Polarization Transfer in the 4He($\vec{e}, e'\vec{p}$)3H Reaction up to $Q^2 = 2.6$ (GeV/c)2

S. Strauch,11 S. Dieterich,1 K.A. Aniol,2 J.R.M. Annand,3 O.K. Baker,4,5 W. Bertozzi,6 M. Boswell,7 E.J. Brash,8 Z. Chai,6 J.-P. Chen,5 M.E. Christy,4 E. Chudakov,5 A. Cochran,5 R. De Leo,9 R. Ent,6 M.B. Epstein,2 J.M. Finn,10 K.G. Fissum,11 T.A. Forest,12 S. Frullani,13 F. Garibaldi,13 A. Gasparian,4 O. Gayou,10,14 S. Gilad,6 R. Gilman,1,5 C. Glashausser,1 J. Gomez,5 V. Gorbenko,15 P.L.J. Guye,4 J.O. Hansen,5 D.W. Higinbotham,6 B. Hu,4 C.E. Hyde-Wright,12 D.G. Ireland,3 C. Jackson,4 C.W. de Jager,3 X. Jiang,1 C. Jones,4 M.K. Jones,16 J.D. Kellie,5 J.J. Kelly,16 C.E. Keppel,4 G. Kumbartzki,1 M. Kuss,3 J.J. LeRose,5 K. Livingston,3 N. Liyanage,5 R.W. Lourie,17 S. Malov,1 D.J. Margaziotis,2 D. Meeks,18 R. Michaels,5 J.H. Mitchell,3 S.K. Nanda,5 J. Nappa,1 C.F. Perdrisat,10 V.A. Punjabi,1 R.D. Ransome,1 R. Rochè,18 G. Rosner,3 M. Rvachev,6 F. Sabatie,12 A. Saha,5 A. Sarty,18 J.M. Udias,20 P.E. Ulmer,12 G.M. Urciuoli,13 J.F.J. van den Brand,21 J.R. Vignote,20 D.P. Watts,3

L.B. Weinstein,12 K. Wijesooriya,22 and B. Wojtsekhowski5

1Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
2California State University, Los Angeles, California 90032
3University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom
4Hampton University, Hampton, Virginia 23668
5Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606
6Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
7Randolph-Macon Woman's College, Lynchburg, Virginia 24503
8University of Regina, Regina, Saskatchewan, Canada S4S 0A2
9INFN, Sezione di Bari and University of Bari, I-70126, Bari, Italy
10College of William and Mary, Williamsburg, Virginia 23187
11University of Lund, SE-221 00 Lund, Sweden
12Old Dominion University, Norfolk, Virginia 23529
13INFN, Sezione Sanità and Istituto Superiore di Sanità, Laboratorio di Fisica, I-00161 Rome, Italy
14Université Blaise Pascal, F-63177 Aubière, France
15Kharkov Institute of Physics and Technology, Kharkov 310108, Ukraine
16University of Maryland, College Park, Maryland 20742
17State University of New York at Stony Brook, Stony Brook, New York 11794
18Florida State University, Tallahassee, Florida 32306
19Norfolk State University, Norfolk, Virginia 23504
20Universidad Complutense de Madrid, E-28040 Madrid, Spain
21Vrije Universiteit, NL-1081 HV Amsterdam, Netherlands
22University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

We have measured the proton recoil polarization in the 4He($\vec{e}, e'\vec{p}$)3H reaction at $Q^2 = 0.5, 1.0, 1.6$, and 2.6 (GeV/c)2. The measured ratio of polarization transfer coefficients differs from a fully relativistic calculation, favoring the inclusion of a predicted medium modification of the proton form factors based on a quark-meson coupling model. In contrast, the measured induced polarizations agree reasonably well with the fully relativistic calculation indicating that the treatment of final-state interactions is under control.

