transitions of 6S1/2 → 7S1/2 in Cs and 6P1/2 → 7P1/2 in Tl
are two examples of this sort. Moreover, the structure of these atoms is comparatively simple,
allowing theorists to extract the underlying weak couplings from the PNC observables.

One popular atomic technique exploits the linear Stark response to an applied static elec-
tric field. A coordinate system in the atom is established by mutually perpendicular Stark,
magnetic (for producing the Zeeman spectrum of states that can be populated by optical
pumping), and laser (stimulating the E1 transition) fields. The “parity transformation” is
accomplished by inverting these fields. The PNC signal is associated with any difference
seen in the interference between the Stark, PNC E1, and hindered M1 amplitudes after
various reversals of the coordinate system. The elimination of spurious signals associated
with imperfect field reversals and other sources of systematic error is a tedious task. A
recent review of the Cs and Tl experiments can be found in [45].

The dominant axial(electron)-vector(nucleus) atomic PNC interaction is independent
of the nuclear spin (see Fig. 7). There is also a tree-level contribution to atomic PNC
that is nuclear-spin-dependent, where the Z0 exchange is vector(electron)-axial(nucleus).
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interactions.

This contribution is highly suppressed because the vector electron weak coupling is small,
g

(e)
V = −(1 − 4 sin2 θW ) ≈ −0.1, and the nuclear coupling is no longer coherent. But, given

sufficiently accurate (∼< 1%) measurements, this suppressed signal can be cleanly extracted
by studying the hyperfine (and thus nuclear spin) dependence of the PNC measurements.

In Sec. II we noted that the nuclear AM will also generate a nuclear-spin-dependent
weak interaction between the electron and the nucleus, thus contributing in combination
with tree-level V(electron)-A(nucleus) Z0 exchange. Furthermore other O(GFα) radiative
corrections also contribute to that spin dependence, with the hyperfine interaction between
the electron and nucleus (see Fig. 8) of particular importance because of the coherent Z 0

coupling. While the naive expectation is that radiative corrections will indeed be corrections
of strenth ∼ α relative to the tree-level contribution, the small vector coupling of the Z 0 to
the electron combined with the A2/3 growth of the anapole moment leads to a surprise. The
AM becomes the dominant source of nuclear-spin-dependent atomic PNC for A ∼> 20 [3,9].
This guarantees not only that the nuclear spin dependence is signifcant for heavy atoms,
but also that the AM contribution might be deduced from the measurements.

The nuclear-spin-dependent(NSD) PNC electron-nucleus contact interaction which gen-
erates the parity mixing can be expressed as

HNSD
PNC =

GF√
2
κtot~α · ~Iρ(r), (66)

κtot = κZ0 + κhf + κAM , (67)

where ~I and ρ(r) are the nuclear spin and density, ~α the usual Dirac matrix of the electron,
and κ a dimensionless constant which characterizes the strength of the PNC. (Note that
our definition of κ is different from the one given by Khriplovich and others by a factor
(−1)I+1/2+l(I+ 1/2)/(I(I + 1)), where l is a single-particle orbital angular momentum. The
Khriplovich definition thus assumes a single-particle picture, though there are examples of
nuclei where the dominant single-particle orbital is characterized by an l that is naively
inconsistent with the many-body I, e.g., l 6= I ± 1/2.) The κ subscripts denote contribu-
tions from Z0 exchange, the hyperfine interaction correction, and the AM. From the 133Cs
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(extracted by Flambaum and Murray [19]) and 205Tl results [7,8], one finds

κtot(
133Cs) = 0.112 ± 0.016,

κtot(
205Tl) = 0.29 ± 0.40 Seattle,

κtot(
205Tl) = −0.08 ± 0.40 Oxford. (68)

Henceforth we will focus on the Seattle Tl result, as this proves to be more restrictive
than the Oxford result in the parameter space of PNC hadronic couplings favored by other
experiments. (The Oxford AM result is quoted with opposite signs in different sections of
[8] and the accuracy of the spin-independent measurement is considerably less than that
of the corresponding Seattle measurement. These observations contributed to our decision
to focus on the result of [7].) We treat the Tl constraint as one on the principal isotope
205Tl (70.5%). The other stable isotope, 203Tl (29.5%), differs in structure only by a pair of
neutrons, and thus should have very similar properties.

The Z0 contribution is

κZ0 = −gA
2

(1− 4 sin2 θW )
〈I||∑A

i=1 σ(i)τ3(i)||I〉
〈I||Î||I〉

, (69)

with the axial vector coupling gA = 1.267 and sin2 θW = 0.2230. Here || denotes a matrix ele-

ment reduced in angular momentum. The reduced matrix element of Î is
√
I(I + 1)(2I + 1).

The Gamow-Teller matrix elements, taken from the SM studies, are −2.305 (133Cs) and
2.282 (205Tl), not too different from the corresponding single-particle (s.p.) values of −2.494
(unpaired 1g7/2 proton) and 2.449 (3s1/2 proton). This yields:

κZ0(133Cs) = 0.0140, (70)

κZ0(205Tl) = −0.127. (71)

Note that the inclusion of one-loop standard model electroweak radiative corrections modify
these results, reducing the isovector contribution substantially and inducing a small isoscalar
component.

For the hyperfine correction, from the measured nuclear weak charge and magnetic mo-
ment, Bouchiat and Piketty [11] find

κhf (133Cs) = 0.0078, (72)

κhf (205Tl) = 0.044. (73)

Note that the conversion of the notation of Ref. [11] to ours is

κhf = c(2)
p (hf)

〈I||σp||I〉s.p.
〈I||Î||I〉

. (74)

By subtracting κZ0 and κhf from κtot we obtain the AM contribution

κAM (133Cs) = 0.090 ± 0.016, (75)

κAM (205Tl) = 0.376 ± 0.400. (76)
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These values are related to the nuclear AMs by

κAM =
4πα
√

2

GFM2

〈I||â||I〉/e
〈I||Î||I〉

, (77)

where â is the anapole operator. As our results for 〈I||â||I〉/e are expressed in terms of the
PNC meson-nucleon couplings in Table VII, we have the needed AM coupling constraints.

B. Constraints from Nuclear PNC Experiments

The nuclear experiments measuring an interference between PC and PNC amplitudes
generally fall into four types

1. Measurement of the longitudinal asymmetry AL in a scattering experiment (e.g., ~pp,
~pd, or ~pα).

2. Measurement of the circular polarization Pγ of photons emitted in a nuclear decay
(e.g., 18F, 21Ne) or reaction (e.g., np → dγ).

3. Measurement of the asymmetry Aγ of photons emitted in the decay of a polarized
nucleus (e.g., 19F) or in a polarized nuclear reaction (e.g., ~np→ dγ, ~nd → tγ).

4. Measurement of the degree of spin rotation for polarized neutrons through various
targets (e.g., p, d,4He).

It is unfortunate that only a single NN PNC scattering observable, the longitudinal ana-
lyzing power AL for ~p+p, has been successful [46–48]. (Experiments have been done at 13.6,
45, and 221 MeV.) These results have been supplemented by a number of PNC measure-
ments in nuclear systems, where accidental degeneracies between pairs of opposite-parity
states can produce, in some cases, large enhancements in the PNC signal. Unfortunately
not all of these results are readily interprettable because of nuclear structure uncertainties.
Those that can be analyzed with confidence [5] include AL for ~p + α at 46 MeV [49], the
circular polarization Pγ of the γ-ray emitted from the 1081 keV state in 18F [50], and Aγ for
the decay of the 110 keV state in polarized 19F [51]. These examples involve either few-body
systems, where quasi-exact structure calculations can be done, or special nuclei in which the
PNC mixing matrix elements can be calibrated from axial-charge β decay [52]. An analysis
of these results, which have been in hand for some time, suggests that the isoscalar PNC
NN interaction – which is dominated by ρ and ω exchange – is comparable to or slightly
stronger than the DDH “best value,” whereas the isovector interaction – dominated by π
exchange – is significantly weaker (∼< 1/3) [5]. Because one expects the isovector channel to
be governed by neutral currents and to receive potentially significant light sea-quark con-
tributions, there is considerable interest in testing this result. The Cs and Tl AM results
provide one possible cross check.
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TABLE VII. PNC observables and corresponding theoretical predictions, decomposed into the

designated weak-coupling combinations.

Observable Exp.(×107) fπ − 0.12h1
ρ − 0.18h1

ω h0
ρ + 0.7h0

ω h1
ρ h2

ρ h0
ω h1

ω

AppL (13.6) -0.93 ± 0.21 0.043 0.043 0.017 0.009 0.039

AppL (45) -1.57 ± 0.23 0.079 0.079 0.032 0.018 0.073

AppL (221) 0.84 ± 0.34 -0.030 -0.030 -0.012 0.021

ApαL (46) -3.34 ± 0.93 -0.340 0.140 0.006 -0.039 -0.002

Pγ(18F) 1200 ± 3860 4385 34 -44

Aγ(19F) -740 ± 190 -94.2 34.1 -1.1 -4.5 -0.1

〈||A1||〉/e, Cs 800 ± 140 60.7 -15.8 3.4 0.4 1.0 6.1

〈||A1||〉/e, Tl 370 ± 390 -18.0 3.8 -1.8 -0.3 0.1 -2.0

C. Results

The constraints on PNC meson-nucleon couplings of Table VII are displayed graphically
in Fig. 9. Although there are six independent couplings, two combinations of these, one
isoscalar and one isovector, dominate the observables: fπ − 0.12h1

ρ − 0.18h1
ω and h0

ρ + 0.7h0
ω.

The decomposition of Table VII thus uses these two degrees of freedom along with h2
ρ and

the residual contributions in h1
ρ, h

0
ω, and h1

ω. The 1σ error bands of Fig. 9 are generated from
the experimental uncertainties, broadened somewhat by allowing uncorrelated variations in
each of the four minor degrees of freedom (that is, h2

ρ and the residuals in in h1
ρ, h

0
ω, and h1

ω)
over the DDH broad “reasonable ranges.” Note that only a fraction of the region allowed by
the Seattle Tl constraint is shown: the total width of the Tl band is an order of magnitude
broader than the width of the Cs allowed band, with most of the Tl allowed region lying
outside the DDH “reasonable ranges” (i.e., in the region of negative fπ − 0.12h1

ρ − 0.18h1
ω

and positive h0
ρ + 0.7h0

ω). That is, the bulk of the Seattle Tl band corresponds to an AM
value opposite in sign to that expected theoretically, given what we know experimentally
about PNC meson-nucleon couplings. The corresponding Oxford Tl band (not illustrated)
includes almost all of the parameter space in Fig. 9, as well as a substantial region outside
the bounds of the figure, to the lower left.

The weak coupling ranges covered by Fig. 9 correspond roughly to the DDH broad
“reasonable ranges.” Thus the anapole constraints are not inconsistent with the theoretical
“ball-park” estimates. However, the detailed lack of consistency among the various mea-
surements is disconcerting. Before the anapole results are included, the indicated solution
is a small fπ and an isoscalar coupling somewhat larger than, but consistent with, the DDH
best value, −(h0

ρ + 0.7h0
ω)DDHb.v. ∼ 12.7. But the AM results agree poorly with this solution,

as well as with each other. In particular, the precise result for 133Cs tests a combination of
PNC couplings quite similar to those measured in Aγ(

19F) and in Apα
L , but requires larger

values for the weak couplings.
Despite substantial differences between our work and that of Flambaum and Murray

[19], the predicted AMs from these two calculations are in relatively good agreement. The
corresponding interpretations, however, are quite different. Flambaum and Murray adopted
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the viewpoint that the Cs AM result could be accommodated by a value fπ ∼ 9.5, about
twice the DDH best value, fDDHπ b.v. ∼ 4.6. (The DDH reasonable range is 0-11.4, in units of
10−7.) The difficulty with this suggestion is its inconsistency with Pγ(18F), a measurement
that has been performed by five groups. The constraint from this measurement is almost
devoid of theoretical uncertainty

− 0.6 ∼< fπ − 0.11h1
ρ − 0.19h1

ω ∼< 1.2. (78)

If one allows h1
ρ and h1

ω to vary throughout their DDH reasonable ranges, one finds −1.0 ∼<
fπ ∼< 1.1, clearly ruling out fπ ∼ 9. There is also some tension between the Cs band and
those for p + α and Aγ(

19F).
Thus, unfortunately, the hint of a consistent pattern of weak meson-nucleon couplings

that was emerging from nuclear tests of the weak hadronic current is disturbed when the Cs
and Tl results are added.

D. Operator Renormalization and other Nuclear Structure Issues

It thus appears that the calculated value of the Cs AM, using weak meson-nucleon
couplings determined from NN and nuclear experiments, is significantly smaller than the
measured value. While there are several questions that could be raised about this conclusion,
perhaps the most difficult one is the quality of the nuclear structure calculations for Cs
and Tl: what error bar should we assign because of the inherent uncertainties in such
calculations?

Despite the rather extensive theoretical literature on AMs, it would be fair to characterize
the general quality of the associated nuclear structure work as unsophisticated. Much of the
previous work is based on extreme single particle models and employs effective one-body
PNC potentials, a choice that tends to obscure the discrepancies apparent in Fig. 9. Only a
few attempts have been made to estimate the effects of correlations, even in schematic ways.
In [11] quenching factors were introduced as a phenomenological correction to single-particle
estimates. Solid motivation for this approach can be found in classic studies of magnetic
moments and Gamow-Teller transitions in nuclear physics. In [15] single-particle calculations
were corrected for core polarization effects, employing a realistic g-matrix interaction but a
very simple set of particle-hole excitations. Despite the highly truncated model space, this
may be the only paper, other than our work here and in earlier papers [9,10], to use a realistic
interaction in calculations of the Cs and Tl AMs. Finally, in Ref. [13] core polarization
effects were evaluated in the random phase approximation, but with a schematic zero-range
spin-spin residual interaction.

One factor limiting what can be done is the challenge of completing the polarization
sum: apart from [9,10], the work referenced above performed this sum state-by-state. Such
a summation technique rules out a sophisticated ground-state wave function: the number
of opposite-parity eigenstates connecting to the ground state by the E1 operator would
be enormous. The two attempts to move beyond direct summation have come from our
studies. In [9] summation to a complete set of 1h̄ω states for 19F was carried out by a
Lanczos algorithm moments method. In this approach one recognizes that the quantity of
interest is the distribution of the vector aV |I〉 over the full set of 1h̄ω eigenstates: if that

33



-2 0 2 4 6 8 10 12 14

f - 0.12 h
1

- 0.18 h
1

-5

0

5

10

15

20

25

30
-(

h
0

+
0.

7
h

0 )

pp

p

133
Cs

19
F

205
Tl

18
F

FIG. 9. Constraints on the PNC meson couplings (×107) that follow from the results in Table

VII. The error bands are one standard deviation. The ~pp band is the union of 13.6, 45, and

221MeV results.

34



distribution is known, it can be weighted by 1/(Eg.s. − En) and dotted with 〈I|H (2)
PV to

generate the polarization sum. Instead of diagonalizing a very large matrix of dimension N ,
where N is the number 1h̄ω eigenstates, to get the eigenvalues En and eigenstates needed
to do this sum state-by-state, the Lanczos method maps the large matrix into a series of
smaller matrices of dimension N ′ = 1, 2, 3..., where N ′ � N . This mapping extracts exact
information from the original large matrix, the 2N ′ − 1 lowest moments of the vector aV |I〉
over the 1h̄ω eigenspectrum. It is readily seen that the distribution must be very well
determined after a modest number of iterations, N ′ ∼ 50. There is a variation of this
algorithm that uses the information in the Lanczos matrix to construct the effect of the
Green’s function [9]: it is obvious physically that one can obtain the Green’s function from
the detailed moments construction. (The algorithm develops the Green’s function acting
on a vector as an expansion in the Lanczos vectors, with the the coefficients of the vectors
updated with each iteration [53]. The method is thus exact in a numerical sense, allowing
one to evaluate the convergence.) This was the method used in the present study of p−
and sd−shell nuclei, to assess average excitation energies. We have applied this method
in cases where N ∼ 106, and it is possible with modern machines to tackle problems of
dimension ∼ 108 in this way. Unfortunately, given the complexity of our 133Cs ground state
wave function, the dimension of the negative-parity space required to saturate the E1 sum
is substantially larger than 108. Thus this technique, while exceedingly powerful, cannot be
applied to a case like 133Cs, at least at the present time.