The underlying theory of strong interactions is Quantum ChromoDynamics (QCD), yet there are no ab-initio calculations of nuclei available. Nuclei are effectively and well described as clusters of protons and neutrons held together by a strong, long-range force mediated by meson exchange, whereas the saturation properties of nuclear matter arise from the short-range, repulsive part of the strong interaction $[1]$. Whether the nucleon bound in the nuclear medium changes structure has been a long-standing issue in nuclear physics. At nuclear densities of about 0.17 fm$^{-3}$ nucleon wave functions have significant overlap. In the chiral limit, one expects nucleons to lose their identity altogether and nuclei to make a transition to a quark-gluon plasma.

Unfortunately, distinguishing possible changes in the structure of nucleons embedded in a nucleus from more conventional many-body effects is only possible within the context of a model. Nucleon modifications can be described in terms of coupling to excited states, and such changes are intrinsically intertwined with many-body effects, such as meson-exchange currents (MEC) and isobar configurations (IC). Therefore, interpretation of an experimental signature as an indication of modifications of the nucleon form factors only makes sense if this results in a more economical effective description of the bound, quantum, nuclear many-body system.

The quark-meson coupling (QMC) model of Lu et al. $[2]$ suggests a measurable deviation of the ratio of the proton's electric (G_E) and magnetic (G_M) form factors from its free space value over the Q^2 range acces-
sible by experiment. This calculation is consistent with present constraints on possible medium modifications for both G_E (from the Coulomb Sum rule, with $Q^2 < 0.5$ (GeV/c)^2 [3–5]), G_M (from a y-scaling analysis [6], for $Q^2 > 1$ (GeV/c)^2), and limits on the scaling of nucleon magnetic moments in nuclei [7]. Similar effects have been calculated in the light-front constituent quark model of Frank et al. [8].

In unpolarized $A(e, e'p)$ experiments involving light- and medium-heavy nucleus nuclei, deviations were observed in the longitudinal/transverse character of the nuclear response compared to the free proton case [9–11]. Below the two-nucleon emission threshold, these deviations were originally interpreted as changes in the nucleon form factors within the nuclear medium. However, strong interaction effects on the ejected proton (final state interactions [FSI]) later also succeeded in explaining the observed effect [12]. This illustrates that any interpretation in terms of medium modifications to nucleon form factors requires having excellent control of FSI effects.

For free electron-nucleon scattering, the ratio of the electric to magnetic Sachs form factors, (G_E/G_M), is directly proportional to the ratio of the transverse and longitudinal transferred polarizations, (P_T^e/P_T^p) [13,14]. This relationship was recently used to extract G_E/G_M for the proton [15–17]. Polarization transfer in quasielastic nucleon knockout remains sensitive to this ratio of form factors (possibly modified by the nuclear medium). A variety of calculations for the $A(e, e'p)$ reaction indicate that FSI and MEC effects on polarization transfer observables are small, amounting to only a < 10% correction [18–20]. In addition, these nuclear interaction effects tend to largely cancel in the ratio of polarization transfer coefficients P_T^e/P_T^p.

Recently, polarization transfer for the $^4He(e, e'p)$ 3H reaction at $Q^2 = 0.4$ (GeV/c)^2 was studied [21]. The addition of medium-modified proton form factors, as predicted by the QMC model, to a state-of-the-art fully relativistic model [19] gave a good description of the data. The authors concluded that, within the model space examined, the data favor models with medium-modified form factors over those with free form factors, but the latter could not be excluded. Examination of finding over a larger range in Q^2 seems an obvious step for further investigation.

The experiment reported here includes measurements of the polarization transfer coefficients over the range of Q^2 from 0.5 to 2.6 (GeV/c)^2, and as a function of missing momentum in the range 0 to 240 MeV/c, in order to maximize sensitivity to the electric to magnetic form factor ratio for protons bound in the 4He nucleus. This nucleus was selected for study because its relative simplicity allows realistic microscopic calculations and its high density enhances any possible medium effects. As the experiment was designed to detect differences between the medium polarizations and the free values, both 4He and 1H targets were employed (except at $Q^2 = 2.6$ (GeV/c)^2, where only 4He data were acquired due to beam time constraints).