Because we felt it was important to use a realistic large-scale SM wave function in
describing the 133Cs ground state, another method was needed to evaluate the polarization
sum. We did this by closure, which was tractable in part because of an attractive property of
the canonical 133Cs SM space, no nonzero matrix elements of aV . In our view there are two
worrisome features of this calculation. The first is the reliability of the average excitation
energy estimate, which we defined as the ratio of the non-energy-weighted to 1/En-weighted
sums. We performed a large set of calculations in lighter nuclei, using the exact Lanczos
Green’s function method described above, to calibrate the method. The average excitation
energies, normalized to the photoexcitation E1 peak and evaluated for each isospin channel,
proved to be very stable. One cannot prove that the extrapolation to heavy nuclei like Cs
and Tl is valid, clearly: perhaps there is some systematic evolution with neutron excess. On
the other hand, the naive expectation is that the method should improve with A, as the E1
profile tends to become more collective in heavier nuclei, and as the spin-orbit force tends to
remove E1 strength from low excitations: the closure approximation is clearly exact in the
limit of an infinitely narrow E1 resonance. Because the measured Cs AM is large, one would
need a substantial amount of strength quite low in the Cs spectrum to enhance the 1/En sum
and thus ”fix” the SM calculation: this is unexpected and, while the aV and photoexcitation
E1 operators are somewhat different, there is no evidence in the photoexcitation distribution
for such strength [41].

The second question is the adequacy of our ground-state wave function: though the Cs
and Tl SM calculations are serious efforts, numerical limitations forced restrictions on the
proton and neutron occupation numbers. The unrestricted 1g7/2 − 2d5/2 − 3s1/2 − 2d3/2 −
1h11/2 SM calculation was not attempted. Furthermore, it is well known that even full-shell
calculations often must be renormalized phenomenologically. Two operators closely related
to the AM, the Gamow-Teller and M1 operators, are well-studied examples [54]. In Table
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TABLE VIII. Magnetic moments of 133Cs and 205Tl measured in nuclear magnetons.

s.p. SM exp.
133Cs 1.72 1.65 2.58
205Tl 2.79 2.58 1.64

VIII our Cs and Tl SM magnetic moment values are compared to the experimental and
s.p. values. The SM and uncorrelated s.p. values are not that different, and both differ
significantly from experiment. The conclusion is that potential important physics is absent
in our truncated SM calculations.

The deviations of magnetic moments from the Schmidt line (or s.p. values) around the
Pb region have been extensively studied by Arima et al. [54]. The deviations from the s.p.
predictions can be described as a set of corrections to the bare gyromagnetic factors

〈I||µ||I〉/µN = (
1

2
+ δg

(0)
l )〈||~l||〉s.p. + (

1

2
+ δg

(1)
l )〈||~lτ3||〉s.p. + (0.88 + δg(0)

s )〈||~σ||〉s.p.
+(4.70 + δg(1)

s )〈||~στ3||〉s.p. , (79)

These factors represent the operator and wave function normalization corrections that would
result from a faithful treatment of the omitted parts of the Hilbert space. Equivalently (and
perhaps more appropriately) one can quote this result in terms of renormalized matrix
elements

〈I||µ||I〉/µN =
1

2
〈I||~l||I〉ren +

1

2
〈I||~lτ3||I〉ren + 0.88〈I||~σ||I〉ren + 4.70〈I||~στ3||I〉ren . (80)

The fit of [54] gives the following quenching for the spin matrix elements near Pb

〈I||~σ||I〉ren = 0.86〈||~σ||〉s.p. , (81)

〈I||~στ3||I〉ren = 0.54〈||~στ3||〉s.p. . (82)

Although there exists no such large body of data on the anapole moment operator,
we now explore whether some tentative conclusions can be drawn about effects of missing
correlations on that operator. We begin with the observation that the effects of correlations
on a many-body operator are expected to be quite similar to their effects on the one-body
equivalent of that operator. (One specific illustration of this is detailed in [52].) Thus we
start by looking for the one-body equivalent of the anapole polarization operator. The most
general spin-isospin form for a rank-one operator is

~aequivpol =
e

〈E〉 (a
(0)
l
~l + a

(1)
l τ3

~l+ a(0)
s ~σ + a(1)

s τ3~σ + a(0)
p [Y2 ⊗ ~σ]1 + a(1)

p τ3[Y2 ⊗ ~σ]1). (83)

As the average excitation energy is measured in units of h̄ω, the bare couplings a
(0,1)
(l,s,p) are

dimensionless. We then evaluate matrix elements of this one-body operator and of the full
polarization sum (chosing DDH “best-value” meson-nucleon couplings) in a single-particle
model for a variety of nuclei in the Pb and Sn regions, fitting the coefficients of the one-body
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operator to reproduce the polarization results. The results for Tl (Pb region) are presented
in a series of three tables, Tables IX, X, and XI, giving, respectively, the comparison of
the calculated s.p. polarization results with those generated by the effective operator, the
best fit values found for the coefficients of the effective operator, and the matrix elements
of the various terms in the effective one-body operator. The following three tables give the
analogous results for Cs (Sn region). Calculations were done with no spin-orbit potential as

well as with a spin-orbit potential of strength -0.1h̄ω~σ · ~l: the results show little sensitivity
to the spin-orbit contribution.

The tables show that the orbital contributions to the effective operator are neglible: the
dominant terms are the spin and spin-tensor operators, with the former (folding the results
of Tables X and XI and of Tables XIII and XIV) accounting typically for about 70% of the
AM strength. Furthermore the spin isoscalar and spin isovector operators contribute with
the same relative sign, with the isovector contribution larger. It follows for 205Tl, where the
single particle assignment is 3s1/2, eliminating both the spin-tensor and orbital contributions,
that the effective AM operator is very similar to the magnetic moment operator, and thus
should be renormalized in a very similar way. From Table VIII one concludes that our SM
estimates are not sufficiently quenched, overestimating the Tl AM by about a factor 1.6.
The consequence of this would be to broaden the allowed Tl band (only partially shown) in
Fig. 9 proportionately.

The case of 133Cs is more difficult in that the spin-tensor operator now plays a significant
role: the s.p. assignment is 1g7/2. This operator does not arise as a bare operator in
Gamow-Teller, M1, or other familiar responses. Our approach is somewhat unsatisfactory,
but perhaps of some help. In Table XV we compare s.p. and full 1p− and 2s1d−shell SM
calculations of magnetic moments with the experimental values for a series of light nuclei.
This seems to establish that, in these nuclei, the bulk of the needed renormalization of s.p.
estimates does come from the SM (sweeping under the rug issues like exchange currents, etc.).
In Table XVI we make a similar comparison of s.p. and SM AM operator matrix elements.
The pattern of significant quenching of spin matrix elements again emerges from this purely
theoretical comparison. In the case of the spin-tensor operator, the renormalizations do not
seem very large, nor do they appear to follow a simple pattern. While there are cases of
modest spin-tensor matrix element enhancement when the full-shell correlations are turned
on, these enhancements are smaller than the quenching that occurs in the spin matrix
elements. The overall tendancy of the correlations is to suppress the AM prediction.

While these arguments are of a hand-waving nature, they favor the conclusion that bet-
ter SM calculations will produce a somewhat smaller, not larger, predicted Cs AM. The
dominant missing physics appears to be insufficient quenching of the spin matrix elements.
This will clearly exacerbate the discrepancies apparent in Fig. 9. As a full-shell calcula-
tion for 133Cs will likely become feasible within the next few years, there may soon be an
opportunity to demonstrate that improved calculations will produce a smaller AM.

VI. CONCLUSIONS

Recent atomic PNC measurements in 133Cs reached a new level of precision that led, for
the first time, to detection of the hyperfine dependence of the signal. New measurements in
Tl have also imposed important constraints on nuclear-spin-dependent atomic PNC. This
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TABLE IX. Comparison of calculated s.p. polarization anapole moments 〈||~a||〉/e in the 208Pb

region with results for a fitted phenomenological effective operator.

Nucleus No s.o. With s.o.

Calc. Fit Calc. Fit
207Tl(3s−1

1
2

) -578 -593 -542 -536

207Tl(2d−1
3
2

) 759 763 699 692

207Tl(2d−1
5
2

) -780 -889 -691 -825

207Pb(3p−1
1
2

) -131 -122 -132 -123

207Pb(3p−1
3
2

) 161 154 158 151

207Pb(2f−1
5
2

) -180 -190 -184 -194

209Bi(2f 5
2
) 970 924 881 830

209Bi(2f 7
2
) -919 -1012 -821 -949

209Bi(1h 9
2
) 1154 1198 990 1057

209Pb(2g 9
2
) 224 232 212 220

TABLE X. The fitted parameters in 208Pb region.

a
(0)
l a

(1)
l a

(0)
s a

(1)
s a

(0)
p a

(1)
p

no s.o. 0.990 1.458 -95.838 -146.159 -243.094 -366.696

with s.o. -0.721 0.432 -84.580 -134.308 -224.986 -348.570

TABLE XI. The single particle reduced matrix elements used for 208Pb region fits.

~l τ3
~l ~σ τ3~σ [Y2 ⊗ ~σ]1 τ3[Y2 ⊗ ~σ]1

207Tl(3s−1
1
2

) 0.000 0.000 2.449 2.449 0.000 0.000

207Tl(2d−1
3
2

) 4.648 4.648 -1.549 -1.549 -0.618 -0.618

207Tl(2d−1
5
2

) 5.797 5.797 2.898 2.898 0.330 0.330

207Pb(3p−1
1
2

) 1.633 -1.633 -0.816 0.816 -0.651 0.651

207Pb(3p−1
3
2

) 2.582 -2.582 2.582 -2.582 0.206 -0.206

207Pb(2f−1
5
2

) 8.281 -8.281 -2.070 2.070 -0.661 0.661

209Bi(2f 5
2
) 8.281 8.281 -2.070 -2.070 -0.661 -0.661

209Bi(2f 7
2
) 9.621 9.621 3.207 3.207 0.426 0.426

209Bi(1h 9
2
) 17.162 17.162 -2.860 -2.860 -0.761 -0.761

209Pb(2g 9
2
) 13.984 -13.984 3.496 -3.496 0.507 -0.507
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TABLE XII. Comparison of calculated s.p. polarization anapole moments 〈||~a||〉/e in the 132Sn

region with results for a fitted phenomenological effective operator.

Nucleus No s.o. With s.o.

Calc. Fit Calc. Fit
131In(2p−1

1
2

) 433 422 409 429

131In(1f−1
5
2

) 641 644 567 636

131In(2p−1
3
2

) -484 -450 -440 -449

131Sn(3s−1
1
2

) 103 93 102 89

131Sn(2d−1
3
2

) -124 -109 -125 -106

131Sn(2d−1
5
2

) 137 144 127 136

133Sb(1g 7
2
) 788 751 684 736

133Sb(2d 5
2
) -610 -534 -549 -539

133Sn(2f 7
2
) 169 168 158 157

133Sn(1h 9
2
) -169 -159 -171 -160

TABLE XIII. The fitted parameters in 132Sn region.

a
(0)
l a

(1)
l a

(0)
s a

(1)
s a

(0)
p a

(1)
p

no s.o. 3.284 2.327 -52.990 -0.790 -182.832 -271.131

with s.o. 1.807 1.315 -44.608 -80.981 -176.206 -260.346

TABLE XIV. The single particle reduced matrix elements used for 132Sn region fits.

~l τ3
~l ~σ τ3~σ [Y2 ⊗ ~σ]1 τ3[Y2 ⊗ ~σ]1

131In(2p−1
1
2

) 1.633 1.633 -0.817 -0.817 -0.652 -0.652

131In(1f−1
5
2

) 8.281 8.281 -2.070 -2.070 -0.661 -0.661

131In(2p−1
3
2

) 2.582 2.582 2.582 2.582 0.206 0.206

131Sn(3s−1
1
2

) 0.000 0.000 2.449 -2.449 0.000 0.000

131Sn(2d−1
3
2

) 4.648 -4.648 -1.549 1.549 -0.618 0.618

131Sn(2d−1
5
2

) 5.797 -5.797 2.898 -2.898 0.330 -0.330

133Sb(1g 7
2
) 12.470 12.470 -2.494 -2.494 -0.711 -0.711

133Sb(2d 5
2
) 5.797 5.797 2.898 2.898 0.330 0.330

133Sn(2f 7
2
) 9.621 -9.621 3.207 -3.207 0.427 -0.427

133Sn(1h 9
2
) 17.160 -17.160 -2.860 2.860 -0.761 0.761
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TABLE XV. Magnetic moments of light odd-A nuclei.

s.p. SM exp.
11B 3.790 2.872 2.689
13N -0.263 -0.307 -0.322
27Al 4.790 4.207 3.642
29P 2.790 1.088 1.235
31P 2.790 1.252 1.132
33Cl 0.126 0.634 0.752

TABLE XVI. The renormalization of single particle matrix elements in light odd-A nuclei.

~l τ3
~l ~σ τ3~σ [Y2 ⊗ ~σ]1 τ3[Y2 ⊗ ~σ]1

11B s.p. 2.582 2.582 1.291 1.291 0.206 0.206

SM 3.100 3.100 0.773 0.773 0.309 0.309
13N s.p 1.632 1.632 -0.408 -0.408 -0.651 -0.651

SM 1.657 1.657 -0.432 -0.432 -0.598 -0.598
27Al s.p. 5.787 5.787 1.449 1.449 0.330 0.330

SM 6.164 6.164 1.080 1.080 0.321 0.321
29P s.p 0.000 0.000 1.225 1.225 0.000 0.000

SM 0.910 0.910 0.314 0.314 0.246 0.246
31P s.p. 0.000 0.000 1.225 1.225 0.000 0.000

SM 0.822 0.822 0.402 0.402 0.190 0.190
33Cl s.p. 4.648 4.648 -0.775 -0.775 -0.618 -0.618

SM 4.361 4.361 -0.488 -0.488 -0.695 -0.695
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progress has inspired the calculations reported here. In our work we employ a PNC nucleon-
nucleon interaction derived from a π-, ρ-, and ω-meson exchange model, providing sufficient
degrees of freedom to describe fully the five independent S − P amplitudes. The single-
nucleon, exchange current, and nuclear polarization AM contributions are then evaluated
with this choice of potential. The end result is an analysis of AM constraints that is fully
consistent with the existing analysis of AL(~p + p) and other hadronic tests of PNC.

Our results show that the weak meson-nucleon couplings favored by nuclear experiments
are not compatible with the large AM value extracted from the Cs measurement. The Tl
AM limit also favors a sign disfavored by theory. Our qualitative arguments about the
effects of correlations missing from the SM calculations suggest that improvements in the
nuclear structure are likely to lead to smaller values for the predicted Cs AM, exacerbating
the current discrepancy.

The nuclear constraints favor a small value for fπ and isoscalar PNC couplings near the
DDH “best values.” This pattern is puzzling, and suggests that strong interactions modify
the isospin of weak-meson nucleon couplings in a nontrivial way. The Cs AM result now
has produced a more confusing situation, one where no one solution satisfies all constraints.
Hopefully new experiments will provide the redundancy needed to resolve the conflict. In
the next few years results are expected for the spin-rotation of polarized slow neutrons in
liquid helium [55] and the asymmetry in polarized neutron capture ~n+ p→ d+ γ [56].