Kinematics settings for the present experiment in Hall A at Jefferson Lab (JLab) are given in Table I. The experiment used beam currents of 40 μA for the lower Q^2 values and up to 70 μA for the highest Q^2 value, combined with beam polarizations of 66% for the lowest Q^2 value and ≈ 77% for the other Q^2 values. The beam helicity was flipped pseudorandomly to reduce systematic uncertainties of the extracted polarization transfer observables. The proton spectrometer was equipped with a focal plane polarimeter (FPP) [22,23]. Polarized protons lead to azimuthal asymmetries after scattering in the carbon analyzer of the FPP. These distributions, in combination with information on the beam helicity, were analyzed by means of a maximum likelihood method to obtain the induced and transferred polarization components. More details on the analysis can be found in Refs. [15,24,25].

Our results are shown in Fig. 1 as R/R_{PWIA} for all four values of Q^2. R_{PWIA} is the prediction based on the relativistic plane-wave impulse approximation (RPWIA) calculation. Here, R is defined as

$$ R = \frac{(P_T^e/P_T^p)_{He}}{(P_T^e/P_T^p)_{H}} $$

(1)

for the data, whereas R_{PWIA} is the same ratio based on the relativistic plane-wave impulse approximation (RPWIA) calculation. The helium polarization ratio is normalized to the hydrogen polarization ratio measured at the same setting. Such a polarization double ratio nearly cancels all systematic uncertainties. As a cross check, the hydrogen results were also used to extract the free proton form factor ratio G_E/G_M and found to be in excellent agreement with previous data [15,16]. In addition, our result at $Q^2 = 0.5$ (GeV/c)^2 closely coincides with the recent results at $Q^2 = 0.4$ (GeV/c)^2 of Mainz [21], also shown in Fig. 1. Our experimental results for helium and hydrogen separately, in terms of (P_T^e/P_T^p), are tabulated in Table II. Systematic uncertainties are mainly due to possible minor misalignments of the magnetic elements of the proton spectrometer and uncertainties in the spin transport through these magnetic elements. They are estimated to contribute less than 1.7% to R.

The theoretical calculations by the Madrid group [19] are averaged over the experimental acceptance. We note that these relativistic calculations provide good descriptions of, e.g., the induced polarizations measured at Bates in the $^{12}C(e, e'p)$ reaction [26] and of A_{TL} in $^{16}O(e, e'p)$ as previously measured at JLab [27].

At $Q^2 = 0.5$ and 1.0 (GeV/c)^2 the RPWIA calculation overestimates the data by ≈ 10%. The relativistic distorted-wave impulse approximation (RDWIA) calculation gives a slightly smaller (≈ 3%) value of R but
still overpredicts the data. After including the (density-dependent) medium-modified form factors as predicted by Lu et al. [2] in the RDWIA calculation, excellent agreement is obtained at both settings. All calculations shown use the Coulomb gauge, the cc1 current operator as defined in [28], and the MRW optical potential of [29]. The cc2 current operator gives slightly higher values of \(R \), worsening agreement with the data. In general, various choices for, e.g., spinor distortions, current operators, and relativistic corrections, affect the theoretical predictions by \(<3\%\), and can presently not explain the disagreement between the data and the RDWIA calculations. In contrast, the datum at \(Q^2 = 1.6\) (GeV/c)\(^2\) is well described by the RPWIA and RDWIA calculations, whereas all calculations are consistent with the datum at \(Q^2 = 2.6\) (GeV/c)\(^2\).