New AM measurements could also help clarify matters. A more accurate Tl AM mea-
surement could define the sign of this quantity: while the current band includes zero, it
favors a sign opposite that predicted by theory. New AM measurements in odd-neutron
nuclei would have great impact, defining a band in the weak meson-nucleon coupling plane
roughly perpendicular to the Cs and Tl bands. There are proposals for AM measurements
on Dy, Fr, and Ba+.

The accuracy of the Cs AM results sets it apart from any other atomic PNC result:
it has produced a constraint on a weak radiative correction that, when translated into
meson-nucleon weak couplings, is as accurate as any direct probe of hadronic PNC. Thus
the challenge of understanding this special measurement should motivate more theoretical
work. Furthermore, the implications of this measurement are not necessarily limited to the
issues discussed in this paper. Our understanding of V(e)-A(N) interactions also affects the
interpretation of electron-nucleus scattering experiments like SAMPLE [57], where a similar
discrepancy between theory and experiment exists and where theoretical predictions also
depend on a proper treatment of the hadronic weak interaction. Unravelling the puzzles
presented by these measurements constitutes an important challenge to both theory and
experiment.
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APPENDIX I: TWO-BODY EXCHANGE CHARGE AND CURRENT

OPERATORS IN MOMENTUM SPACE

The total Lagrangian density we are considering is

L = LFree + LPC + LPNC + LEM , (1)

with

LFree = N
′
(i∂/−M)N +

1

2
(∂µ~π) · (∂µ~π)− 1

2
m2
π~π

2 − 1

4
~F (ρ)
µν · ~F (ρ)µν +

1

2
m2
ρ~ρµ · ~ρµ

− 1

4
F (ω)
µν F

(ω)µν +
1

2
m2
ωωµω

µ, (2)

LPC = igπNNN
′
γ5~τ · ~πN − gρNNN

′
(γµ − i

µv
2M

σµνq
ν)~τ · ~ρµN

− gωNNN
′
(γµ − i

µs
2M

σµνq
ν)ωµN, (3)

LPNC = − fπ√
2
N
′
(~τ × ~π)3N +N

′(
h0
ρ~τ · ~ρµ + h1

ρρ
µ
3 +

h2
ρ

2
√

6
(3τ3ρ

µ
3 − ~τ · ~ρµ)

)
γµγ5N

+ N
′
(h0

ωω
µ + h1

ωτ3ω
µ)γµγ5N +O(h1′

ρ ), (4)

LEM = −eN
′
[γµ(F

(S)
1

1

2
+ F

(V )
1

τ3

2
)− i 1

2M
σµνk

ν(F
(S)
2

1

2
+ F

(V )
2

τ3

2
)]NAµ

− e(~π × ∂µ~π)3A
µ − e(~ρν × ~F (ρ)

νµ )3A
µ

− egρπγ
2M

εαβγδF
(γ)αβ(~ργ · ∂δ~π)− egωπγ

2M
εαβγδF

(γ)αβ(ωγ∂δπ3). (5)

Note that we use the Bjorken-Drell [58] metric exclusively and the DDH definition of weak
couplings. In these expressions ~π, ~ρµ, ωµ, Aµ denote the pion, rho meson, omega meson, and
photon fields; F (ρ,ω, γ)

µν is the field tensor for the designated field; and qµ and kµ are the 4-

momenta carried by the outgoing meson and photon. F
(S,V )
1,2 denotes the isoscalar or isovector

EM form factors, with F
(S)
1 (0) = F

(V )
1 = 1, F

(S)
2 (0) = µs = −0.12; F

(V )
2 (0) = µv = 3.70.

After applying the procedure described in Sec. 5, we obtain the following results.

A. Pair Currents

Pair current diagrams are generated by π, ρ, or ω exchange, and the nucleon coupling to
the photon has either a PC or PNC meson-nucleon coupling. Thus there are six cases. For
charge densities to O(1/M 2) we obtain

ρπ pairγ−PC =
−iegπNNfπ

4
√

2M2
(1 + µs)(~τ (1)× ~τ (2))3~σ(1) · ~k (2π)3δ(3)(· · ·)

(~p
′

2 − ~p2)2 +m2
π

+ (1↔ 2), (6a)

ρπ pairγ−PNC = 0, (6b)

ρρ pairγ−PC =
iegρNN
4M2

{[
(1 + µs)

(
h0
ρ~τ(1) · ~τ(2) + h1

ρτ3(1) +
h2
ρ

2
√

6
(3τ3(1)τ3(2)− ~τ (1) · ~τ (2))

)
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+ (1 + µv)
(
h0
ρτ3(2) + h1

ρ +
h2
ρ√
6
τ3(2)

)][
~k · ~σ(1) × ~σ(2)

+
~σ(2) · (~p ′2 − ~p2)

m2
ρ

~k · ~σ(1) × (~p
′

2 − ~p2)
]

+ (1 + µv)(h
0
ρ −

h2
ρ

2
√

6
)(~τ (1)× ~τ (2))3

×
[
~k · ~σ(2) +

~σ(2) · (~p ′2 − ~p2)

m2
ρ

~k · (~p ′2 − ~p2)
]}

(2π)3δ(3)(· · ·)
(~p
′

2 − ~p2)2 +m2
ρ

+ (1 ↔ 2), (6c)

ρρ pairγ−PNC =
−iegρNN

4M2
(1 + µv)(h

0
ρ −

h2
ρ

2
√

6
)(~τ (1)× ~τ (2))3~σ(1) · ~k (2π)3δ(3)(· · ·)

(~p
′

2 − ~p2)2 +m2
ρ

+ (1 ↔ 2), (6d)

ρω pair
γ−PC =

iegωNN
4M2

(h0
ω + h1

ωτ3(2))[(1 + µs) + (1 + µv)τ3(1)]
[
~k · ~σ(1) × ~σ(2)

+
~σ(2) · (~p ′2 − ~p2)

m2
ω

~k · ~σ(1) × (~p
′

2 − ~p2)
]

(2π)3δ(3)(· · ·)
(~p
′

2 − ~p2)2 +m2
ω

+ (1↔ 2), (6e)

ρω pair
γ−PNC = 0. (6f)

For current densities to O(1/M 2) we obtain

~jπ pairγ−PC =
−egπNNfπ

2
√

2M
[~τ (1) · ~τ (2)− τ3(1)τ3(2)]~σ(1)

(2π)3δ(3)(· · ·)
(~p
′

2 − ~p2)2 +m2
π

+ (1↔ 2), (7a)

~jπ pairγ−PNC = 0, (7b)

~jρ pairγ−PC =
egρNN

2M

{[
h0
ρ(~τ (1) · ~τ (2) + τ3(2)) + h1

ρ(1 + τ3(1)) +
h2
ρ

2
√

6
(3τ3(1)τ3(2)

− ~τ (1) · ~τ(2) + 2τ3(2))
][
~σ(2) +

~σ(2) · (~p ′2 − ~p2)

m2
ρ

(~p
′

2 − ~p2)
]

− (h0
ρ −

h2
ρ

2
√

6
)(~τ(1) × ~τ(2))3

[
~σ(1)× ~σ(2)

+
~σ(2) · (~p ′2 − ~p2)

m2
ρ

~σ(1) × (~p
′

2 − ~p2)
]}

(2π)3δ(3)(· · ·)
(~p
′

2 − ~p2)2 +m2
ρ

+ (1↔ 2), (7c)

~jρ pairγ−PNC =
−egρNN

2M

[
h0
ρ(~τ(1) · ~τ(2) + τ3(2)) + h1

ρ(τ3(2) + τ3(1)τ3(2)) +
h2
ρ

2
√

6
(3τ3(1)τ3(2)

− ~τ (1) · ~τ(2) + 2τ3(2))
]
~σ(1)

(2π)3δ(3)(· · ·)
(~p
′

2 − ~p2)2 +m2
ρ

+ (1↔ 2), (7d)

~jω pairγ−PC =
egωNN

2M
(h0

ω + h1
ωτ3(2))(1 + τ3(1))

×
[
~σ(2) +

~σ(2) · (~p ′2 − ~p2)

m2
ω

(~p
′

2 − ~p2)
]

(2π)3δ(3)(· · ·)
(~p
′

2 − ~p2)2 +m2
ω

+ (1↔ 2), (7e)

~jω pair
γ−PNC =

−egωNN
2M

(h0
ω + h1

ω)(1 + τ3(1))~σ(1)
(2π)3δ(3)(· · ·)

(~p
′

2 − ~p2)2 +m2
ω

+ (1↔ 2). (7f)
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B. Transition Currents

The transition currents can have a ππγ, ρργ, ρπγ, or ωπγ vertex. In the last two cases,
the heavier mesons ρ and ω can have either a PC or PNC coupling. Thus there are six
possibilities. For charge densities to O(1/M 2) we obtain

ρππγ =
egπNNfπ

2
√

2M
[τ3(1)τ3(2) − ~τ (1) · ~τ (2)](E

′
2 − E2 − (E

′
1 − E1))~σ(1) · (~p ′1 − ~p1)

× (2π)3δ(3)(· · ·)
((~p

′
1 + ~p1)2 +m2

π)((~p
′

2 − ~p2)2 +m2
π)

+ (1 ↔ 2), (8a)

ρρργ = iegρNN
(
h0
ρ −

h2
ρ

2
√

6

)
(~τ (1)× ~τ (2))3

[
~σ(2) · (~p ′1 − ~p1)

+
~σ(2) · (~p ′2 − ~p2)

m2
ρ

(~p
′

2 − ~p2) · (~p ′1 − ~p1)
]

(2π)3δ(3)(· · ·)
((~p

′
1 − ~p1)2 +m2

ρ)((~p
′

2 − ~p2)2 +m2
ρ)

+ (1 ↔ 2), (8b)

ρρπγρ−PC =
egρNNfπgρπγ

2
√

2Mmρ

(~τ (1)× ~τ (2))3

[
(~p
′

1 − ~p1) · (~p ′2 − ~p2)× (~p
′

1 + ~p1)

+ i(1 + µv)(~σ(1) · (~p ′1 − ~p1)(~p
′

2 − ~p2) · (~p ′1 − ~p1)− ~σ(1) · (~p ′2 − ~p2)(~p
′

1 − ~p1)2)
]

× (2π)3δ(3)(· · ·)
((~p

′
1 − ~p1)2 +m2

ρ)((~p
′

2 − ~p2)2 +m2
π)

+ (1↔ 2), (8c)

ρρπγρ−PNC =
iegρNNgρπγ

2Mmρ

(h0
ρ~τ (1) · ~τ (2) + h1

ρτ3(2) +
h2
ρ

2
√

6
(3τ3(1)τ3(2)− ~τ (1) · ~τ (2)))

× ~σ(2) · (~p ′2 − ~p2)~σ(1) · (~p ′1 − ~p1)× (~p
′

2 − ~p2)

× (2π)3δ(3)(· · ·)
((~p

′
1 − ~p1)2 +m2

ρ)((~p
′

2 − ~p2)2 −m2
π)

+ (1↔ 2), (8d)

ρωπγω−PC = 0, (8e)

ρωπγω−PNC =
iegωNNgωπγ

2Mmω
(h0

ωτ3(2) + h1
ωτ3(1)τ3(2))~σ(2) · (~p ′2 − ~p2)

× ~σ(1) · (~p ′1 − ~p1)× (~p
′

2 − ~p2)
(2π)3δ(3)(· · ·)

((~p
′

1 − ~p1)2 +m2
ω)((~p

′
2 − ~p2)2 +m2

π)
+ (1↔ 2). (8f)

For current densities to O(1/M 2) we obtain

~jππγ =
egπNNfπ

2
√

2M
[τ3(1)τ3(2)− ~τ(1) · ~τ (2)]((~p

′
2 − ~p2)− (~p

′
1 − ~p1))~σ(1) · (~p ′1 − ~p1)

× (2π)3δ(3)(· · ·)
((~p

′
1 − ~p1)2 +m2

π)((~p
′

2 − ~p2)2 +m2
π)

+ (1↔ 2), (9a)

~jρργ =
iegρNN

2M

(
h0
ρ −

h2
ρ

2
√

6

)
(~τ (1) × ~τ (2))3

{[
(~p
′

1 − ~p1)− (~p
′

2 − ~p2)
](
~σ(2)

+
~σ(2) · (~p ′2 − ~p2)

m2
ρ

(~p
′

2 − ~p2)
)
·
(
(~p
′

2 + ~p2)− (~p
′

1 + ~p1)− i(1 + µv)~σ(1)× (~p
′

1 − ~p1)
)
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+
[
(~p
′

1 + ~p1) + i(1 + µv)~σ(1) × (~p
′

1 − ~p1)
]
(~p
′

1 − ~p1) ·
(
~σ(2) +

~σ(2) · (~p ′2 − ~p2)

m2
ρ

(~p
′

2 − ~p2)
)

+
[
~σ(2) +

~σ(2) · (~p ′2 − ~p2)

m2
ρ

(~p
′

2 − ~p2)
]
(~p
′

2 − ~p2) ·
(
(~p
′

2 + ~p2)− (~p
′

1 + ~p1)

− i(1 + µv)~σ(1)× (~p
′

1 − ~p1)
)} (2π)3δ(3)(· · ·)

((~p
′

1 − ~p1)2 +m2
ρ)((~p

′
2 − ~p2)2 +m2

ρ)
+ (1↔ 2), (9b)

~jρπγρ−PC =
egρNNfπgρπγ√

2mρ

(~τ(1) × ~τ (2))3(~p
′

1 − ~p1)× (~p
′

2 − ~p2)

× (2π)3δ(3)(· · ·)
((~p

′
1 − ~p1)2 +m2

ρ)((~p
′

2 − ~p2)2 +m2
π)

+ (1↔ 2), (9c)

~jρπγρ−PNC =
−iegρNNgρπγ

4M2mρ

(
h0
ρ~τ (1) · ~τ (2) + h1

ρτ3(2) +
h2
ρ

2
√

6
(3τ3(1)τ3(2)− ~τ (1) · ~τ (2))

)

× ~σ(2) · (~p ′2 − ~p2)]
{[

(~p
′2

2 − ~p2
2)(~p

′
1 − ~p1)− (~p

′2
1 − ~p2

1)(~p
′

2 − ~p2)
]
× ~σ(1)

− ~σ(1) · (~p ′1 + ~p1)(~p
′

1 − ~p1)× (~p
′

2 − ~p2)
}

× (2π)3δ(3)(· · ·)
((~p

′
1 − ~p1)2 +m2

ρ)((~p
′

2 − ~p2)2 +m2
π)

+ (1↔ 2), (9d)

~jωπγω−PC = 0, (9e)

~jωπγω−PNC =
−iegωNNgωπγ

4M2mω
(h0

ωτ3(2) + h1
ωτ3(1)τ3(2))~σ(2) · (~p ′2 − ~p2)

{[
(~p
′2

2 − ~p2
2)(~p

′
1 − ~p1)

− (~p
′2

1 − ~p2
1)(~p

′
2 − ~p2)

]
× ~σ(1) − ~σ(1) · (~p ′1 + ~p1)(~p

′
1 − ~p1)× (~p

′
2 − ~p2)

}

× (2π)3δ(3)(· · ·)
((~p

′
1 − ~p1)2 +m2

ω)((~p
′

2 − ~p2)2 −m2
π)

+ (1↔ 2). (9f)

APPENDIX II: TWO-BODY EXCHANGE CURRENT OPERATORS IN

POSITION SPACE TO ORDER OF 1/M

Only the three-current operators are needed for the AM calculation. We keep terms
to O(1/M). The following results follow from Fourier transformations of selected terms in
Appendix A.