A statistical analysis of the measured double ratios, including the result of the Mainz experiment [21], and various theoretical predictions was performed. The model space we examined encompassed the RPWIA and RDWIA calculations of Udias et al. [19], the latter with and without medium modifications as predicted by a quark-meson coupling model [2], the full nonrelativistic model of Debruyne et al. [30,31], and the full nonrelativistic calculation of Laget including two-body currents [18]. For the latter calculation only data up to \(Q^2 = 0.5\) (GeV/c)\(^2\) are taken into account. A significantly better description is given by the RDWIA calculation when medium modifications are included.

Figure 2 shows the polarization double ratio \(R \) as a function of missing momentum for the lower three \(Q^2 \) kinematics (the statistics at the \(Q^2 = 2.6\) (GeV/c)\(^2\) kinematics are not sufficient to make a meaningful comparison with calculations). Negative values of missing momentum correspond to the recoiling nuclei having a momentum component antiparallel to the direction of the three-momentum transfer. Both the RPWIA and the RDWIA give a reasonable, but not perfect, description of the missing momentum dependence of the data. As already seen in Fig. 1, the difference in magnitude between the RDWIA calculation and the data at \(Q^2 = 0.5 \) and 1.0 (GeV/c)\(^2\) can be largely eliminated by including the QMC medium modifications, whereas at \(Q^2 = 1.6 \) (GeV/c)\(^2\) the calculation without QMC medium modifications already gives a satisfactory description. More precise data could unambiguously settle whether this is just a statistical fluctuation, and would constitute a demanding test of modern nucleon-meson descriptions of nuclear physics.

Lastly, we show in Fig. 3 the induced polarization, \(P_y \), obtained by properly averaging over the two beam helicities, and corrected for (small) false asymmetries, as a function of \(Q^2 \). \(P_y \) is identically zero in the absence of FSI effects (in the one-photon exchange approximation) and constitutes a stringent test of the validity of the inclusion of FSI effects in the calculations. For ex-

ample, an underestimate of reaction mechanism effects in the present calculation may be due to the neglect of the charge exchange \((\vec{e},e'p)\) \((\vec{n},p)\) reaction in the RDWIA calculations. However, the measured induced polarizations agree well with the RDWIA calculations. In addition, the \(^{12}\)C(\(\vec{e},e'p\)) \(^{12}\)O(\(\vec{e},e'p\)) reactions were calculated to be insensitive to this effect [20].

One sees in Fig. 3 that the induced polarizations are small for all measured \(Q^2 \) values. The dashed and dotted curves represent RDWIA calculations by Udias et al. [19] with the MRW [29] and RLF [32] relativistic optical potentials. For the induced polarization case, the RDWIA curves with and without medium modifications are identical: as mentioned earlier the QMC model incorporates modifications only to the one-body form factors. For a rigorous calculation of the \(^{4}\)He(\(\vec{e},e'p\))\(^{3}\)H results presented here, one would need to take into account possible medium modifications to both one-body form factors and many-body FSI effects. Figure 3 confirms the expected small values of the induced polarizations, and indicates reasonable agreement with the RDWIA calculations.

In summary, we have measured recoil polarization in the \(^{4}\)He(\(\vec{e},e'p\))\(^{3}\)H reaction in the range from \(Q^2 = 0.5 \) to 2.6 (GeV/c)\(^2\). The datum at the lowest \(Q^2 \) agrees well with the results of a recently reported Mainz measurement [21]. Such polarization transfer data are calculated to be only slightly dependent (<10%) on nuclear structure effects and fine details of the reaction mechanism. Furthermore, these effects tend to cancel in the \(P'_y/P'_y \) polarization transfer ratio. Within our model assumptions we find strong evidence for a medium modification; a calculation incorporating a predicted medium modification based on the quark-meson coupling model [2] gives a good description of our data. Moreover, the calculated induced polarizations agree well with our data, giving credibility to the validity of the treatment of FSI effects in the model. These data provide the most stringent test to date of the applicability of conventional meson-nucleon calculations.

The collaboration wishes to acknowledge the Hall A technical staff and the Jefferson Lab Accelerator Division for their outstanding support. The Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under contract DE-AC05-84ER40150. This work was supported by research grants from the United States Department of Energy and the National Science Foundation, the Italian Istituto di Fisica Nucleare (INFN), the Natural Sciences and Engineering Council of Canada (NSERC), the Swedish Natural Science Research Council, and the Comunidad de Madrid and Ministerio de Ciencia y Tecnología (Spain).
TABLE II. Polarization ratios with statistical and estimated systematic uncertainties. The polarization ratio value for $^1\text{H}(e^-,e'p)$ at $Q^2=2.6\ (\text{GeV/c})^2$ is from the fit of Ref. [15]. The uncertainty in this ratio and in R reflects the typical systematic uncertainty of the data of Ref. [15] at this Q^2.

<table>
<thead>
<tr>
<th>Q^2</th>
<th>$(P'_e/P'p){M_s}$</th>
<th>$(P'_e/P'p){H}$</th>
<th>R</th>
</tr>
</thead>
</table>
| 0.5 | -0.804±0.035±0.006 | -0.89±0.02±0.011 | 0.895±0.048±0.016 |}
| 1.0 | -0.502±0.018±0.003 | -0.578±0.014±0.005 | 0.868±0.083±0.011 |}
| 1.6 | -0.393±0.014±0.011 | -0.492±0.010±0.009 | 0.912±0.043±0.007 |}
| 2.6 | -0.231±0.022±0.016 | -0.265±0.024 | 0.869±0.081±0.099 |}

TABLE I. Kinematics for the present experiment. For the electron and proton angles we indicate between parentheses the angles for the $^4\text{He}(e^-,e'p)$ reaction, if different from the $^1\text{H}(e^-,e'p)$ reaction.
FIG. 1. Superratio \(R/R_{\text{PWIA}} \) as a function of \(Q^2 \). \(R \) is defined as the double ratio \((P_s'/P_s')_{\text{He}}/(P_s'/P_s')_{\text{H}} \). In PWIA (short-dashed curve) this superratio is identically unity, barring acceptance-averaging effects. The dashed curve shows the results of the full relativistic calculation of Udias et al. [19]. The dot-dashed curve shows the results of Laget's full calculation, including two-body currents [18]. The solid curve indicates the full relativistic calculation of Udias including medium modifications as predicted by a quark-meson coupling model [2]. For \(Q^2 > 1.8 \) (GeV/c\(^2\)) the Udias calculations maintain a constant relativistic optical potential and are indicated as short-dashed curves. Lines connect the acceptance-averaged theory calculations and are to guide the eye only.

FIG. 2. Measured values of the polarization double ratio \(R \) for \(^4\text{He}(e,e'p)^3\text{H}\) at \(Q^2 = 0.5 \) (GeV/c\(^2\)) (top), \(Q^2 = 1.0 \) (GeV/c\(^2\)) (middle), and \(Q^2 = 1.6 \) (GeV/c\(^2\)) (bottom). The shaded bands represent RPWIA calculations (solid), relativistic DWIA calculations (horizontal dashes) and relativistic DWIA calculations including QMC medium-modified form factors [2] by Udias et al. [19] (vertical dashes). The bands reflect variations due to choice of current operator, optical potential, and bound-state wave function (see also Ref. [21]).

FIG. 3. Measured values of the induced polarizations for the \(^4\text{He}(e,e'p)^3\text{H}\) reaction. The inner uncertainty is statistical only; the total uncertainty includes a systematic uncertainty of ±0.02, due to imperfect knowledge of the false asymmetries. The solid and dashed curves show the results for the full relativistic RDWA calculations of Udias et al. [19], using differing relativistic optical potentials [29,32]. For the dashed curves, variation within the chosen optical potential parameters is indicated by the shaded area. The short-dashed lines indicate the \(Q^2 \) regions where a constant relativistic optical potential has been used.