~jπ pairγ−PC =
−egπNNfπ
8
√

2πM
(~τ(1) · ~τ(2) − τ3(1)τ3(2))~σ(1)δ(3)(~x− ~x1)

e−mπr

r
+ (1↔ 2), (1)

~jρ pairγ−PC =
egρNN
12πM

{[
h0
ρ(~τ (1) · ~τ (2) + τ3(2)) + h1

ρ(1 + τ3(1)) +
h2
ρ

2
√

6
(3τ3(1)τ3(2) − ~τ(1) · ~τ(2)

+ 2τ3(2))
](
~σ(2) +

√
2π(1 +

3

mρr
+

3

(mρr)2
)[Y2(Ωr)⊗ ~σ(2)]1

)

+ (h0
ρ −

h2
ρ

2
√

6
)(~τ (1)× ~τ (2))3

(
~σ(1)× ~σ(2)−

√
π

2
(1 +

3

mρr
+

3

(mρr)2
)
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× [Y2(Ωr) ⊗ (~σ(1)× ~σ(2)]1 + i
√

3π(1 +
3

mρr
+

3

(mρr)2
)[Y2(Ωr)⊗ [~σ(1) ⊗ ~σ(2)]2]1

)}

× δ(3)(~x− ~x1)
e−mρr

r
+ (1↔ 2), (2)

~jρ pairγ−PNC =
−egρNN

8πM

[
h0
ρ(~τ (1) · ~τ (2) + τ3(2)) + h1

ρ(τ3(2) + τ3(1)τ3(2)) +
h2
ρ

2
√

6
(3τ3(1)τ3(2)

− ~τ(1) · ~τ (2) + 2τ3(2))
]
~σ(1)δ(3)(~x− ~x1)

e−mρr

r
+ (1↔ 2), (3)

~jω pair
γ−PC =

egωNN
12πM

(h0
ω + h1

ωτ3(2))(1 + τ3(1))
(
~σ(2) +

√
2π(1 +

3

mωr
+

3

(mωr)2
)

× [Y2(Ωr) ⊗ ~σ(2)]1
)
δ(3)(~x− ~x1)

e−mωr

r
+ (1↔ 2), (4)

~jω pair
γ−PNC =

−egωNN
4πM

(h0
ω + h1

ω)(1 + τ3(1))~σ(1)δ(3)(~x− ~x1)
e−mωr

r
+ (1↔ 2), (5)

~jππγ =
−egπNNfπ
16
√

2πM
(~τ(1) · ~τ(2) − τ3(1)τ3(2))~σ(1) · ~∇1(~∇1 − ~∇2)

×
∫

d3k

(2π)3
ei
~k·(~x−~R)

∫ 1/2

−1/2
dαeiα

~k·~r e
−Lπr

Lπ
+ (1↔ 2), (6)

~jρργ =
iegρNN
16πM

(h0
ρ −

h2
ρ

2
√

6
)(~τ (1)× ~τ(2))3

[
(~σ(2)− ~σ(2) · ~∇2

m2
ρ

~∇2) · (∇
⇐⇒

1 −∇
⇐⇒

2

+ i(1 + µv)~σ(1)× ~∇1)(~∇1 − ~∇2)− ~∇1 · (~σ(2) − ~σ(2) · ~∇2

m2
ρ

~∇2)(∇
⇐⇒

1

+ i(1 + µv)~σ(1)× ~∇1) + ~∇2 · (∇
⇐⇒

1 −∇
⇐⇒

2 + i(1 + µv)~σ(1) × ~∇1)(~σ(2) − ~σ(2) · ~∇2

m2
ρ

~∇2)
]

×
∫

d3k

(2π)3
ei
~k·(~x−~R)

∫ 1/2

−1/2
dαeiα

~k·~r e
−Lρr

Lρ
+ (1 ↔ 2), (7)

~jρπγρ−PC =
−iegρNNfπgρπγ

8
√

2πmρ

(~τ (1)× ~τ (2))3(~∇1 × ~∇2)
∫

d3k

(2π)3
ei
~k·(~x−~R)

∫ 1/2

−1/2
dαeiα

~k·~r e
−Lρπr

Lρπ

+ (1↔ 2), (8)

where ~R = (~x1 + ~x2)/2, ~r = ~x1 − ~x2, r = |~r|, Lπ(ρ) = (m2
π(ρ) + ~k2(1

4
− α2))1/2, Lρπ =

(
m2
ρ+m2

π

2
+ α(m2

ρ −m2
π) + ~k2(1

4
− α2))1/2, and the operation of ∇

⇐⇒
should be understood as

∇
⇐⇒
F (· · ·) = F (· · ·)~∇−∇

←
F (...) . For transition currents, the full Fourier transformation is

not easily evaluated in the general case, so we leave the integration undone.

APPENDIX III: AN EXAMPLE OF FERMI GAS ONE-BODY AVERAGES

Here we describe how effective operators are obtained in the Fermi gas model by one-
body averages. Most of the discussion is general, though we use the simple π pair current
when specific examples are needed.
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TABLE XVII. One-body averaged spin operators.

2-body 1-body direct 1-body exchange

1 2 1

~σ(1) + ~σ(2) 2~σ 2~σ

~σ(1)− ~σ(2) 2~σ 0

~σ(1)× ~σ(2) 0 2i~σ

TABLE XVIII. One-body averaged isospin operators.

2-body 1-body direct 1-body exchange

1 (θp + θn) (θp + θn)1
2 + (θp − θn) τ32

~τ(1) · ~τ(2) (θp − θn)τ3 (θp + θn)3
2 − (θp − θn) τ32

τ3(1)τ3(2) (θp − θn)τ3 (θp + θn)1
2 + (θp − θn) τ32

τ3(1) + τ3(2) (θp − θn) + (θp + θn)τ3 (θp − θn) + (θp + θn)τ3

τ3(1)− τ3(2) −(θp − θn) + (θp + θn)τ3 0

(~τ(1)× ~τ(2))3 0 −i(θp − θn) + i(θp + θn)τ3

3τ3(1)τ3(2)− ~τ(1) · ~τ(2) 2(θp − θn)τ3 2(θp − θn)τ3

An effective one-body operator is obtained by performing a mean-field-like sum over the
direct and exchange terms

< α|O(1)|β >≡
∑

γ

< αγ|O(2)|βγ > − < αγ|O(2)|γβ >, (1)

where the sum extends over occupied core states. In the nonrelativistic Fermi gas each s.p.
state is a direct product of space, spin, and isospin components

|α〉 = |~p(α)〉 ⊗ |1
2
ms(α)〉 ⊗ |1

2
mt(α)〉. (2)

Thus the wave function factors, allowing space, spin, and isospin sum to be performed
independently.

The spin and isospin averages for common operators are easily done. The results are
displayed in Table XVII and XVIII.

Turning to spatial averages, we first consider pair currents. The spatial parts of these
operators take one of the generic forms: i) f(r)δ(3)(~x−~x1) or ii) f(r)δ(3)(~x−~x2), where f(r)
is a function of r ≡ |~r| = |~x1 − ~x2|. Therefore, the direct average is

∑

~pγ

〈~pα, ~pγ |f(r)δ(3)(~x− ~x1)|~pβ, ~pγ〉 = e−i(~pα−~pβ)·~x∑

~pγ

∫
d3r f(r), (3)

∑

~pγ

〈~pα, ~pγ |f(r)δ(3)(~x− ~x2)|~pβ, ~pγ〉 = e−i(~pα−~pβ)·~x∑

~pγ

∫
d3r e−i(~pα−~pβ)·~r f(r), (4)

and the exchange average
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∑

~pγ

〈~pα, ~pγ|f(r)δ(3)(~x− ~x2)|~pγ, ~pβ〉 = e−i(~pα−~pβ)·~x∑

~pγ

∫
d3r e−i(~pβ−~pγ)·~r f(r), (5)

∑

~pγ

〈~pα, ~pγ|f(r)δ(3)(~x− ~x2)|~pγ, ~pα〉 = e−i(~pα−~pβ)·~x∑

~pγ

∫
d3r e−i(~pα−~pγ)·~r f(r). (6)

Now e−i(~pα−~pβ)·~x gives a δ(3)(~x − ~xi) for a first quantized operator in position space, i.e.,
〈~pα|δ(3)(~x − ~xi)|~pβ〉 = e−i(~pα−~pβ)·~x. We specialize the remaining integration to the π pair
current where f(r) has the Yukawa form e−mπ/r,

∫
d3r

e−mπ

r
=

4π

m2
π

, (7)

∫
d3r e−i~p·~r

e−mπ

r
=

4π

~p2 +m2
π

. (8)

After performing the sum over the Fermi sphere by using the quasi-continuum limit,
∑
~pγ →∫ pF

0 dpγ
∫ 4π
0 dΩ(pγ), we find

∑

~pγ

1 =
p3
F

6π2
=
ρ

2
, (9)

∑

~pγ

1

(~pα(β) − ~pγ)2 +m2
π

=
ρ

2m2
π

W
′
(p̃α(β), m̃π), (10)

where the W
′

function represents the full result after the volume integration,

W
′
(p̃α, m̃π) =

3m2
π

4p2
F

{
2 − 2m̃π

[
arctan

(1 + p̃α
m̃π

)
+ arctan

(1 − p̃α
m̃π

)]

+
1

2p̃α
[1− p̃2

α + m̃2
π] ln

[
(1 + p̃α)2 + m̃2

π

(1− p̃α)2 + m̃2
π

]}
(11)

with all the tilde quantities normalized by the Fermi momentum, i.e. X̃ ≡ X/pF . As shown
in Fig. 10, the W ′ function varies very slowly as p̃α runs from 0 to 1. Therefore, it is
reasonable to replace this quantity by its average value 〈W ′(π)〉.

Combining the spatial result with the spin and isospin factors from the tables the yields
the π pair current one-body averged form

jπ pairγ−PC =
egπNNfπ

8
√

2πM
((θp + θn)− (θp − θn)τ3)~σ

2πρ

m2
π

〈W ′(π)〉δ(3)(~x− ~xi) + (1↔ 2) (12)

=
egπNNfπ

2
√

2πMm2
π

((θn + θn) + (θn − θp)τ3)× ρ〈W ′(π)〉~σδ(3)(~x− ~xi). (13)

Other currents are similar, though generally more tedious.

APPENDIX IV: ONE-BODY FERMI-GAS AVERAGED CURRENT OPERATORS

We list the relevant one-body Fermi gas averaged operators in momentum space,
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FIG. 10. The smoothness of W
′(π) as a function of p̃α

~jπ pairγ−PC =
egπNNfπ

2
√

2Mm2
π

((θn + θp) + (θn − θp)τ3)× ρ〈W ′(π)〉~σ, (1)

~jρ pairγ−PC =
2egρNN
3Mm2

ρ

(h1
ρ + (h0

ρ +
h2
ρ

2
√

6
)τ3)θpρ{~σ +

√
15

4

1

m2
ρ

[[~k ⊗ ~k]2 ⊗ ~σ]1}

− gρNN
6Mm2

ρ

([(
(h1

ρ +
3h2

ρ

2
√

6
) + (2h0

ρ + h1
ρ +

h2
ρ

2
√

6
)τ3

)
θp − 3(h0

ρ −
h2
ρ

2
√

6
)(1 + τ3)θn

]
2ρ〈W ′(ρ)〉~σ

+
[
(3h0

ρ + h1
ρ)− (h0

ρ − h1
ρ −

2h2
ρ√
6

)τ3)
]
θnρ

√
15

4
〈W ′′(ρ)〉 1

p2
F

[[ ~K ⊗ ~K]2 ⊗ ~σ]1

)
, (2)

~jρ pairγ−PNC =
egρNN
2Mm2

ρ

(h0
ρ + h1

ρ +
h2
ρ

2
√

6
)(1 + τ3)(θn − θp)ρ~σ

+
egρNN
2Mm2

ρ

[(
2h0

ρ + h1
ρ +

h2
ρ

2
√

6
+ (h1

ρ +
3h2

ρ

2
√

6
)τ3

)
θp + (h0

ρ −
h2
ρ

2
√

6
)(1 + τ3)θn

]
ρ〈W ′(ρ)〉~σ, (3)

~jω pair
γ−PC =

2egωNN
3Mm2

ω

(h0
ω + h1

ωτ3)θpρ{~σ +

√
15

4

1

m2
ω

[[~k ⊗ ~k]2 ⊗ ~σ]1}

− egωNN
6Mm2

ω

(h0
ω + h1

ω)(1 + τ3)θp ρ{2〈W
′(ω)〉~σ −

√
15

4
〈W ′′(ω)〉 1

p2
F

[[ ~K ⊗ ~K]2 ⊗ ~σ]1}, (4)

~jω pair
γ−PNC =

−egωNN
2Mm2

ω

(h0
ω + h1

ω)(1 + τ3)((θn + θp) ρ~σ − θp ρ〈W
′(ω)〉~σ), (5)

~jππγ =
−egπNNfπ√

2Mm4
π

((θn + θp) + (θn − θp)τ3) ρ{〈Y1〉(~σ · ~k)~k + 〈Y2〉(~σ · ~K) ~K + 〈Y3〉(p2
F )~σ}, (6)

~jρργ =
−egρNN

2
√

2Mm4
ρ

(h0
ρ −

h2
ρ

2
√

6
)((θn − θp) + (θn + θp)τ3) ρ

{
〈I1〉(~k2)~σ + 〈I2〉(p2

F )~σ

+ 〈I3〉(~σ · ~k)~k + 〈I4〉(~σ · ~K) ~K − i〈I5〉~k × ~K +
1

m2
ρ

(
〈J1〉(~k4)~σ + 〈J2〉(~k · ~K)2~σ

+ 〈J3〉(p2
F
~k2)~σ + 〈J4〉(p4

F )~σ + 〈J5〉(~σ · ~k)(~k2)~k + 〈J6〉(~σ · ~K)(~k · ~K)~k

+ 〈J7〉(p2
F )(~σ · ~k)~k + 〈J8〉(~σ · ~K)(~k2) ~K + 〈J9〉(p2

F )(~σ · ~K) ~K + 〈J10〉(~σ · ~k)(~k · ~K) ~K
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TABLE XIX. Average weighting functions. (Note: First number refers to proton part and the

the second the neutron part)

〈W ′(π)〉 〈W ′(ρ,ω)〉 〈W ′′(π)〉 〈W ′′(ρ,ω)〉 〈Y1〉 〈Y2〉 〈Y3〉
0.30/0.26 0.90/0.88 0.99/1.02 0.19/0.23 0.0039/0.0033 0.0173/0.0111 0.0144/0.0103

〈I1〉 〈I2〉 〈I3〉 〈I4〉 〈I5〉 〈J1〉 〈J2〉
2.25/2.18 10.09/9.58 −1.53/− 1.46 21.30/19.61 10.18/9.56 0.42/0.39 1.10/1.02

〈J3〉 〈J4〉 〈J5〉 〈J6〉 〈J7〉 〈J8〉 〈J9〉
4.11/3.91 1.43/1.32 −0.83/− 0.77 −2.68/− 2.48 2.57/2.40 4.25/3.89 −8.21/− 7.56

〈J10〉 〈J11〉 〈J12〉 〈Z〉
2.53/2.32 3.26/3.03 −11.16/− 10.42 1.43/1.15

− i〈J11〉(~k2)~k × ~K − i〈J12〉(p2
F )~k × ~K

)}
, (7)

~jρπγρ−PC =
−i2
√

2egρNNfπgρπγ
mρ(m2

ρ +m2
π)2

((θn − θp) + (θn + θp)τ3) 〈Z〉~k × ~K. (8)

θp(n) is a projection operator: when θp(n) acts on {ρ (nuclear density), pF (Fermi momen-
tum), 〈X〉 (averaged weighting function such as 〈W ′(π)〉)}, the results should read {ρp(n),

p
p(n)
F , 〈Xp(n)〉}. The conversion rules from momentum space to position space are simple,

1 −→ δ(3)(~x− ~xi), (9)

~k = ~pβ − ~pα −→ −i[~∇, δ(3)(~x− ~xi)], (10)

~K =
~pβ + ~pα

2
−→ −i{~∇i, δ

(3)(~x− ~xi)}sym. (11)

For 133Cs, p
p(n)
F ∼ 260(300) MeV. The average weighting factors are given in Table XIX.

For 205Tl, these numbers are almost the same. We do not distinguish between the ρ and ω
masses in evaluating weighting functions.
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